workqueue.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75 76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79

80 81
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
82

83
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84

T
Tejun Heo 已提交
85 86 87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99 100 101 102
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
103
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
104
};
L
Linus Torvalds 已提交
105 106

/*
T
Tejun Heo 已提交
107 108
 * Structure fields follow one of the following exclusion rules.
 *
109 110
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
111
 *
112 113 114
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
115
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
116
 *
117 118 119
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
120
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
121
 *
122 123
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
124
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
125 126
 */

127
struct global_cwq;
128
struct worker_pool;
L
Linus Torvalds 已提交
129

130 131 132 133
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
134
struct worker {
T
Tejun Heo 已提交
135 136 137 138 139
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
140

T
Tejun Heo 已提交
141
	struct work_struct	*current_work;	/* L: work being processed */
142
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
144
	struct task_struct	*task;		/* I: worker task */
145
	struct worker_pool	*pool;		/* I: the associated pool */
146 147 148
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
149
	int			id;		/* I: worker id */
150 151 152

	/* for rebinding worker to CPU */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
153 154
};

155 156
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
157
	unsigned int		flags;		/* X: flags */
158 159 160

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
161 162

	/* nr_idle includes the ones off idle_list for rebinding */
163 164 165 166 167 168
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

169
	struct mutex		manager_mutex;	/* mutex manager should hold */
170 171 172
	struct ida		worker_ida;	/* L: for worker IDs */
};

173
/*
174 175 176
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
177 178 179 180
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
181
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
182

183
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
184 185 186
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

187 188
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
189 190
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
191
/*
192
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
193 194
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
195 196
 */
struct cpu_workqueue_struct {
197
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
198
	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 200 201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
203
	int			nr_active;	/* L: nr of active works */
204
	int			max_active;	/* L: max active works */
205
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
206
};
L
Linus Torvalds 已提交
207

208 209 210 211 212 213 214 215 216
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

217 218 219 220 221 222 223 224 225 226
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
227
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
228 229 230 231 232 233 234 235 236
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
237 238 239 240 241 242

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
243
	unsigned int		flags;		/* W: WQ_* flags */
244 245 246 247 248
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
249
	struct list_head	list;		/* W: list of all workqueues */
250 251 252 253 254 255 256 257 258

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

259
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
260 261
	struct worker		*rescuer;	/* I: rescue worker */

262
	int			nr_drainers;	/* W: drain in progress */
263
	int			saved_max_active; /* W: saved cwq max_active */
264
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
265
	struct lockdep_map	lockdep_map;
266
#endif
267
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
268 269
};

270 271
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
272
struct workqueue_struct *system_highpri_wq __read_mostly;
273
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
274
struct workqueue_struct *system_long_wq __read_mostly;
275
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
276
struct workqueue_struct *system_unbound_wq __read_mostly;
277
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
278
struct workqueue_struct *system_freezable_wq __read_mostly;
279
EXPORT_SYMBOL_GPL(system_freezable_wq);
280

281 282 283
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

284
#define for_each_worker_pool(pool, gcwq)				\
285 286
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
287

288 289 290 291
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

341 342 343 344
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

345 346 347 348 349
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
385
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
421
	.debug_hint	= work_debug_hint,
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

457 458
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
459
static LIST_HEAD(workqueues);
460
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
461

462 463 464 465 466
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
467
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
468
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
469

470 471 472 473 474 475
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
476 477 478
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
479

T
Tejun Heo 已提交
480
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
481

482 483 484 485 486
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

487 488
static struct global_cwq *get_gcwq(unsigned int cpu)
{
489 490 491 492
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
493 494
}

495
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
496
{
497
	int cpu = pool->gcwq->cpu;
498
	int idx = worker_pool_pri(pool);
499

500
	if (cpu != WORK_CPU_UNBOUND)
501
		return &per_cpu(pool_nr_running, cpu)[idx];
502
	else
503
		return &unbound_pool_nr_running[idx];
504 505
}

T
Tejun Heo 已提交
506 507
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
508
{
509
	if (!(wq->flags & WQ_UNBOUND)) {
510
		if (likely(cpu < nr_cpu_ids))
511 512 513 514
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
532

533
/*
534 535 536
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
537
 *
538 539 540 541 542 543 544 545 546 547 548 549 550 551
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
 *
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
552
 */
553 554
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
555
{
556
	BUG_ON(!work_pending(work));
557 558
	atomic_long_set(&work->data, data | flags | work_static(work));
}
559

560 561 562 563 564
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
565
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
566 567
}

568 569
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
570
{
571 572 573 574 575 576 577
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
578
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
579
}
580

581
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
582
{
583
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
584
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
585 586
}

587
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
588
{
589
	unsigned long data = atomic_long_read(&work->data);
590

591 592 593 594
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
595 596
}

597
static struct global_cwq *get_work_gcwq(struct work_struct *work)
598
{
599
	unsigned long data = atomic_long_read(&work->data);
600 601
	unsigned int cpu;

602 603
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
604
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
605

606
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
607
	if (cpu == WORK_CPU_NONE)
608 609
		return NULL;

610
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
611
	return get_gcwq(cpu);
612 613
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

630
/*
631 632 633
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
634 635
 */

636
static bool __need_more_worker(struct worker_pool *pool)
637
{
638
	return !atomic_read(get_pool_nr_running(pool));
639 640
}

641
/*
642 643
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
644 645 646 647
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
648
 */
649
static bool need_more_worker(struct worker_pool *pool)
650
{
651
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
652
}
653

654
/* Can I start working?  Called from busy but !running workers. */
655
static bool may_start_working(struct worker_pool *pool)
656
{
657
	return pool->nr_idle;
658 659 660
}

/* Do I need to keep working?  Called from currently running workers. */
661
static bool keep_working(struct worker_pool *pool)
662
{
663
	atomic_t *nr_running = get_pool_nr_running(pool);
664

665
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
666 667 668
}

/* Do we need a new worker?  Called from manager. */
669
static bool need_to_create_worker(struct worker_pool *pool)
670
{
671
	return need_more_worker(pool) && !may_start_working(pool);
672
}
673

674
/* Do I need to be the manager? */
675
static bool need_to_manage_workers(struct worker_pool *pool)
676
{
677
	return need_to_create_worker(pool) ||
678
		(pool->flags & POOL_MANAGE_WORKERS);
679 680 681
}

/* Do we have too many workers and should some go away? */
682
static bool too_many_workers(struct worker_pool *pool)
683
{
684
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
685 686
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
687

688 689 690 691 692 693 694
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

695
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
696 697
}

698
/*
699 700 701
 * Wake up functions.
 */

702
/* Return the first worker.  Safe with preemption disabled */
703
static struct worker *first_worker(struct worker_pool *pool)
704
{
705
	if (unlikely(list_empty(&pool->idle_list)))
706 707
		return NULL;

708
	return list_first_entry(&pool->idle_list, struct worker, entry);
709 710 711 712
}

/**
 * wake_up_worker - wake up an idle worker
713
 * @pool: worker pool to wake worker from
714
 *
715
 * Wake up the first idle worker of @pool.
716 717 718 719
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
720
static void wake_up_worker(struct worker_pool *pool)
721
{
722
	struct worker *worker = first_worker(pool);
723 724 725 726 727

	if (likely(worker))
		wake_up_process(worker->task);
}

728
/**
729 730 731 732 733 734 735 736 737 738 739 740 741 742
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

743
	if (!(worker->flags & WORKER_NOT_RUNNING))
744
		atomic_inc(get_pool_nr_running(worker->pool));
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
766
	struct worker_pool *pool = worker->pool;
767
	atomic_t *nr_running = get_pool_nr_running(pool);
768

769
	if (worker->flags & WORKER_NOT_RUNNING)
770 771 772 773 774 775 776 777 778 779
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
780 781 782 783 784
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
785
	 */
786
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
787
		to_wakeup = first_worker(pool);
788 789 790 791 792
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
793
 * @worker: self
794 795 796
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
797 798 799
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
800
 *
801 802
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
803 804 805 806
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
807
	struct worker_pool *pool = worker->pool;
808

809 810
	WARN_ON_ONCE(worker->task != current);

811 812 813 814 815 816 817
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
818
		atomic_t *nr_running = get_pool_nr_running(pool);
819 820 821

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
822
			    !list_empty(&pool->worklist))
823
				wake_up_worker(pool);
824 825 826 827
		} else
			atomic_dec(nr_running);
	}

828 829 830 831
	worker->flags |= flags;
}

/**
832
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
833
 * @worker: self
834 835
 * @flags: flags to clear
 *
836
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
837
 *
838 839
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
840 841 842
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
843
	struct worker_pool *pool = worker->pool;
844 845
	unsigned int oflags = worker->flags;

846 847
	WARN_ON_ONCE(worker->task != current);

848
	worker->flags &= ~flags;
849

850 851 852 853 854
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
855 856
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
857
			atomic_inc(get_pool_nr_running(pool));
858 859
}

T
Tejun Heo 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
932
 */
933 934
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
935
{
936 937
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 * @delayed: for a delayed work
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1041
/**
1042
 * try_to_grab_pending - steal work item from worklist and disable irq
1043 1044
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1045
 * @flags: place to store irq state
1046 1047 1048 1049 1050 1051 1052
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1053 1054
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1055
 *
1056
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1057 1058 1059
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1060 1061 1062 1063
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1064
 * This function is safe to call from any context including IRQ handler.
1065
 */
1066 1067
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1068 1069 1070
{
	struct global_cwq *gcwq;

1071 1072 1073 1074
	WARN_ON_ONCE(in_irq());

	local_irq_save(*flags);

1075 1076 1077 1078
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1079 1080 1081 1082 1083
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1084 1085 1086 1087 1088
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1098
		goto fail;
1099

1100
	spin_lock(&gcwq->lock);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
1114

1115
			spin_unlock(&gcwq->lock);
1116
			return 1;
1117 1118
		}
	}
1119 1120 1121 1122 1123 1124
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1125
	return -EAGAIN;
1126 1127
}

T
Tejun Heo 已提交
1128
/**
1129
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1130 1131 1132 1133 1134
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1135 1136
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1137 1138
 *
 * CONTEXT:
1139
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1140
 */
O
Oleg Nesterov 已提交
1141
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1142 1143
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1144
{
1145
	struct worker_pool *pool = cwq->pool;
1146

T
Tejun Heo 已提交
1147
	/* we own @work, set data and link */
1148
	set_work_cwq(work, cwq, extra_flags);
1149

1150 1151 1152 1153 1154
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1155

1156
	list_add_tail(&work->entry, head);
1157 1158 1159 1160 1161 1162 1163 1164

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1165 1166
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1167 1168
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1201
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1202 1203
			 struct work_struct *work)
{
1204 1205
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1206
	struct list_head *worklist;
1207
	unsigned int work_flags;
1208
	unsigned int req_cpu = cpu;
1209 1210 1211 1212 1213 1214 1215 1216

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1217

1218
	debug_work_activate(work);
1219

1220
	/* if dying, only works from the same workqueue are allowed */
1221
	if (unlikely(wq->flags & WQ_DRAINING) &&
1222
	    WARN_ON_ONCE(!is_chained_work(wq)))
1223 1224
		return;

1225 1226
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1227 1228
		struct global_cwq *last_gcwq;

1229
		if (cpu == WORK_CPU_UNBOUND)
1230 1231
			cpu = raw_smp_processor_id();

1232
		/*
1233 1234 1235 1236
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1237
		 */
1238
		gcwq = get_gcwq(cpu);
1239 1240 1241
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1242 1243
			struct worker *worker;

1244
			spin_lock(&last_gcwq->lock);
1245 1246 1247 1248 1249 1250 1251

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1252 1253
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1254
			}
1255 1256 1257
		} else {
			spin_lock(&gcwq->lock);
		}
1258 1259
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1260
		spin_lock(&gcwq->lock);
1261 1262 1263 1264
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1265
	trace_workqueue_queue_work(req_cpu, cwq, work);
1266

1267
	if (WARN_ON(!list_empty(&work->entry))) {
1268
		spin_unlock(&gcwq->lock);
1269 1270
		return;
	}
1271

1272
	cwq->nr_in_flight[cwq->work_color]++;
1273
	work_flags = work_color_to_flags(cwq->work_color);
1274 1275

	if (likely(cwq->nr_active < cwq->max_active)) {
1276
		trace_workqueue_activate_work(work);
1277
		cwq->nr_active++;
1278
		worklist = &cwq->pool->worklist;
1279 1280
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1281
		worklist = &cwq->delayed_works;
1282
	}
1283

1284
	insert_work(cwq, work, worklist, work_flags);
1285

1286
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1287 1288
}

1289 1290 1291 1292 1293 1294
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1295
 * Returns %false if @work was already on a queue, %true otherwise.
1296 1297 1298 1299
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1300 1301
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1302
{
1303
	bool ret = false;
1304 1305 1306
	unsigned long flags;

	local_irq_save(flags);
1307

1308
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1309
		__queue_work(cpu, wq, work);
1310
		ret = true;
1311
	}
1312 1313

	local_irq_restore(flags);
1314 1315 1316 1317
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1318
/**
1319
 * queue_work - queue work on a workqueue
1320
 * @wq: workqueue to use
1321
 * @work: work to queue
1322
 *
1323
 * Returns %false if @work was already on a queue, %true otherwise.
1324 1325 1326
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1327
 */
1328
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1329
{
1330
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1331 1332 1333
}
EXPORT_SYMBOL_GPL(queue_work);

1334
void delayed_work_timer_fn(unsigned long __data)
1335 1336 1337 1338
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

1339
	/* should have been called from irqsafe timer with irq already off */
1340
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1341
}
1342
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
{
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
	BUG_ON(timer_pending(timer));
	BUG_ON(!list_empty(&work->entry));

	timer_stats_timer_set_start_info(&dwork->timer);

	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1366 1367 1368 1369 1370 1371 1372
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1373
			lcpu = gcwq->cpu;
1374
		if (lcpu == WORK_CPU_UNBOUND)
1375 1376 1377 1378 1379 1380 1381
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1382
	dwork->cpu = cpu;
1383 1384 1385 1386 1387 1388 1389 1390
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
}

1391 1392 1393 1394
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1395
 * @dwork: work to queue
1396 1397
 * @delay: number of jiffies to wait before queueing
 *
1398 1399 1400
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1401
 */
1402 1403
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1404
{
1405
	struct work_struct *work = &dwork->work;
1406
	bool ret = false;
1407 1408
	unsigned long flags;

1409 1410 1411
	if (!delay)
		return queue_work_on(cpu, wq, &dwork->work);

1412 1413
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1414

1415
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1416
		__queue_delayed_work(cpu, wq, dwork, delay);
1417
		ret = true;
1418
	}
1419 1420

	local_irq_restore(flags);
1421 1422
	return ret;
}
1423
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1424

1425 1426 1427 1428 1429 1430
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1431
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1432
 */
1433
bool queue_delayed_work(struct workqueue_struct *wq,
1434 1435
			struct delayed_work *dwork, unsigned long delay)
{
1436
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1437 1438 1439
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1455
 * This function is safe to call from any context including IRQ handler.
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
	}

	/* -ENOENT from try_to_grab_pending() becomes %true */
	return ret;
}
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);

T
Tejun Heo 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1504
{
1505 1506
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1507 1508 1509 1510 1511

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1512 1513
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1514
	pool->nr_idle++;
1515
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1516 1517

	/* idle_list is LIFO */
1518
	list_add(&worker->entry, &pool->idle_list);
1519

1520 1521
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1522

1523
	/*
1524 1525 1526 1527
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1528
	 */
1529
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1530
		     pool->nr_workers == pool->nr_idle &&
1531
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1545
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1546 1547

	BUG_ON(!(worker->flags & WORKER_IDLE));
1548
	worker_clr_flags(worker, WORKER_IDLE);
1549
	pool->nr_idle--;
T
Tejun Heo 已提交
1550 1551 1552
	list_del_init(&worker->entry);
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1569 1570 1571 1572 1573
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1584
__acquires(&gcwq->lock)
1585
{
1586
	struct global_cwq *gcwq = worker->pool->gcwq;
1587 1588 1589
	struct task_struct *task = worker->task;

	while (true) {
1590
		/*
1591 1592 1593 1594
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1595
		 */
1596 1597
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1608 1609 1610 1611 1612 1613
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1614
		cpu_relax();
1615
		cond_resched();
1616 1617 1618
	}
}

1619
/*
1620
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1621 1622 1623 1624 1625 1626
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1627
	/*
1628 1629
	 * CPU may go down again inbetween.  If rebinding fails, reinstate
	 * UNBOUND.  We're off idle_list and nobody else can do it for us.
1630
	 */
1631 1632 1633 1634 1635 1636 1637 1638
	if (!worker_maybe_bind_and_lock(worker))
		worker->flags |= WORKER_UNBOUND;

	worker_clr_flags(worker, WORKER_REBIND);

	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1639 1640
}

1641
/*
1642
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1643 1644 1645
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1646
 */
1647
static void busy_worker_rebind_fn(struct work_struct *work)
1648 1649
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1650
	struct global_cwq *gcwq = worker->pool->gcwq;
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	worker_maybe_bind_and_lock(worker);

	/*
	 * %WORKER_REBIND must be cleared even if the above binding failed;
	 * otherwise, we may confuse the next CPU_UP cycle or oops / get
	 * stuck by calling idle_worker_rebind() prematurely.  If CPU went
	 * down again inbetween, %WORKER_UNBOUND would be set, so clearing
	 * %WORKER_REBIND is always safe.
	 */
	worker_clr_flags(worker, WORKER_REBIND);
1662 1663 1664 1665

	spin_unlock_irq(&gcwq->lock);
}

1666 1667 1668 1669 1670 1671 1672
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1673 1674 1675 1676
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1677
 *
1678 1679 1680 1681
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1682
 *
1683 1684 1685 1686
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1687 1688 1689 1690
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1691
	struct worker *worker, *n;
1692 1693 1694 1695 1696 1697 1698 1699
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

1700
	/* set REBIND and kick idle ones */
1701
	for_each_worker_pool(pool, gcwq) {
1702
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1703 1704 1705 1706 1707 1708
			unsigned long worker_flags = worker->flags;

			/* morph UNBOUND to REBIND atomically */
			worker_flags &= ~WORKER_UNBOUND;
			worker_flags |= WORKER_REBIND;
			ACCESS_ONCE(worker->flags) = worker_flags;
1709

1710 1711 1712 1713 1714 1715
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1716 1717 1718 1719 1720 1721

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

1722
	/* rebind busy workers */
1723
	for_each_busy_worker(worker, i, pos, gcwq) {
1724
		unsigned long worker_flags = worker->flags;
1725
		struct work_struct *rebind_work = &worker->rebind_work;
1726
		struct workqueue_struct *wq;
1727

1728 1729 1730 1731
		/* morph UNBOUND to REBIND atomically */
		worker_flags &= ~WORKER_UNBOUND;
		worker_flags |= WORKER_REBIND;
		ACCESS_ONCE(worker->flags) = worker_flags;
1732 1733 1734 1735 1736 1737

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1751 1752 1753
	}
}

T
Tejun Heo 已提交
1754 1755 1756 1757 1758
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1759 1760
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1761
		INIT_LIST_HEAD(&worker->scheduled);
1762
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1763 1764
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1765
	}
T
Tejun Heo 已提交
1766 1767 1768 1769 1770
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1771
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1772
 *
1773
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1783
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1784
{
1785
	struct global_cwq *gcwq = pool->gcwq;
1786
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1787
	struct worker *worker = NULL;
1788
	int id = -1;
T
Tejun Heo 已提交
1789

1790
	spin_lock_irq(&gcwq->lock);
1791
	while (ida_get_new(&pool->worker_ida, &id)) {
1792
		spin_unlock_irq(&gcwq->lock);
1793
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1794
			goto fail;
1795
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1796
	}
1797
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1798 1799 1800 1801 1802

	worker = alloc_worker();
	if (!worker)
		goto fail;

1803
	worker->pool = pool;
T
Tejun Heo 已提交
1804 1805
	worker->id = id;

1806
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1807
		worker->task = kthread_create_on_node(worker_thread,
1808 1809
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1810 1811
	else
		worker->task = kthread_create(worker_thread, worker,
1812
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1813 1814 1815
	if (IS_ERR(worker->task))
		goto fail;

1816 1817 1818
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1819
	/*
1820 1821 1822 1823 1824 1825 1826
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1827
	 */
1828
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1829
		kthread_bind(worker->task, gcwq->cpu);
1830
	} else {
1831
		worker->task->flags |= PF_THREAD_BOUND;
1832
		worker->flags |= WORKER_UNBOUND;
1833
	}
T
Tejun Heo 已提交
1834 1835 1836 1837

	return worker;
fail:
	if (id >= 0) {
1838
		spin_lock_irq(&gcwq->lock);
1839
		ida_remove(&pool->worker_ida, id);
1840
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1850
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1851 1852
 *
 * CONTEXT:
1853
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1854 1855 1856
 */
static void start_worker(struct worker *worker)
{
1857
	worker->flags |= WORKER_STARTED;
1858
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1859
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1860 1861 1862 1863 1864 1865 1866
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1867 1868 1869 1870
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1871 1872 1873
 */
static void destroy_worker(struct worker *worker)
{
1874 1875
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1876 1877 1878 1879
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1880
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1881

T
Tejun Heo 已提交
1882
	if (worker->flags & WORKER_STARTED)
1883
		pool->nr_workers--;
T
Tejun Heo 已提交
1884
	if (worker->flags & WORKER_IDLE)
1885
		pool->nr_idle--;
T
Tejun Heo 已提交
1886 1887

	list_del_init(&worker->entry);
1888
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1889 1890 1891

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1892 1893 1894
	kthread_stop(worker->task);
	kfree(worker);

1895
	spin_lock_irq(&gcwq->lock);
1896
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1897 1898
}

1899
static void idle_worker_timeout(unsigned long __pool)
1900
{
1901 1902
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1903 1904 1905

	spin_lock_irq(&gcwq->lock);

1906
	if (too_many_workers(pool)) {
1907 1908 1909 1910
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1911
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1912 1913 1914
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1915
			mod_timer(&pool->idle_timer, expires);
1916 1917
		else {
			/* it's been idle for too long, wake up manager */
1918
			pool->flags |= POOL_MANAGE_WORKERS;
1919
			wake_up_worker(pool);
1920
		}
1921 1922 1923 1924
	}

	spin_unlock_irq(&gcwq->lock);
}
1925

1926 1927 1928 1929
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1930
	unsigned int cpu;
1931 1932 1933 1934 1935

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1936
	cpu = cwq->pool->gcwq->cpu;
1937 1938 1939
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1940
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1941 1942 1943 1944
		wake_up_process(wq->rescuer->task);
	return true;
}

1945
static void gcwq_mayday_timeout(unsigned long __pool)
1946
{
1947 1948
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1949 1950 1951 1952
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1953
	if (need_to_create_worker(pool)) {
1954 1955 1956 1957 1958 1959
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1960
		list_for_each_entry(work, &pool->worklist, entry)
1961
			send_mayday(work);
L
Linus Torvalds 已提交
1962
	}
1963 1964 1965

	spin_unlock_irq(&gcwq->lock);

1966
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1967 1968
}

1969 1970
/**
 * maybe_create_worker - create a new worker if necessary
1971
 * @pool: pool to create a new worker for
1972
 *
1973
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1974 1975
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1976
 * sent to all rescuers with works scheduled on @pool to resolve
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1991
static bool maybe_create_worker(struct worker_pool *pool)
1992 1993
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1994
{
1995 1996 1997
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1998 1999
		return false;
restart:
2000 2001
	spin_unlock_irq(&gcwq->lock);

2002
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2003
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2004 2005 2006 2007

	while (true) {
		struct worker *worker;

2008
		worker = create_worker(pool);
2009
		if (worker) {
2010
			del_timer_sync(&pool->mayday_timer);
2011 2012
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2013
			BUG_ON(need_to_create_worker(pool));
2014 2015 2016
			return true;
		}

2017
		if (!need_to_create_worker(pool))
2018
			break;
L
Linus Torvalds 已提交
2019

2020 2021
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2022

2023
		if (!need_to_create_worker(pool))
2024 2025 2026
			break;
	}

2027
	del_timer_sync(&pool->mayday_timer);
2028
	spin_lock_irq(&gcwq->lock);
2029
	if (need_to_create_worker(pool))
2030 2031 2032 2033 2034 2035
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2036
 * @pool: pool to destroy workers for
2037
 *
2038
 * Destroy @pool workers which have been idle for longer than
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2049
static bool maybe_destroy_workers(struct worker_pool *pool)
2050 2051
{
	bool ret = false;
L
Linus Torvalds 已提交
2052

2053
	while (too_many_workers(pool)) {
2054 2055
		struct worker *worker;
		unsigned long expires;
2056

2057
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2058
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2059

2060
		if (time_before(jiffies, expires)) {
2061
			mod_timer(&pool->idle_timer, expires);
2062
			break;
2063
		}
L
Linus Torvalds 已提交
2064

2065 2066
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2067
	}
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
2094
	struct worker_pool *pool = worker->pool;
2095 2096
	bool ret = false;

2097
	if (pool->flags & POOL_MANAGING_WORKERS)
2098 2099
		return ret;

2100
	pool->flags |= POOL_MANAGING_WORKERS;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
	 * extreme circumstances.  Use @pool->manager_mutex to synchronize
	 * manager against CPU hotplug.
	 *
	 * manager_mutex would always be free unless CPU hotplug is in
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
		spin_unlock_irq(&pool->gcwq->lock);
		mutex_lock(&pool->manager_mutex);
		/*
		 * CPU hotplug could have happened while we were waiting
		 * for manager_mutex.  Hotplug itself can't handle us
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
		 * As hotplug is now excluded via manager_mutex, we can
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;

		ret = true;
	}

2136
	pool->flags &= ~POOL_MANAGE_WORKERS;
2137 2138 2139 2140 2141

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
2142 2143
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2144

2145
	pool->flags &= ~POOL_MANAGING_WORKERS;
2146
	mutex_unlock(&pool->manager_mutex);
2147 2148 2149
	return ret;
}

2150 2151
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2152
 * @worker: self
2153 2154 2155 2156 2157 2158 2159 2160 2161
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2162
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2163
 */
T
Tejun Heo 已提交
2164
static void process_one_work(struct worker *worker, struct work_struct *work)
2165 2166
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2167
{
2168
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2169 2170
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2171
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2172
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2173
	work_func_t f = work->func;
2174
	int work_color;
2175
	struct worker *collision;
2176 2177 2178 2179 2180 2181 2182 2183
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2184 2185 2186
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2187
#endif
2188 2189 2190 2191 2192
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2193
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2194
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2195 2196
		     raw_smp_processor_id() != gcwq->cpu);

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2209
	/* claim and dequeue */
2210
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2211
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2212
	worker->current_work = work;
2213
	worker->current_cwq = cwq;
2214
	work_color = get_work_color(work);
2215

2216 2217
	list_del_init(&work->entry);

2218 2219 2220 2221 2222 2223 2224
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2225 2226 2227 2228
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2229 2230
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2231

2232
	/*
2233 2234 2235 2236
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2237 2238
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2239

2240
	spin_unlock_irq(&gcwq->lock);
2241

2242
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2243
	lock_map_acquire(&lockdep_map);
2244
	trace_workqueue_execute_start(work);
2245
	f(work);
2246 2247 2248 2249 2250
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2251 2252 2253 2254
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2255 2256 2257
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
		       current->comm, preempt_count(), task_pid_nr(current), f);
2258 2259 2260 2261
		debug_show_held_locks(current);
		dump_stack();
	}

2262
	spin_lock_irq(&gcwq->lock);
2263

2264 2265 2266 2267
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2268
	/* we're done with it, release */
T
Tejun Heo 已提交
2269
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2270
	worker->current_work = NULL;
2271
	worker->current_cwq = NULL;
2272
	cwq_dec_nr_in_flight(cwq, work_color, false);
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282 2283
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2284
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2285 2286 2287
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2288
{
2289 2290
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2291
						struct work_struct, entry);
T
Tejun Heo 已提交
2292
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2293 2294 2295
	}
}

T
Tejun Heo 已提交
2296 2297
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2298
 * @__worker: self
T
Tejun Heo 已提交
2299
 *
2300 2301 2302 2303 2304
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2305
 */
T
Tejun Heo 已提交
2306
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2307
{
T
Tejun Heo 已提交
2308
	struct worker *worker = __worker;
2309 2310
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2311

2312 2313
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2314 2315
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2316

2317 2318 2319 2320 2321
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2322
		spin_unlock_irq(&gcwq->lock);
2323 2324 2325 2326 2327 2328 2329 2330

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2331
	}
2332

T
Tejun Heo 已提交
2333
	worker_leave_idle(worker);
2334
recheck:
2335
	/* no more worker necessary? */
2336
	if (!need_more_worker(pool))
2337 2338 2339
		goto sleep;

	/* do we need to manage? */
2340
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2341 2342
		goto recheck;

T
Tejun Heo 已提交
2343 2344 2345 2346 2347 2348 2349
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2358
		struct work_struct *work =
2359
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2360 2361 2362 2363 2364 2365
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2366
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2367 2368 2369
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2370
		}
2371
	} while (keep_working(pool));
2372 2373

	worker_set_flags(worker, WORKER_PREP, false);
2374
sleep:
2375
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2376
		goto recheck;
2377

T
Tejun Heo 已提交
2378
	/*
2379 2380 2381 2382 2383
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2384 2385 2386 2387 2388 2389
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2416
	bool is_unbound = wq->flags & WQ_UNBOUND;
2417 2418 2419 2420 2421 2422 2423 2424 2425
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2426 2427 2428 2429
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2430
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2431 2432
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2433 2434
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2435 2436 2437
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2438
		mayday_clear_cpu(cpu, wq->mayday_mask);
2439 2440

		/* migrate to the target cpu if possible */
2441
		rescuer->pool = pool;
2442 2443 2444 2445 2446 2447 2448
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2449
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2450 2451 2452 2453
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2454 2455 2456 2457 2458 2459

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2460 2461
		if (keep_working(pool))
			wake_up_worker(pool);
2462

2463 2464 2465 2466 2467
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2468 2469
}

O
Oleg Nesterov 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2481 2482 2483 2484
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2485 2486
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2487
 *
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2501 2502
 *
 * CONTEXT:
2503
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2504
 */
2505
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2506 2507
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2508
{
2509 2510 2511
	struct list_head *head;
	unsigned int linked = 0;

2512
	/*
2513
	 * debugobject calls are safe here even with gcwq->lock locked
2514 2515 2516 2517
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2518
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2519
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2520
	init_completion(&barr->done);
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2537
	debug_work_activate(&barr->work);
2538 2539
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2575
{
2576 2577
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2578

2579 2580 2581
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2582
	}
2583

2584
	for_each_cwq_cpu(cpu, wq) {
2585
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2586
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2587

2588
		spin_lock_irq(&gcwq->lock);
2589

2590 2591
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2592

2593 2594 2595 2596 2597 2598
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2599

2600 2601 2602 2603
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2604

2605
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2606
	}
2607

2608 2609
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2610

2611
	return wait;
L
Linus Torvalds 已提交
2612 2613
}

2614
/**
L
Linus Torvalds 已提交
2615
 * flush_workqueue - ensure that any scheduled work has run to completion.
2616
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2617 2618 2619 2620
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2621 2622
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2623
 */
2624
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2625
{
2626 2627 2628 2629 2630 2631
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2632

2633 2634
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2696 2697 2698 2699
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2767
}
2768
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2800
		bool drained;
2801

2802
		spin_lock_irq(&cwq->pool->gcwq->lock);
2803
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2804
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2805 2806

		if (drained)
2807 2808 2809 2810
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2811 2812
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2823
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2824
{
2825
	struct worker *worker = NULL;
2826
	struct global_cwq *gcwq;
2827 2828 2829
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2830 2831
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2832
		return false;
2833

2834
	spin_lock_irq(&gcwq->lock);
2835 2836 2837
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2838 2839
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2840 2841
		 */
		smp_rmb();
2842
		cwq = get_work_cwq(work);
2843
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2844
			goto already_gone;
2845
	} else {
2846
		worker = find_worker_executing_work(gcwq, work);
2847
		if (!worker)
T
Tejun Heo 已提交
2848
			goto already_gone;
2849
		cwq = worker->current_cwq;
2850
	}
2851

2852
	insert_wq_barrier(cwq, barr, work, worker);
2853
	spin_unlock_irq(&gcwq->lock);
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2865
	lock_map_release(&cwq->wq->lockdep_map);
2866

2867
	return true;
T
Tejun Heo 已提交
2868
already_gone:
2869
	spin_unlock_irq(&gcwq->lock);
2870
	return false;
2871
}
2872 2873 2874 2875 2876

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2877 2878
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2879 2880 2881 2882 2883 2884 2885 2886 2887
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2888 2889 2890
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2891
	if (start_flush_work(work, &barr)) {
2892 2893 2894
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2895
	} else {
2896
		return false;
2897 2898
	}
}
2899
EXPORT_SYMBOL_GPL(flush_work);
2900

2901
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2902
{
2903
	unsigned long flags;
2904 2905 2906
	int ret;

	do {
2907 2908 2909 2910 2911 2912
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2913
			flush_work(work);
2914 2915
	} while (unlikely(ret < 0));

2916 2917 2918 2919
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2920
	flush_work(work);
2921
	clear_work_data(work);
2922 2923 2924
	return ret;
}

2925
/**
2926 2927
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2928
 *
2929 2930 2931 2932
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2933
 *
2934 2935
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2936
 *
2937
 * The caller must ensure that the workqueue on which @work was last
2938
 * queued can't be destroyed before this function returns.
2939 2940 2941
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2942
 */
2943
bool cancel_work_sync(struct work_struct *work)
2944
{
2945
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2946
}
2947
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2948

2949
/**
2950 2951
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2952
 *
2953 2954 2955
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2956
 *
2957 2958 2959
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2960
 */
2961 2962
bool flush_delayed_work(struct delayed_work *dwork)
{
2963
	local_irq_disable();
2964
	if (del_timer_sync(&dwork->timer))
2965
		__queue_work(dwork->cpu,
2966
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2967
	local_irq_enable();
2968 2969 2970 2971
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/**
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
 *
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
 *
 * This function is safe to call from any context including IRQ handler.
 */
bool cancel_delayed_work(struct delayed_work *dwork)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
	return true;
}
EXPORT_SYMBOL(cancel_delayed_work);

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3012
{
3013
	return __cancel_work_timer(&dwork->work, true);
3014
}
3015
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3016

3017
/**
3018 3019 3020 3021 3022 3023
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3024
bool schedule_work_on(int cpu, struct work_struct *work)
3025 3026 3027 3028 3029
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

3030 3031 3032 3033
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3034 3035
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3036 3037 3038 3039
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3040
 */
3041
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3042
{
3043
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3044
}
3045
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050 3051
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
3052
 *
3053 3054
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
3055
 */
3056 3057
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
3058
{
3059
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3060
}
3061
EXPORT_SYMBOL(schedule_delayed_work_on);
3062

3063 3064
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3065 3066
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3067 3068 3069 3070
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3071
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3072
{
3073
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3074
}
3075
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3076

3077
/**
3078
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3079 3080
 * @func: the function to call
 *
3081 3082
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3083
 * schedule_on_each_cpu() is very slow.
3084 3085 3086
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3087
 */
3088
int schedule_on_each_cpu(work_func_t func)
3089 3090
{
	int cpu;
3091
	struct work_struct __percpu *works;
3092

3093 3094
	works = alloc_percpu(struct work_struct);
	if (!works)
3095
		return -ENOMEM;
3096

3097 3098
	get_online_cpus();

3099
	for_each_online_cpu(cpu) {
3100 3101 3102
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3103
		schedule_work_on(cpu, work);
3104
	}
3105 3106 3107 3108

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3109
	put_online_cpus();
3110
	free_percpu(works);
3111 3112 3113
	return 0;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3138 3139
void flush_scheduled_work(void)
{
3140
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3141
}
3142
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3156
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3157 3158
{
	if (!in_interrupt()) {
3159
		fn(&ew->work);
3160 3161 3162
		return 0;
	}

3163
	INIT_WORK(&ew->work, fn);
3164 3165 3166 3167 3168 3169
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3170 3171
int keventd_up(void)
{
3172
	return system_wq != NULL;
L
Linus Torvalds 已提交
3173 3174
}

3175
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3176
{
3177
	/*
T
Tejun Heo 已提交
3178 3179 3180
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3181
	 */
T
Tejun Heo 已提交
3182 3183 3184
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3185

3186
	if (!(wq->flags & WQ_UNBOUND))
3187
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3188
	else {
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3201
	}
3202

3203
	/* just in case, make sure it's actually aligned */
3204 3205
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3206 3207
}

3208
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3209
{
3210
	if (!(wq->flags & WQ_UNBOUND))
3211 3212 3213
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3214
		kfree(*(void **)(wq->cpu_wq.single + 1));
3215
	}
T
Tejun Heo 已提交
3216 3217
}

3218 3219
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3220
{
3221 3222 3223
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3224 3225
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3226

3227
	return clamp_val(max_active, 1, lim);
3228 3229
}

3230
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3231 3232 3233
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3234
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3235
{
3236
	va_list args, args1;
L
Linus Torvalds 已提交
3237
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3238
	unsigned int cpu;
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3253

3254 3255 3256 3257 3258 3259 3260
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3261
	max_active = max_active ?: WQ_DFL_ACTIVE;
3262
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3263

3264
	/* init wq */
3265
	wq->flags = flags;
3266
	wq->saved_max_active = max_active;
3267 3268 3269 3270
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3271

3272
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3273
	INIT_LIST_HEAD(&wq->list);
3274

3275 3276 3277
	if (alloc_cwqs(wq) < 0)
		goto err;

3278
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3279
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3280
		struct global_cwq *gcwq = get_gcwq(cpu);
3281
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3282

T
Tejun Heo 已提交
3283
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3284
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3285
		cwq->wq = wq;
3286
		cwq->flush_color = -1;
3287 3288
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3289
	}
T
Tejun Heo 已提交
3290

3291 3292 3293
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3294
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3295 3296 3297 3298 3299 3300
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3301 3302
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3303 3304 3305 3306 3307
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3308 3309
	}

3310 3311 3312 3313 3314
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3315
	spin_lock(&workqueue_lock);
3316

3317
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3318
		for_each_cwq_cpu(cpu, wq)
3319 3320
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3321
	list_add(&wq->list, &workqueues);
3322

T
Tejun Heo 已提交
3323 3324
	spin_unlock(&workqueue_lock);

3325
	return wq;
T
Tejun Heo 已提交
3326 3327
err:
	if (wq) {
3328
		free_cwqs(wq);
3329
		free_mayday_mask(wq->mayday_mask);
3330
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3331 3332 3333
		kfree(wq);
	}
	return NULL;
3334
}
3335
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3336

3337 3338 3339 3340 3341 3342 3343 3344
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3345
	unsigned int cpu;
3346

3347 3348
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3349

3350 3351 3352 3353
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3354
	spin_lock(&workqueue_lock);
3355
	list_del(&wq->list);
3356
	spin_unlock(&workqueue_lock);
3357

3358
	/* sanity check */
3359
	for_each_cwq_cpu(cpu, wq) {
3360 3361 3362 3363 3364
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3365 3366
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3367
	}
3368

3369 3370
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3371
		free_mayday_mask(wq->mayday_mask);
3372
		kfree(wq->rescuer);
3373 3374
	}

3375
	free_cwqs(wq);
3376 3377 3378 3379
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3394
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3395 3396 3397 3398 3399

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3400
	for_each_cwq_cpu(cpu, wq) {
3401 3402 3403 3404
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3405
		if (!(wq->flags & WQ_FREEZABLE) ||
3406 3407
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3408

3409
		spin_unlock_irq(&gcwq->lock);
3410
	}
3411

3412
	spin_unlock(&workqueue_lock);
3413
}
3414
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3415

3416
/**
3417 3418 3419
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3420
 *
3421 3422 3423
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3424
 *
3425 3426
 * RETURNS:
 * %true if congested, %false otherwise.
3427
 */
3428
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3429
{
3430 3431 3432
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3433
}
3434
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3435

3436
/**
3437 3438
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3439
 *
3440
 * RETURNS:
3441
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3442
 */
3443
unsigned int work_cpu(struct work_struct *work)
3444
{
3445
	struct global_cwq *gcwq = get_work_gcwq(work);
3446

3447
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3448
}
3449
EXPORT_SYMBOL_GPL(work_cpu);
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3465
{
3466 3467 3468
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3469

3470 3471
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3472

3473
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3474

3475 3476 3477 3478
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3479

3480
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3481

3482
	return ret;
L
Linus Torvalds 已提交
3483
}
3484
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3485

3486 3487 3488
/*
 * CPU hotplug.
 *
3489 3490 3491 3492 3493 3494 3495
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3496 3497 3498
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3499
 */
L
Linus Torvalds 已提交
3500

3501
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3502
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3503 3504 3505 3506 3507
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3508
	spin_lock_irq(&gcwq->lock);
3509 3510 3511
}

/* release manager positions */
T
Tejun Heo 已提交
3512
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3513 3514 3515
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3516
	spin_unlock_irq(&gcwq->lock);
3517 3518 3519 3520
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3521
static void gcwq_unbind_fn(struct work_struct *work)
3522
{
3523
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3524
	struct worker_pool *pool;
3525 3526 3527
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3528

3529 3530
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3531
	gcwq_claim_management_and_lock(gcwq);
3532

3533 3534 3535 3536 3537 3538
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3539
	for_each_worker_pool(pool, gcwq)
3540
		list_for_each_entry(worker, &pool->idle_list, entry)
3541
			worker->flags |= WORKER_UNBOUND;
3542

3543
	for_each_busy_worker(worker, i, pos, gcwq)
3544
		worker->flags |= WORKER_UNBOUND;
3545

3546 3547
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3548
	gcwq_release_management_and_unlock(gcwq);
3549

3550
	/*
3551
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3552 3553
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3554 3555
	 */
	schedule();
3556

3557
	/*
3558 3559 3560 3561 3562 3563 3564 3565 3566
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3567
	 */
3568 3569
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3570 3571
}

T
Tejun Heo 已提交
3572 3573 3574 3575 3576 3577 3578
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3579 3580
{
	unsigned int cpu = (unsigned long)hcpu;
3581
	struct global_cwq *gcwq = get_gcwq(cpu);
3582
	struct worker_pool *pool;
3583

T
Tejun Heo 已提交
3584
	switch (action & ~CPU_TASKS_FROZEN) {
3585
	case CPU_UP_PREPARE:
3586
		for_each_worker_pool(pool, gcwq) {
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3599
		}
T
Tejun Heo 已提交
3600
		break;
3601

3602 3603
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3604
		gcwq_claim_management_and_lock(gcwq);
3605
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3606
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3607
		gcwq_release_management_and_unlock(gcwq);
3608
		break;
3609
	}
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3621 3622 3623
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3624 3625
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3626 3627
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3628
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3629 3630
		flush_work(&unbind_work);
		break;
3631 3632 3633 3634
	}
	return NOTIFY_OK;
}

3635
#ifdef CONFIG_SMP
3636

3637
struct work_for_cpu {
3638
	struct completion completion;
3639 3640 3641 3642 3643
	long (*fn)(void *);
	void *arg;
	long ret;
};

3644
static int do_work_for_cpu(void *_wfc)
3645
{
3646
	struct work_for_cpu *wfc = _wfc;
3647
	wfc->ret = wfc->fn(wfc->arg);
3648 3649
	complete(&wfc->completion);
	return 0;
3650 3651 3652 3653 3654 3655 3656 3657
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3658 3659
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3660
 * The caller must not hold any locks which would prevent @fn from completing.
3661 3662 3663
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3677 3678 3679 3680 3681
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3682 3683 3684 3685 3686
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3687 3688 3689
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3690 3691
 *
 * CONTEXT:
3692
 * Grabs and releases workqueue_lock and gcwq->lock's.
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3703
	for_each_gcwq_cpu(cpu) {
3704
		struct global_cwq *gcwq = get_gcwq(cpu);
3705
		struct workqueue_struct *wq;
3706 3707 3708

		spin_lock_irq(&gcwq->lock);

3709 3710 3711
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3712 3713 3714
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3715
			if (cwq && wq->flags & WQ_FREEZABLE)
3716 3717
				cwq->max_active = 0;
		}
3718 3719

		spin_unlock_irq(&gcwq->lock);
3720 3721 3722 3723 3724 3725
	}

	spin_unlock(&workqueue_lock);
}

/**
3726
 * freeze_workqueues_busy - are freezable workqueues still busy?
3727 3728 3729 3730 3731 3732 3733 3734
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3735 3736
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3747
	for_each_gcwq_cpu(cpu) {
3748
		struct workqueue_struct *wq;
3749 3750 3751 3752 3753 3754 3755
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3756
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3775
 * frozen works are transferred to their respective gcwq worklists.
3776 3777
 *
 * CONTEXT:
3778
 * Grabs and releases workqueue_lock and gcwq->lock's.
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3789
	for_each_gcwq_cpu(cpu) {
3790
		struct global_cwq *gcwq = get_gcwq(cpu);
3791
		struct worker_pool *pool;
3792
		struct workqueue_struct *wq;
3793 3794 3795

		spin_lock_irq(&gcwq->lock);

3796 3797 3798
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3799 3800 3801
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3802
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3803 3804 3805 3806 3807 3808 3809 3810 3811
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3812

3813 3814
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3815

3816
		spin_unlock_irq(&gcwq->lock);
3817 3818 3819 3820 3821 3822 3823 3824
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3825
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3826
{
T
Tejun Heo 已提交
3827
	unsigned int cpu;
T
Tejun Heo 已提交
3828
	int i;
T
Tejun Heo 已提交
3829

3830 3831 3832 3833
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3834 3835
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3836 3837

	/* initialize gcwqs */
3838
	for_each_gcwq_cpu(cpu) {
3839
		struct global_cwq *gcwq = get_gcwq(cpu);
3840
		struct worker_pool *pool;
3841 3842 3843

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3844
		gcwq->flags |= GCWQ_DISASSOCIATED;
3845

T
Tejun Heo 已提交
3846 3847 3848
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3849 3850 3851 3852
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3853

3854 3855 3856
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3857

3858 3859 3860
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3861
			mutex_init(&pool->manager_mutex);
3862 3863
			ida_init(&pool->worker_ida);
		}
3864 3865
	}

3866
	/* create the initial worker */
3867
	for_each_online_gcwq_cpu(cpu) {
3868
		struct global_cwq *gcwq = get_gcwq(cpu);
3869
		struct worker_pool *pool;
3870

3871 3872
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3873 3874 3875 3876

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3877
			worker = create_worker(pool);
3878 3879 3880 3881 3882
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3883 3884
	}

3885
	system_wq = alloc_workqueue("events", 0, 0);
3886
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3887
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3888 3889
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3890 3891
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3892
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3893
	       !system_unbound_wq || !system_freezable_wq);
3894
	return 0;
L
Linus Torvalds 已提交
3895
}
3896
early_initcall(init_workqueues);