amd_iommu.c 93.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

123 124
	spinlock_t bitmap_lock;

125 126
	/* address allocation bitmap */
	unsigned long *bitmap;
127
	unsigned long offset;
128
	unsigned long next_bit;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

149 150
	/* aperture index we start searching for free addresses */
	unsigned long next_index;
151 152 153 154 155 156 157 158

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];

	/* This will be set to true when TLB needs to be flushed */
	bool need_flush;
};

159 160 161 162 163 164
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

165 166 167 168 169
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

170
static struct iommu_dev_data *alloc_dev_data(u16 devid)
171 172 173 174 175 176 177 178
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

179
	dev_data->devid = devid;
180 181 182 183 184 185 186 187

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

219 220 221 222
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

223
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
224 225
}

226 227 228 229 230
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

231 232 233 234
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
235 236
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
237 238 239 240 241 242 243 244 245 246 247 248
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

249 250 251 252 253 254 255 256 257
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

258
/*
259 260
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
261
 */
262 263
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
264
{
265
	u64 addr;
266

267 268 269 270 271
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
272
	}
273
}
274

275 276 277 278 279 280 281 282
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
283

284
	devid = get_device_id(dev);
285

286 287 288 289 290
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
291 292
}

293 294 295 296 297 298 299 300 301 302 303
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

304 305
	/* No PCI device */
	if (!dev_is_pci(dev))
306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

320
static void init_iommu_group(struct device *dev)
321
{
322 323
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
324 325
	struct iommu_group *group;

326
	group = iommu_group_get_for_dev(dev);
327 328 329 330 331 332 333 334 335 336 337 338
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

353 354 355 356 357 358 359
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

360 361
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
362 363 364
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

365 366 367
	return 0;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

382 383
static void iommu_uninit_device(struct device *dev)
{
384 385 386 387 388
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
389 390 391
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

392 393
	iommu_group_remove_device(dev);

394 395 396
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

397
	/*
398 399
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
400
	 */
401
}
J
Joerg Roedel 已提交
402

403 404 405 406 407 408
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

409
DECLARE_STATS_COUNTER(compl_wait);
410
DECLARE_STATS_COUNTER(cnt_map_single);
411
DECLARE_STATS_COUNTER(cnt_unmap_single);
412
DECLARE_STATS_COUNTER(cnt_map_sg);
413
DECLARE_STATS_COUNTER(cnt_unmap_sg);
414
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
415
DECLARE_STATS_COUNTER(cnt_free_coherent);
416
DECLARE_STATS_COUNTER(cross_page);
417
DECLARE_STATS_COUNTER(domain_flush_single);
418
DECLARE_STATS_COUNTER(domain_flush_all);
419
DECLARE_STATS_COUNTER(alloced_io_mem);
420
DECLARE_STATS_COUNTER(total_map_requests);
421 422 423 424 425
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
445
					 &amd_iommu_unmap_flush);
446 447

	amd_iommu_stats_add(&compl_wait);
448
	amd_iommu_stats_add(&cnt_map_single);
449
	amd_iommu_stats_add(&cnt_unmap_single);
450
	amd_iommu_stats_add(&cnt_map_sg);
451
	amd_iommu_stats_add(&cnt_unmap_sg);
452
	amd_iommu_stats_add(&cnt_alloc_coherent);
453
	amd_iommu_stats_add(&cnt_free_coherent);
454
	amd_iommu_stats_add(&cross_page);
455
	amd_iommu_stats_add(&domain_flush_single);
456
	amd_iommu_stats_add(&domain_flush_all);
457
	amd_iommu_stats_add(&alloced_io_mem);
458
	amd_iommu_stats_add(&total_map_requests);
459 460 461 462
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
463 464 465 466
}

#endif

467 468 469 470 471 472
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

473 474 475 476
static void dump_dte_entry(u16 devid)
{
	int i;

477 478
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
479 480 481
			amd_iommu_dev_table[devid].data[i]);
}

482 483 484 485 486 487 488 489 490
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

491
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
492
{
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
514

515
	printk(KERN_ERR "AMD-Vi: Event logged [");
516 517 518 519 520

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
521
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
522
		       address, flags);
523
		dump_dte_entry(devid);
524 525 526 527
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
528
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 530 531 532 533
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
534
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
535 536 537 538 539
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
540
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
541 542 543 544
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
545
		dump_command(address);
546 547 548 549 550 551 552 553
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
554
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
555 556 557 558 559
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
560
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
561 562 563 564 565
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
566 567

	memset(__evt, 0, 4 * sizeof(u32));
568 569 570 571 572 573 574 575 576 577
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
578
		iommu_print_event(iommu, iommu->evt_buf + head);
579
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
580 581 582 583 584
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

585
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
586 587 588
{
	struct amd_iommu_fault fault;

589 590
	INC_STATS_COUNTER(pri_requests);

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
632

633 634 635
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
636

637 638 639 640 641 642 643
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
644 645
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
646 647 648 649 650 651

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
652 653 654 655
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

656
irqreturn_t amd_iommu_int_thread(int irq, void *data)
657
{
658 659
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
660

661 662 663 664
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
665

666 667 668 669
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
670

671 672 673 674
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
691
	return IRQ_HANDLED;
692 693
}

694 695 696 697 698
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

699 700 701 702 703 704
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
725 726 727
{
	u8 *target;

728
	target = iommu->cmd_buf + tail;
729
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
730 731 732 733 734

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
735
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
736
}
737

738
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
739
{
740 741
	WARN_ON(address & 0x7ULL);

742
	memset(cmd, 0, sizeof(*cmd));
743 744 745
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
746 747 748
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

749 750 751 752 753 754 755
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

756 757 758 759
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
760
	bool s;
761 762

	pages = iommu_num_pages(address, size, PAGE_SIZE);
763
	s     = false;
764 765 766 767 768 769 770

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
771
		s = true;
772 773 774 775 776 777 778 779 780 781 782
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
783
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
784 785 786
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

787 788 789 790
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
791
	bool s;
792 793

	pages = iommu_num_pages(address, size, PAGE_SIZE);
794
	s     = false;
795 796 797 798 799 800 801

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
802
		s = true;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

818 819 820 821 822 823 824
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

825
	cmd->data[0]  = pasid;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
844
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
845 846
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
847
	cmd->data[1] |= (pasid & 0xff) << 16;
848 849 850 851 852 853 854 855
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

856 857 858 859 860 861 862
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
863
		cmd->data[1]  = pasid;
864 865 866 867 868 869 870 871
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

872 873 874 875
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
876 877
}

878 879 880 881 882 883 884
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

885 886
/*
 * Writes the command to the IOMMUs command buffer and informs the
887
 * hardware about the new command.
888
 */
889 890 891
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
892
{
893
	u32 left, tail, head, next_tail;
894 895
	unsigned long flags;

896
again:
897 898
	spin_lock_irqsave(&iommu->lock, flags);

899 900
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
901 902
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
903

904 905 906 907
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
908

909 910
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
911

912 913 914 915 916 917
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
918 919
	}

920 921 922
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
923
	iommu->need_sync = sync;
924

925
	spin_unlock_irqrestore(&iommu->lock, flags);
926

927
	return 0;
928 929
}

930 931 932 933 934
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

935 936 937 938
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
939
static int iommu_completion_wait(struct amd_iommu *iommu)
940 941
{
	struct iommu_cmd cmd;
942
	volatile u64 sem = 0;
943
	int ret;
944

945
	if (!iommu->need_sync)
946
		return 0;
947

948
	build_completion_wait(&cmd, (u64)&sem);
949

950
	ret = iommu_queue_command_sync(iommu, &cmd, false);
951
	if (ret)
952
		return ret;
953

954
	return wait_on_sem(&sem);
955 956
}

957
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
958
{
959
	struct iommu_cmd cmd;
960

961
	build_inv_dte(&cmd, devid);
962

963 964
	return iommu_queue_command(iommu, &cmd);
}
965

966 967 968
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
969

970 971
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
972

973 974
	iommu_completion_wait(iommu);
}
975

976 977 978 979 980 981 982
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
983

984 985 986 987 988 989
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
990

991
	iommu_completion_wait(iommu);
992 993
}

994
static void iommu_flush_all(struct amd_iommu *iommu)
995
{
996
	struct iommu_cmd cmd;
997

998
	build_inv_all(&cmd);
999

1000 1001 1002 1003
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1023 1024
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1025 1026 1027 1028
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1029
		iommu_flush_irt_all(iommu);
1030
		iommu_flush_tlb_all(iommu);
1031 1032 1033
	}
}

1034
/*
1035
 * Command send function for flushing on-device TLB
1036
 */
1037 1038
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1039 1040
{
	struct amd_iommu *iommu;
1041
	struct iommu_cmd cmd;
1042
	int qdep;
1043

1044 1045
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1046

1047
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1048 1049

	return iommu_queue_command(iommu, &cmd);
1050 1051
}

1052 1053 1054
/*
 * Command send function for invalidating a device table entry
 */
1055
static int device_flush_dte(struct iommu_dev_data *dev_data)
1056
{
1057
	struct amd_iommu *iommu;
1058
	u16 alias;
1059
	int ret;
1060

1061
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1062
	alias = amd_iommu_alias_table[dev_data->devid];
1063

1064
	ret = iommu_flush_dte(iommu, dev_data->devid);
1065 1066
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1067 1068 1069
	if (ret)
		return ret;

1070
	if (dev_data->ats.enabled)
1071
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1072 1073

	return ret;
1074 1075
}

1076 1077 1078 1079 1080
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1081 1082
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1083
{
1084
	struct iommu_dev_data *dev_data;
1085 1086
	struct iommu_cmd cmd;
	int ret = 0, i;
1087

1088
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1089

1090 1091 1092 1093 1094 1095 1096 1097
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1098
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1099 1100
	}

1101 1102
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1103
		if (!dev_data->ats.enabled)
1104 1105
			continue;

1106
		ret |= device_flush_iotlb(dev_data, address, size);
1107 1108
	}

1109
	WARN_ON(ret);
1110 1111
}

1112 1113
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1114
{
1115
	__domain_flush_pages(domain, address, size, 0);
1116
}
1117

1118
/* Flush the whole IO/TLB for a given protection domain */
1119
static void domain_flush_tlb(struct protection_domain *domain)
1120
{
1121
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1122 1123
}

1124
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1125
static void domain_flush_tlb_pde(struct protection_domain *domain)
1126
{
1127
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1128 1129
}

1130
static void domain_flush_complete(struct protection_domain *domain)
1131
{
1132
	int i;
1133

1134 1135 1136
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1137

1138 1139 1140 1141 1142
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1143
	}
1144 1145
}

1146

1147
/*
1148
 * This function flushes the DTEs for all devices in domain
1149
 */
1150
static void domain_flush_devices(struct protection_domain *domain)
1151
{
1152
	struct iommu_dev_data *dev_data;
1153

1154
	list_for_each_entry(dev_data, &domain->dev_list, list)
1155
		device_flush_dte(dev_data);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1194
		      unsigned long page_size,
1195 1196 1197
		      u64 **pte_page,
		      gfp_t gfp)
{
1198
	int level, end_lvl;
1199
	u64 *pte, *page;
1200 1201

	BUG_ON(!is_power_of_2(page_size));
1202 1203 1204 1205

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1206 1207 1208 1209
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1210 1211 1212 1213 1214 1215 1216 1217 1218

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1219 1220 1221 1222
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1240 1241 1242
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1243 1244 1245 1246
{
	int level;
	u64 *pte;

1247 1248 1249
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1250 1251 1252
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1253

1254 1255 1256
	while (level > 0) {

		/* Not Present */
1257 1258 1259
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1260
		/* Large PTE */
1261 1262 1263
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1264 1265 1266 1267 1268

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1269 1270
		level -= 1;

1271
		/* Walk to the next level */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1287 1288 1289 1290 1291
	}

	return pte;
}

1292 1293 1294 1295 1296 1297 1298
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1299 1300 1301
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1302
			  int prot,
1303
			  unsigned long page_size)
1304
{
1305
	u64 __pte, *pte;
1306
	int i, count;
1307

1308 1309 1310
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1311
	if (!(prot & IOMMU_PROT_MASK))
1312 1313
		return -EINVAL;

1314 1315
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1316

1317 1318 1319
	if (!pte)
		return -ENOMEM;

1320 1321 1322
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1323

1324
	if (count > 1) {
1325 1326 1327 1328
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1329 1330 1331 1332 1333 1334

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1335 1336
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1337

1338 1339
	update_domain(dom);

1340 1341 1342
	return 0;
}

1343 1344 1345
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1346
{
1347 1348
	unsigned long long unmapped;
	unsigned long unmap_size;
1349 1350 1351 1352 1353
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1354

1355 1356
	while (unmapped < page_size) {

1357 1358 1359 1360 1361 1362
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1363 1364 1365 1366 1367 1368 1369 1370
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1371
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1372

1373
	return unmapped;
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1385

1386
/*
1387
 * The address allocator core functions.
1388 1389 1390
 *
 * called with domain->lock held
 */
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1412 1413 1414 1415 1416
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1417
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1418 1419 1420
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1421
	struct amd_iommu *iommu;
1422
	unsigned long i, old_size, pte_pgsize;
1423

1424 1425 1426 1427
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

1441 1442
	spin_lock_init(&dma_dom->aperture[index]->bitmap_lock);

1443 1444 1445 1446 1447 1448
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1449
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1460
	old_size                = dma_dom->aperture_size;
1461 1462
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1475
	/* Initialize the exclusion range if necessary */
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1497
	     i += pte_pgsize) {
1498
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1499 1500 1501
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1502 1503
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1504 1505
	}

1506 1507
	update_domain(&dma_dom->domain);

1508 1509 1510
	return 0;

out_free:
1511 1512
	update_domain(&dma_dom->domain);

1513 1514 1515 1516 1517 1518 1519 1520
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1521 1522
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1523 1524 1525 1526 1527 1528 1529
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
					 unsigned long align_mask)
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1530
	bool flush = false;
1531 1532 1533 1534 1535 1536

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

	spin_lock_irqsave(&range->bitmap_lock, flags);
1537 1538
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1539
	if (address == -1) {
1540 1541 1542 1543
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1544 1545
		flush = true;
	}
1546 1547 1548 1549

	if (address != -1)
		range->next_bit = address + pages;

1550 1551
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1552 1553 1554 1555 1556
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1557 1558 1559
	return address;
}

1560 1561 1562 1563
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1564
					u64 dma_mask)
1565 1566
{
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1567
	unsigned long next_bit, boundary_size, mask;
1568
	unsigned long address = -1;
1569
	int i = dom->next_index;
1570

1571 1572 1573 1574
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1575 1576

	for (;i < max_index; ++i) {
1577 1578 1579
		struct aperture_range *range = dom->aperture[i];

		if (range->offset >= dma_mask)
1580 1581
			break;

1582
		next_bit  = range->next_bit;
1583

1584
		address = dma_ops_aperture_alloc(dom, dom->aperture[i], pages,
1585 1586
						 dma_mask, boundary_size,
						 align_mask);
1587 1588 1589
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1590
			dom->next_index = i;
1591 1592 1593
			break;
		}

1594 1595
		if (next_bit > dom->aperture[i]->next_bit)
			dom->need_flush = true;
1596 1597 1598 1599 1600
	}

	return address;
}

1601 1602
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1603
					     unsigned int pages,
1604 1605
					     unsigned long align_mask,
					     u64 dma_mask)
1606 1607 1608
{
	unsigned long address;

1609
#ifdef CONFIG_IOMMU_STRESS
1610
	dom->next_index = 0;
1611 1612
	dom->need_flush = true;
#endif
1613

1614
	address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask);
1615

1616
	if (address == -1) {
1617
		dom->next_index = 0;
1618
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1619
					     dma_mask);
1620 1621
		dom->need_flush = true;
	}
1622

1623
	if (unlikely(address == -1))
1624
		address = DMA_ERROR_CODE;
1625 1626 1627 1628 1629 1630

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1631 1632 1633 1634 1635
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1636 1637 1638 1639
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1640 1641
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1642
	unsigned long flags;
1643

1644 1645
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1646 1647 1648 1649
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1650

1651 1652 1653 1654
	if (address + pages > range->next_bit) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1655 1656

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1657

1658
	spin_lock_irqsave(&range->bitmap_lock, flags);
A
Akinobu Mita 已提交
1659
	bitmap_clear(range->bitmap, address, pages);
1660
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1661

1662 1663
}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1736
		/* PTE present? */				\
1737 1738 1739
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1740 1741 1742 1743 1744
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1757
static void free_pagetable(struct protection_domain *domain)
1758
{
1759
	unsigned long root = (unsigned long)domain->pt_root;
1760

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1784 1785 1786
	}
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1817 1818
static void free_gcr3_table(struct protection_domain *domain)
{
1819 1820 1821 1822
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1823 1824
	else
		BUG_ON(domain->glx != 0);
1825

1826 1827 1828
	free_page((unsigned long)domain->gcr3_tbl);
}

1829 1830 1831 1832
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1833 1834
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1835 1836
	int i;

1837 1838 1839
	if (!dom)
		return;

1840 1841
	del_domain_from_list(&dom->domain);

1842
	free_pagetable(&dom->domain);
1843

1844 1845 1846 1847 1848 1849
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1850 1851 1852 1853

	kfree(dom);
}

1854 1855
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1856
 * It also initializes the page table and the address allocator data
1857 1858
 * structures required for the dma_ops interface
 */
1859
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1860 1861 1862 1863 1864 1865 1866
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1867
	if (protection_domain_init(&dma_dom->domain))
1868
		goto free_dma_dom;
1869

1870
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1871
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1872
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1873 1874 1875 1876
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1877 1878
	dma_dom->need_flush = false;

1879 1880
	add_domain_to_list(&dma_dom->domain);

1881
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1882 1883
		goto free_dma_dom;

1884
	/*
1885 1886
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1887
	 */
1888
	dma_dom->aperture[0]->bitmap[0] = 1;
1889
	dma_dom->next_index = 0;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1900 1901 1902 1903 1904 1905 1906 1907 1908
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1909
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1910
{
1911
	u64 pte_root = 0;
1912
	u64 flags = 0;
1913

1914 1915 1916
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1917 1918 1919
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1920

1921 1922
	flags = amd_iommu_dev_table[devid].data[1];

1923 1924 1925
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1952 1953 1954 1955 1956
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1957 1958 1959 1960 1961
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1962 1963
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1964 1965

	amd_iommu_apply_erratum_63(devid);
1966 1967
}

1968 1969
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1970 1971
{
	struct amd_iommu *iommu;
1972
	u16 alias;
1973
	bool ats;
1974

1975
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1976
	alias = amd_iommu_alias_table[dev_data->devid];
1977
	ats   = dev_data->ats.enabled;
1978 1979 1980 1981 1982 1983 1984 1985 1986

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1987 1988 1989 1990 1991
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

1992
	device_flush_dte(dev_data);
1993 1994
}

1995
static void do_detach(struct iommu_dev_data *dev_data)
1996 1997
{
	struct amd_iommu *iommu;
1998
	u16 alias;
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2009
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2010
	alias = amd_iommu_alias_table[dev_data->devid];
2011 2012

	/* decrease reference counters */
2013 2014 2015 2016 2017 2018
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2019
	clear_dte_entry(dev_data->devid);
2020 2021
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2022

2023
	/* Flush the DTE entry */
2024
	device_flush_dte(dev_data);
2025 2026 2027 2028 2029 2030
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2031
static int __attach_device(struct iommu_dev_data *dev_data,
2032
			   struct protection_domain *domain)
2033
{
2034
	int ret;
2035

2036 2037 2038 2039 2040 2041
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2042 2043 2044
	/* lock domain */
	spin_lock(&domain->lock);

2045
	ret = -EBUSY;
2046
	if (dev_data->domain != NULL)
2047
		goto out_unlock;
2048

2049
	/* Attach alias group root */
2050
	do_attach(dev_data, domain);
2051

2052 2053 2054 2055
	ret = 0;

out_unlock:

2056 2057
	/* ready */
	spin_unlock(&domain->lock);
2058

2059
	return ret;
2060
}
2061

2062 2063 2064 2065 2066 2067 2068 2069

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2070 2071 2072 2073 2074 2075
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2076
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2077 2078 2079
	if (!pos)
		return -EINVAL;

2080 2081 2082
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2083 2084 2085 2086

	return 0;
}

2087 2088
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2089 2090 2091 2092 2093 2094 2095 2096
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2108 2109
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2110 2111 2112
	if (ret)
		goto out_err;

2113 2114 2115 2116 2117 2118
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2132
/* FIXME: Move this to PCI code */
2133
#define PCI_PRI_TLP_OFF		(1 << 15)
2134

J
Joerg Roedel 已提交
2135
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2136
{
2137
	u16 status;
2138 2139
	int pos;

2140
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2141 2142 2143
	if (!pos)
		return false;

2144
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2145

2146
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2147 2148
}

2149
/*
F
Frank Arnold 已提交
2150
 * If a device is not yet associated with a domain, this function
2151 2152
 * assigns it visible for the hardware
 */
2153 2154
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2155
{
2156
	struct pci_dev *pdev = to_pci_dev(dev);
2157
	struct iommu_dev_data *dev_data;
2158
	unsigned long flags;
2159
	int ret;
2160

2161 2162
	dev_data = get_dev_data(dev);

2163
	if (domain->flags & PD_IOMMUV2_MASK) {
2164
		if (!dev_data->passthrough)
2165 2166
			return -EINVAL;

2167 2168 2169
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2170

2171 2172 2173 2174
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2175 2176
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2177 2178 2179
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2180

2181
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2182
	ret = __attach_device(dev_data, domain);
2183 2184
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2185 2186 2187 2188 2189
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2190
	domain_flush_tlb_pde(domain);
2191 2192

	return ret;
2193 2194
}

2195 2196 2197
/*
 * Removes a device from a protection domain (unlocked)
 */
2198
static void __detach_device(struct iommu_dev_data *dev_data)
2199
{
2200
	struct protection_domain *domain;
2201

2202 2203 2204 2205 2206
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2207

2208 2209
	if (WARN_ON(!dev_data->domain))
		return;
2210

2211
	domain = dev_data->domain;
2212

2213
	spin_lock(&domain->lock);
2214

2215
	do_detach(dev_data);
2216

2217
	spin_unlock(&domain->lock);
2218 2219 2220 2221 2222
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2223
static void detach_device(struct device *dev)
2224
{
2225
	struct protection_domain *domain;
2226
	struct iommu_dev_data *dev_data;
2227 2228
	unsigned long flags;

2229
	dev_data = get_dev_data(dev);
2230
	domain   = dev_data->domain;
2231

2232 2233
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2234
	__detach_device(dev_data);
2235
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2236

2237
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2238 2239
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2240
		pci_disable_ats(to_pci_dev(dev));
2241 2242

	dev_data->ats.enabled = false;
2243
}
2244

2245
static int amd_iommu_add_device(struct device *dev)
2246
{
2247
	struct iommu_dev_data *dev_data;
2248
	struct iommu_domain *domain;
2249
	struct amd_iommu *iommu;
2250
	u16 devid;
2251
	int ret;
2252

2253
	if (!check_device(dev) || get_dev_data(dev))
2254
		return 0;
2255

2256 2257
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2258

2259
	ret = iommu_init_device(dev);
2260 2261 2262 2263
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2264

2265
		iommu_ignore_device(dev);
2266
		dev->archdata.dma_ops = &nommu_dma_ops;
2267 2268 2269
		goto out;
	}
	init_iommu_group(dev);
2270

2271
	dev_data = get_dev_data(dev);
2272

2273
	BUG_ON(!dev_data);
2274

2275
	if (iommu_pass_through || dev_data->iommu_v2)
2276
		iommu_request_dm_for_dev(dev);
2277

2278 2279
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2280
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2281
		dev_data->passthrough = true;
2282
	else
2283
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2284

2285
out:
2286 2287 2288 2289 2290
	iommu_completion_wait(iommu);

	return 0;
}

2291
static void amd_iommu_remove_device(struct device *dev)
2292
{
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2319
static struct protection_domain *get_domain(struct device *dev)
2320
{
2321
	struct protection_domain *domain;
2322
	struct iommu_domain *io_domain;
2323

2324
	if (!check_device(dev))
2325
		return ERR_PTR(-EINVAL);
2326

2327
	io_domain = iommu_get_domain_for_dev(dev);
2328 2329
	if (!io_domain)
		return NULL;
2330

2331 2332
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2333
		return ERR_PTR(-EBUSY);
2334

2335
	return domain;
2336 2337
}

2338 2339
static void update_device_table(struct protection_domain *domain)
{
2340
	struct iommu_dev_data *dev_data;
2341

2342 2343
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2344 2345 2346 2347 2348 2349 2350 2351
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2352 2353 2354

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2355 2356 2357 2358

	domain->updated = false;
}

2359 2360 2361 2362 2363 2364
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2365
	struct aperture_range *aperture;
2366 2367
	u64 *pte, *pte_page;

2368 2369 2370 2371 2372
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2373
	if (!pte) {
2374
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2375
				GFP_ATOMIC);
2376 2377
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2378
		pte += PM_LEVEL_INDEX(0, address);
2379

2380
	update_domain(&dom->domain);
2381 2382 2383 2384

	return pte;
}

2385 2386 2387 2388
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2389
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2400
	pte  = dma_ops_get_pte(dom, address);
2401
	if (!pte)
2402
		return DMA_ERROR_CODE;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2413
	WARN_ON_ONCE(*pte);
2414 2415 2416 2417 2418 2419

	*pte = __pte;

	return (dma_addr_t)address;
}

2420 2421 2422
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2423
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2424 2425
				 unsigned long address)
{
2426
	struct aperture_range *aperture;
2427 2428 2429 2430 2431
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2432 2433 2434 2435 2436 2437 2438
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2439

2440
	pte += PM_LEVEL_INDEX(0, address);
2441

2442
	WARN_ON_ONCE(!*pte);
2443 2444 2445 2446

	*pte = 0ULL;
}

2447 2448
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2449 2450
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2451 2452
 * Must be called with the domain lock held.
 */
2453 2454 2455 2456
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2457
			       int dir,
2458 2459
			       bool align,
			       u64 dma_mask)
2460 2461
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2462
	dma_addr_t address, start, ret;
2463
	unsigned int pages;
2464
	unsigned long align_mask = 0;
2465 2466
	int i;

2467
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2468 2469
	paddr &= PAGE_MASK;

2470 2471
	INC_STATS_COUNTER(total_map_requests);

2472 2473 2474
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2475 2476 2477
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2478
retry:
2479 2480
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2481
	if (unlikely(address == DMA_ERROR_CODE)) {
2482 2483 2484
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
			goto out;

2485
		/*
2486
		 * setting next_index here will let the address
2487 2488 2489
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
2490
		dma_dom->next_index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
2491 2492

		/*
2493
		 * aperture was successfully enlarged by 128 MB, try
2494 2495 2496 2497
		 * allocation again
		 */
		goto retry;
	}
2498 2499 2500

	start = address;
	for (i = 0; i < pages; ++i) {
2501
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2502
		if (ret == DMA_ERROR_CODE)
2503 2504
			goto out_unmap;

2505 2506 2507 2508 2509
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2510 2511
	ADD_STATS_COUNTER(alloced_io_mem, size);

2512
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2513
		domain_flush_tlb(&dma_dom->domain);
2514
		dma_dom->need_flush = false;
2515
	} else if (unlikely(amd_iommu_np_cache))
2516
		domain_flush_pages(&dma_dom->domain, address, size);
2517

2518 2519
out:
	return address;
2520 2521 2522 2523 2524

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2525
		dma_ops_domain_unmap(dma_dom, start);
2526 2527
	}

2528 2529
	domain_flush_pages(&dma_dom->domain, address, size);

2530 2531
	dma_ops_free_addresses(dma_dom, address, pages);

2532
	return DMA_ERROR_CODE;
2533 2534
}

2535 2536 2537 2538
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2539
static void __unmap_single(struct dma_ops_domain *dma_dom,
2540 2541 2542 2543
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2544
	dma_addr_t flush_addr;
2545 2546 2547
	dma_addr_t i, start;
	unsigned int pages;

2548
	if ((dma_addr == DMA_ERROR_CODE) ||
2549
	    (dma_addr + size > dma_dom->aperture_size))
2550 2551
		return;

2552
	flush_addr = dma_addr;
2553
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2554 2555 2556 2557
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2558
		dma_ops_domain_unmap(dma_dom, start);
2559 2560 2561
		start += PAGE_SIZE;
	}

2562
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2563
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2564 2565
		dma_dom->need_flush = false;
	}
2566 2567 2568 2569

	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2570 2571
}

2572 2573 2574
/*
 * The exported map_single function for dma_ops.
 */
2575 2576 2577 2578
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2579 2580 2581 2582
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2583
	u64 dma_mask;
2584
	phys_addr_t paddr = page_to_phys(page) + offset;
2585

2586 2587
	INC_STATS_COUNTER(cnt_map_single);

2588 2589
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2590
		return (dma_addr_t)paddr;
2591 2592
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2593

2594 2595
	dma_mask = *dev->dma_mask;

2596
	spin_lock_irqsave(&domain->lock, flags);
2597

2598
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2599
			    dma_mask);
2600
	if (addr == DMA_ERROR_CODE)
2601 2602
		goto out;

2603
	domain_flush_complete(domain);
2604 2605 2606 2607 2608 2609 2610

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2611 2612 2613
/*
 * The exported unmap_single function for dma_ops.
 */
2614 2615
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2616 2617 2618 2619
{
	unsigned long flags;
	struct protection_domain *domain;

2620 2621
	INC_STATS_COUNTER(cnt_unmap_single);

2622 2623
	domain = get_domain(dev);
	if (IS_ERR(domain))
2624 2625
		return;

2626 2627
	spin_lock_irqsave(&domain->lock, flags);

2628
	__unmap_single(domain->priv, dma_addr, size, dir);
2629

2630
	domain_flush_complete(domain);
2631 2632 2633 2634

	spin_unlock_irqrestore(&domain->lock, flags);
}

2635 2636 2637 2638
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2639
static int map_sg(struct device *dev, struct scatterlist *sglist,
2640 2641
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2642 2643 2644 2645 2646 2647 2648
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2649
	u64 dma_mask;
2650

2651 2652
	INC_STATS_COUNTER(cnt_map_sg);

2653
	domain = get_domain(dev);
2654
	if (IS_ERR(domain))
2655
		return 0;
2656

2657
	dma_mask = *dev->dma_mask;
2658 2659 2660 2661 2662 2663

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2664
		s->dma_address = __map_single(dev, domain->priv,
2665 2666
					      paddr, s->length, dir, false,
					      dma_mask);
2667 2668 2669 2670 2671 2672 2673 2674

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2675
	domain_flush_complete(domain);
2676 2677 2678 2679 2680 2681 2682 2683

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2684
			__unmap_single(domain->priv, s->dma_address,
2685 2686 2687 2688 2689 2690 2691 2692 2693
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2694 2695 2696 2697
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2698
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2699 2700
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2701 2702 2703 2704 2705 2706
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2707 2708
	INC_STATS_COUNTER(cnt_unmap_sg);

2709 2710
	domain = get_domain(dev);
	if (IS_ERR(domain))
2711 2712
		return;

2713 2714 2715
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2716
		__unmap_single(domain->priv, s->dma_address,
2717 2718 2719 2720
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2721
	domain_flush_complete(domain);
2722 2723 2724 2725

	spin_unlock_irqrestore(&domain->lock, flags);
}

2726 2727 2728
/*
 * The exported alloc_coherent function for dma_ops.
 */
2729
static void *alloc_coherent(struct device *dev, size_t size,
2730 2731
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2732
{
2733
	u64 dma_mask = dev->coherent_dma_mask;
2734 2735 2736
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2737

2738 2739
	INC_STATS_COUNTER(cnt_alloc_coherent);

2740 2741
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2742 2743 2744
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2745 2746
	} else if (IS_ERR(domain))
		return NULL;
2747

2748
	size	  = PAGE_ALIGN(size);
2749 2750
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2751
	flag     |= __GFP_ZERO;
2752

2753 2754
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2755
		if (!gfpflags_allow_blocking(flag))
2756
			return NULL;
2757

2758 2759 2760 2761 2762
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2763

2764 2765 2766
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2767 2768
	spin_lock_irqsave(&domain->lock, flags);

2769
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2770
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2771

2772
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2773
		spin_unlock_irqrestore(&domain->lock, flags);
2774
		goto out_free;
J
Jiri Slaby 已提交
2775
	}
2776

2777
	domain_flush_complete(domain);
2778 2779 2780

	spin_unlock_irqrestore(&domain->lock, flags);

2781
	return page_address(page);
2782 2783 2784

out_free:

2785 2786
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2787 2788

	return NULL;
2789 2790
}

2791 2792 2793
/*
 * The exported free_coherent function for dma_ops.
 */
2794
static void free_coherent(struct device *dev, size_t size,
2795 2796
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2797 2798
{
	struct protection_domain *domain;
2799 2800
	unsigned long flags;
	struct page *page;
2801

2802 2803
	INC_STATS_COUNTER(cnt_free_coherent);

2804 2805 2806
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2807 2808
	domain = get_domain(dev);
	if (IS_ERR(domain))
2809 2810
		goto free_mem;

2811 2812
	spin_lock_irqsave(&domain->lock, flags);

2813
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2814

2815
	domain_flush_complete(domain);
2816 2817 2818 2819

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2820 2821
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2822 2823
}

2824 2825 2826 2827 2828 2829
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2830
	return check_device(dev);
2831 2832
}

2833
static struct dma_map_ops amd_iommu_dma_ops = {
2834 2835
	.alloc = alloc_coherent,
	.free = free_coherent,
2836 2837
	.map_page = map_page,
	.unmap_page = unmap_page,
2838 2839
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2840
	.dma_supported = amd_iommu_dma_supported,
2841 2842
};

2843
int __init amd_iommu_init_api(void)
2844
{
2845
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2846 2847
}

2848 2849
int __init amd_iommu_init_dma_ops(void)
{
2850
	swiotlb        = iommu_pass_through ? 1 : 0;
2851 2852
	iommu_detected = 1;

2853 2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2862 2863
	amd_iommu_stats_init();

2864 2865 2866 2867 2868
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2869 2870
	return 0;
}
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2884
	struct iommu_dev_data *entry;
2885 2886 2887 2888
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2889 2890 2891 2892
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2893
	}
2894 2895 2896 2897

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2898 2899 2900 2901 2902
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2903 2904
	del_domain_from_list(domain);

2905 2906 2907 2908 2909 2910
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2923
static struct protection_domain *protection_domain_alloc(void)
2924 2925 2926 2927 2928
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2929
		return NULL;
2930

2931
	if (protection_domain_init(domain))
2932 2933
		goto out_err;

2934 2935
	add_domain_to_list(domain);

2936 2937 2938 2939 2940 2941 2942 2943
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2944
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2945
{
2946
	struct protection_domain *pdomain;
2947
	struct dma_ops_domain *dma_domain;
2948

2949 2950 2951 2952 2953
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2954

2955 2956 2957 2958 2959 2960
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2961

2962 2963 2964
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2975 2976 2977 2978
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2979

2980 2981
		pdomain->mode = PAGE_MODE_NONE;
		break;
2982 2983 2984
	default:
		return NULL;
	}
2985

2986
	return &pdomain->domain;
2987 2988
}

2989
static void amd_iommu_domain_free(struct iommu_domain *dom)
2990
{
2991
	struct protection_domain *domain;
2992

2993
	if (!dom)
2994 2995
		return;

2996 2997
	domain = to_pdomain(dom);

2998 2999 3000 3001 3002
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3003 3004
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3005

3006 3007 3008
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3009
	protection_domain_free(domain);
3010 3011
}

3012 3013 3014
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3015
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3016 3017 3018
	struct amd_iommu *iommu;
	u16 devid;

3019
	if (!check_device(dev))
3020 3021
		return;

3022
	devid = get_device_id(dev);
3023

3024
	if (dev_data->domain != NULL)
3025
		detach_device(dev);
3026 3027 3028 3029 3030 3031 3032 3033

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3034 3035 3036
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3037
	struct protection_domain *domain = to_pdomain(dom);
3038
	struct iommu_dev_data *dev_data;
3039
	struct amd_iommu *iommu;
3040
	int ret;
3041

3042
	if (!check_device(dev))
3043 3044
		return -EINVAL;

3045 3046
	dev_data = dev->archdata.iommu;

3047
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3048 3049 3050
	if (!iommu)
		return -EINVAL;

3051
	if (dev_data->domain)
3052
		detach_device(dev);
3053

3054
	ret = attach_device(dev, domain);
3055 3056 3057

	iommu_completion_wait(iommu);

3058
	return ret;
3059 3060
}

3061
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3062
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3063
{
3064
	struct protection_domain *domain = to_pdomain(dom);
3065 3066 3067
	int prot = 0;
	int ret;

3068 3069 3070
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3071 3072 3073 3074 3075
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3076
	mutex_lock(&domain->api_lock);
3077
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3078 3079
	mutex_unlock(&domain->api_lock);

3080
	return ret;
3081 3082
}

3083 3084
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3085
{
3086
	struct protection_domain *domain = to_pdomain(dom);
3087
	size_t unmap_size;
3088

3089 3090 3091
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3092
	mutex_lock(&domain->api_lock);
3093
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3094
	mutex_unlock(&domain->api_lock);
3095

3096
	domain_flush_tlb_pde(domain);
3097

3098
	return unmap_size;
3099 3100
}

3101
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3102
					  dma_addr_t iova)
3103
{
3104
	struct protection_domain *domain = to_pdomain(dom);
3105
	unsigned long offset_mask, pte_pgsize;
3106
	u64 *pte, __pte;
3107

3108 3109 3110
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3111
	pte = fetch_pte(domain, iova, &pte_pgsize);
3112

3113
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3114 3115
		return 0;

3116 3117
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3118

3119
	return (__pte & ~offset_mask) | (iova & offset_mask);
3120 3121
}

3122
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3123
{
3124 3125
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3126
		return true;
3127
	case IOMMU_CAP_INTR_REMAP:
3128
		return (irq_remapping_enabled == 1);
3129 3130
	case IOMMU_CAP_NOEXEC:
		return false;
3131 3132
	}

3133
	return false;
S
Sheng Yang 已提交
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3177
static const struct iommu_ops amd_iommu_ops = {
3178
	.capable = amd_iommu_capable,
3179 3180
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3181 3182
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3183 3184
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3185
	.map_sg = default_iommu_map_sg,
3186
	.iova_to_phys = amd_iommu_iova_to_phys,
3187 3188
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3189
	.device_group = pci_device_group,
3190 3191
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3192
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3193 3194
};

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3217 3218 3219

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3220
	struct protection_domain *domain = to_pdomain(dom);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3238 3239 3240

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3241
	struct protection_domain *domain = to_pdomain(dom);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3319 3320 3321 3322 3323 3324
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3350 3351
	INC_STATS_COUNTER(invalidate_iotlb);

3352 3353 3354 3355 3356 3357
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3358
	struct protection_domain *domain = to_pdomain(dom);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3372 3373
	INC_STATS_COUNTER(invalidate_iotlb_all);

3374 3375 3376 3377 3378 3379
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3380
	struct protection_domain *domain = to_pdomain(dom);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3460
	struct protection_domain *domain = to_pdomain(dom);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3474
	struct protection_domain *domain = to_pdomain(dom);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3485 3486 3487 3488 3489 3490 3491 3492

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3493 3494
	INC_STATS_COUNTER(complete_ppr);

3495 3496 3497 3498 3499 3500 3501 3502 3503
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3504 3505 3506

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3507
	struct protection_domain *pdomain;
3508

3509 3510
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3511 3512 3513
		return NULL;

	/* Only return IOMMUv2 domains */
3514
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3515 3516
		return NULL;

3517
	return &pdomain->domain;
3518 3519
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3599 3600 3601 3602 3603
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3666 3667 3668
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3669 3670 3671 3672 3673 3674 3675
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3676
		table = NULL;
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3694
		set_dte_irq_entry(alias, table);
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3707
static int alloc_irq_index(u16 devid, int count)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3791
static int get_devid(struct irq_alloc_info *info)
3792
{
3793
	int devid = -1;
3794

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3810

3811 3812
	return devid;
}
3813

3814 3815 3816 3817
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3818

3819 3820
	if (!info)
		return NULL;
3821

3822 3823 3824 3825 3826 3827
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3828

3829
	return NULL;
3830 3831
}

3832
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3833
{
3834 3835
	struct amd_iommu *iommu;
	int devid;
3836

3837 3838
	if (!info)
		return NULL;
3839

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3853

3854 3855
	return NULL;
}
3856

3857 3858 3859 3860 3861 3862
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3863 3864 3865
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3876

3877 3878
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3902

3903 3904 3905 3906 3907 3908 3909
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3910

3911 3912 3913 3914
	default:
		BUG_ON(1);
		break;
	}
3915 3916
}

3917 3918
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3919
{
3920 3921 3922
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3923
	struct irq_cfg *cfg;
3924 3925
	int i, ret, devid;
	int index = -1;
3926

3927 3928 3929 3930
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3931 3932
		return -EINVAL;

3933 3934 3935 3936 3937 3938
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3939

3940 3941 3942
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3943

3944 3945 3946
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3947

3948 3949 3950 3951 3952 3953
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3954
		index = alloc_irq_index(devid, nr_irqs);
3955 3956 3957 3958 3959
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3960

3961 3962 3963 3964 3965 3966 3967
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3968

3969 3970 3971 3972 3973
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3974 3975 3976 3977 3978 3979
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3980

3981
	return 0;
3982

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3994 3995
}

3996 3997
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3998
{
3999 4000 4001 4002
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4015

4016 4017 4018 4019 4020
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4021

4022
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4023 4024
}

4025 4026
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4027
{
4028 4029 4030
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4031

4032 4033 4034
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4035

4036 4037 4038 4039 4040
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4041
};
4042

4043 4044 4045 4046 4047 4048 4049 4050
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4051

4052 4053 4054
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4055

4056 4057 4058 4059 4060 4061 4062
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4063

4064 4065 4066 4067 4068
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4069
	send_cleanup_vector(cfg);
4070 4071

	return IRQ_SET_MASK_OK_DONE;
4072 4073
}

4074
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4075
{
4076
	struct amd_ir_data *ir_data = irq_data->chip_data;
4077

4078 4079
	*msg = ir_data->msi_entry;
}
4080

4081 4082 4083 4084 4085
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4086

4087 4088 4089 4090 4091
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4092

4093 4094
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4095 4096 4097

	return 0;
}
4098
#endif