core.c 200.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122 123 124
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125
		return;
126

127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 129
	if (delta < 0)
		return;
130 131
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
132 133
}

I
Ingo Molnar 已提交
134 135 136
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
137 138 139 140

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
141
const_debug unsigned int sysctl_sched_features =
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147 148 149 150
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

151
static const char * const sched_feat_names[] = {
152
#include "features.h"
P
Peter Zijlstra 已提交
153 154 155 156
};

#undef SCHED_FEAT

L
Li Zefan 已提交
157
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
158 159 160
{
	int i;

161
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
162 163 164
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
165
	}
L
Li Zefan 已提交
166
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
167

L
Li Zefan 已提交
168
	return 0;
P
Peter Zijlstra 已提交
169 170
}

171 172
#ifdef HAVE_JUMP_LABEL

173 174
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
175 176 177 178

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

179
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 181 182 183 184 185 186
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
187 188
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
189 190 191 192
}

static void sched_feat_enable(int i)
{
193 194
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
195 196 197 198 199 200
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

201
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
202 203
{
	int i;
204
	int neg = 0;
P
Peter Zijlstra 已提交
205

H
Hillf Danton 已提交
206
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
207 208 209 210
		neg = 1;
		cmp += 3;
	}

211
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213
			if (neg) {
P
Peter Zijlstra 已提交
214
				sysctl_sched_features &= ~(1UL << i);
215 216
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
217
				sysctl_sched_features |= (1UL << i);
218 219
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
220 221 222 223
			break;
		}
	}

224 225 226 227 228 229 230 231 232 233
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
234
	struct inode *inode;
235 236 237 238 239 240 241 242 243 244

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

245 246 247
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
248
	i = sched_feat_set(cmp);
249
	mutex_unlock(&inode->i_mutex);
250
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
251 252
		return -EINVAL;

253
	*ppos += cnt;
P
Peter Zijlstra 已提交
254 255 256 257

	return cnt;
}

L
Li Zefan 已提交
258 259 260 261 262
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

263
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
264 265 266 267 268
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
279
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
280

281 282 283 284 285 286
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

287 288 289 290 291 292 293 294
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
295
/*
P
Peter Zijlstra 已提交
296
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
297 298
 * default: 1s
 */
P
Peter Zijlstra 已提交
299
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
300

301
__read_mostly int scheduler_running;
302

P
Peter Zijlstra 已提交
303 304 305 306 307
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
308

309 310 311
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
312
/*
313
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
314
 */
A
Alexey Dobriyan 已提交
315
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319 320 321

	local_irq_disable();
	rq = this_rq();
322
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
323 324 325 326

	return rq;
}

P
Peter Zijlstra 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

348
	raw_spin_lock(&rq->lock);
349
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
350
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
352 353 354 355

	return HRTIMER_NORESTART;
}

356
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
357 358 359 360 361 362 363 364 365

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

366 367 368 369
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
370
{
371
	struct rq *rq = arg;
372

373
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
374
	__hrtick_restart(rq);
375
	rq->hrtick_csd_pending = 0;
376
	raw_spin_unlock(&rq->lock);
377 378
}

379 380 381 382 383
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
384
void hrtick_start(struct rq *rq, u64 delay)
385
{
386
	struct hrtimer *timer = &rq->hrtick_timer;
387 388 389 390 391 392 393 394 395
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
396

397
	hrtimer_set_expires(timer, time);
398 399

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
400
		__hrtick_restart(rq);
401
	} else if (!rq->hrtick_csd_pending) {
402
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 404
		rq->hrtick_csd_pending = 1;
	}
405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
419
		hrtick_clear(cpu_rq(cpu));
420 421 422 423 424 425
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

426
static __init void init_hrtick(void)
427 428 429
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
430 431 432 433 434 435
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
436
void hrtick_start(struct rq *rq, u64 delay)
437
{
W
Wanpeng Li 已提交
438 439 440 441 442
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
443
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444
			HRTIMER_MODE_REL_PINNED, 0);
445
}
446

A
Andrew Morton 已提交
447
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
448 449
{
}
450
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
451

452
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
453
{
454 455
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
456

457 458 459 460
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
461

462 463
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
464
}
A
Andrew Morton 已提交
465
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

474 475 476
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
477
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

493
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 495 496 497 498 499 500 501 502 503
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

529 530 531 532 533 534
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
535 536 537 538 539 540 541

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
542 543
#endif

I
Ingo Molnar 已提交
544
/*
545
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
546 547 548 549 550
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
551
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
552
{
553
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
554 555
	int cpu;

556
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
557

558
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
559 560
		return;

561
	cpu = cpu_of(rq);
562

563
	if (cpu == smp_processor_id()) {
564
		set_tsk_need_resched(curr);
565
		set_preempt_need_resched();
I
Ingo Molnar 已提交
566
		return;
567
	}
I
Ingo Molnar 已提交
568

569
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
573 574
}

575
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
576 577 578 579
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

580
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
581
		return;
582
	resched_curr(rq);
583
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
584
}
585

586
#ifdef CONFIG_SMP
587
#ifdef CONFIG_NO_HZ_COMMON
588 589 590 591 592 593 594 595
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
596
int get_nohz_timer_target(int pinned)
597 598 599 600 601
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

602 603 604
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

605
	rcu_read_lock();
606
	for_each_domain(cpu, sd) {
607 608 609 610 611 612
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
613
	}
614 615
unlock:
	rcu_read_unlock();
616 617
	return cpu;
}
618 619 620 621 622 623 624 625 626 627
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
628
static void wake_up_idle_cpu(int cpu)
629 630 631 632 633 634
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

635
	if (set_nr_and_not_polling(rq->idle))
636
		smp_send_reschedule(cpu);
637 638
	else
		trace_sched_wake_idle_without_ipi(cpu);
639 640
}

641
static bool wake_up_full_nohz_cpu(int cpu)
642
{
643 644 645 646 647 648
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
649
	if (tick_nohz_full_cpu(cpu)) {
650 651
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
652
			tick_nohz_full_kick_cpu(cpu);
653 654 655 656 657 658 659 660
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
661
	if (!wake_up_full_nohz_cpu(cpu))
662 663 664
		wake_up_idle_cpu(cpu);
}

665
static inline bool got_nohz_idle_kick(void)
666
{
667
	int cpu = smp_processor_id();
668 669 670 671 672 673 674 675 676 677 678 679 680

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
681 682
}

683
#else /* CONFIG_NO_HZ_COMMON */
684

685
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
686
{
687
	return false;
P
Peter Zijlstra 已提交
688 689
}

690
#endif /* CONFIG_NO_HZ_COMMON */
691

692 693 694
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

712 713 714 715 716
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
717 718
	if (this_rq()->nr_running > 1)
		return false;
719

720
	return true;
721 722
}
#endif /* CONFIG_NO_HZ_FULL */
723

724
void sched_avg_update(struct rq *rq)
725
{
726 727
	s64 period = sched_avg_period();

728
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 730 731 732 733 734
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
735 736 737
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
738 739
}

740
#endif /* CONFIG_SMP */
741

742 743
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744
/*
745 746 747 748
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
749
 */
750
int walk_tg_tree_from(struct task_group *from,
751
			     tg_visitor down, tg_visitor up, void *data)
752 753
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
754
	int ret;
755

756 757
	parent = from;

758
down:
P
Peter Zijlstra 已提交
759 760
	ret = (*down)(parent, data);
	if (ret)
761
		goto out;
762 763 764 765 766 767 768
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
769
	ret = (*up)(parent, data);
770 771
	if (ret || parent == from)
		goto out;
772 773 774 775 776

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
777
out:
P
Peter Zijlstra 已提交
778
	return ret;
779 780
}

781
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
782
{
783
	return 0;
P
Peter Zijlstra 已提交
784
}
785 786
#endif

787 788
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
789 790 791
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
792 793 794 795
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
796
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
797
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
798 799
		return;
	}
800

801
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
802
	load->inv_weight = prio_to_wmult[prio];
803 804
}

805
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806
{
807
	update_rq_clock(rq);
808
	sched_info_queued(rq, p);
809
	p->sched_class->enqueue_task(rq, p, flags);
810 811
}

812
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813
{
814
	update_rq_clock(rq);
815
	sched_info_dequeued(rq, p);
816
	p->sched_class->dequeue_task(rq, p, flags);
817 818
}

819
void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 821 822 823
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

824
	enqueue_task(rq, p, flags);
825 826
}

827
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 829 830 831
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

832
	dequeue_task(rq, p, flags);
833 834
}

835
static void update_rq_clock_task(struct rq *rq, s64 delta)
836
{
837 838 839 840 841 842 843 844
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
845
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
867 868
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869
	if (static_key_false((&paravirt_steal_rq_enabled))) {
870 871 872 873 874 875 876 877 878 879 880
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

881 882
	rq->clock_task += delta;

883
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 886
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

919
/*
I
Ingo Molnar 已提交
920
 * __normal_prio - return the priority that is based on the static prio
921 922 923
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
924
	return p->static_prio;
925 926
}

927 928 929 930 931 932 933
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
934
static inline int normal_prio(struct task_struct *p)
935 936 937
{
	int prio;

938 939 940
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
941 942 943 944 945 946 947 948 949 950 951 952 953
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
954
static int effective_prio(struct task_struct *p)
955 956 957 958 959 960 961 962 963 964 965 966
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
967 968 969
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
970 971
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
972
 */
973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
974 975 976 977
{
	return cpu_curr(task_cpu(p)) == p;
}

978 979 980
/*
 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
 */
981 982
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
983
				       int oldprio)
984 985 986
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
987
			prev_class->switched_from(rq, p);
988
		/* Possble rq->lock 'hole'.  */
P
Peter Zijlstra 已提交
989
		p->sched_class->switched_to(rq, p);
990
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
991
		p->sched_class->prio_changed(rq, p, oldprio);
992 993
}

994
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 996 997 998 999 1000 1001 1002 1003 1004
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1005
				resched_curr(rq);
1006 1007 1008 1009 1010 1011 1012 1013 1014
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1015
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016
		rq_clock_skip_update(rq, true);
1017 1018
}

L
Linus Torvalds 已提交
1019
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1020
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1021
{
1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1027
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1028
			!p->on_rq);
1029 1030

#ifdef CONFIG_LOCKDEP
1031 1032 1033 1034 1035
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1036
	 * see task_group().
1037 1038 1039 1040
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1041 1042 1043
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1044 1045
#endif

1046
	trace_sched_migrate_task(p, new_cpu);
1047

1048
	if (task_cpu(p) != new_cpu) {
1049 1050
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1051
		p->se.nr_migrations++;
1052
		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053
	}
I
Ingo Molnar 已提交
1054 1055

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1056 1057
}

1058 1059
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1060
	if (task_on_rq_queued(p)) {
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1094 1095
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1116 1117
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1140 1141 1142 1143
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1153
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154 1155 1156 1157 1158 1159
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1160
struct migration_arg {
1161
	struct task_struct *task;
L
Linus Torvalds 已提交
1162
	int dest_cpu;
1163
};
L
Linus Torvalds 已提交
1164

1165 1166
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1167 1168 1169
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1170 1171 1172 1173 1174 1175 1176
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1183
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1184 1185
{
	unsigned long flags;
1186
	int running, queued;
R
Roland McGrath 已提交
1187
	unsigned long ncsw;
1188
	struct rq *rq;
L
Linus Torvalds 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1210 1211 1212
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1213
			cpu_relax();
R
Roland McGrath 已提交
1214
		}
1215

1216 1217 1218 1219 1220 1221
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1222
		trace_sched_wait_task(p);
1223
		running = task_running(rq, p);
1224
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1225
		ncsw = 0;
1226
		if (!match_state || p->state == match_state)
1227
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228
		task_rq_unlock(rq, p, &flags);
1229

R
Roland McGrath 已提交
1230 1231 1232 1233 1234 1235
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1246

1247 1248 1249 1250 1251
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1252
		 * So if it was still runnable (but just not actively
1253 1254 1255
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1256
		if (unlikely(queued)) {
1257 1258 1259 1260
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261 1262
			continue;
		}
1263

1264 1265 1266 1267 1268 1269 1270
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1271 1272

	return ncsw;
L
Linus Torvalds 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1282
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1288
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1298
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1299
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1300

1301
#ifdef CONFIG_SMP
1302
/*
1303
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304
 */
1305 1306
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1307 1308
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1309 1310
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1329
	}
1330

1331 1332
	for (;;) {
		/* Any allowed, online CPU? */
1333
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334 1335 1336 1337 1338 1339
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1367
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 1369
					task_pid_nr(p), p->comm, cpu);
		}
1370 1371 1372 1373 1374
	}

	return dest_cpu;
}

1375
/*
1376
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377
 */
1378
static inline
1379
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380
{
1381 1382
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1394
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1395
		     !cpu_online(cpu)))
1396
		cpu = select_fallback_rq(task_cpu(p), p);
1397 1398

	return cpu;
1399
}
1400 1401 1402 1403 1404 1405

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1406 1407
#endif

P
Peter Zijlstra 已提交
1408
static void
1409
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1410
{
P
Peter Zijlstra 已提交
1411
#ifdef CONFIG_SCHEDSTATS
1412 1413
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424
		rcu_read_lock();
P
Peter Zijlstra 已提交
1425 1426 1427 1428 1429 1430
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1431
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1432
	}
1433 1434 1435 1436

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1437 1438 1439
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1440
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1441 1442

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1443
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1444 1445 1446 1447 1448 1449

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1450
	activate_task(rq, p, en_flags);
1451
	p->on_rq = TASK_ON_RQ_QUEUED;
1452 1453 1454 1455

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1456 1457
}

1458 1459 1460
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1461
static void
1462
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1463 1464
{
	check_preempt_curr(rq, p, wake_flags);
1465
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1466 1467 1468 1469 1470 1471

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1472
	if (rq->idle_stamp) {
1473
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1474
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1475

1476 1477 1478
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1479
			rq->avg_idle = max;
1480

T
Tejun Heo 已提交
1481 1482 1483 1484 1485
		rq->idle_stamp = 0;
	}
#endif
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1510
	if (task_on_rq_queued(p)) {
1511 1512
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1513 1514 1515 1516 1517 1518 1519 1520
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1521
#ifdef CONFIG_SMP
1522
void sched_ttwu_pending(void)
1523 1524
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1525 1526
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1527
	unsigned long flags;
1528

1529 1530 1531 1532
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1533

P
Peter Zijlstra 已提交
1534 1535 1536
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1537 1538 1539
		ttwu_do_activate(rq, p, 0);
	}

1540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 1542 1543 1544
}

void scheduler_ipi(void)
{
1545 1546 1547 1548 1549
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1550
	preempt_fold_need_resched();
1551

1552
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1569
	sched_ttwu_pending();
1570 1571 1572 1573

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1574
	if (unlikely(got_nohz_idle_kick())) {
1575
		this_rq()->idle_balance = 1;
1576
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1577
	}
1578
	irq_exit();
1579 1580 1581 1582
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1583 1584 1585 1586 1587 1588 1589 1590
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1591
}
1592

1593 1594 1595 1596 1597
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1598 1599 1600 1601
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1612 1613 1614

out:
	rcu_read_unlock();
1615 1616
}

1617
bool cpus_share_cache(int this_cpu, int that_cpu)
1618 1619 1620
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1621
#endif /* CONFIG_SMP */
1622

1623 1624 1625 1626
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1627
#if defined(CONFIG_SMP)
1628
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630 1631 1632 1633 1634
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1635 1636 1637
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1638 1639 1640
}

/**
L
Linus Torvalds 已提交
1641
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1642
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1643
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1644
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1652
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1653
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1654
 */
1655 1656
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1657 1658
{
	unsigned long flags;
1659
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1660

1661 1662 1663 1664 1665 1666 1667
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1668
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1669
	if (!(p->state & state))
L
Linus Torvalds 已提交
1670 1671
		goto out;

1672
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1673 1674
	cpu = task_cpu(p);

1675 1676
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1677 1678

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1679
	/*
1680 1681
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1682
	 */
1683
	while (p->on_cpu)
1684
		cpu_relax();
1685
	/*
1686
	 * Pairs with the smp_wmb() in finish_lock_switch().
1687
	 */
1688
	smp_rmb();
L
Linus Torvalds 已提交
1689

1690
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1691
	p->state = TASK_WAKING;
1692

1693
	if (p->sched_class->task_waking)
1694
		p->sched_class->task_waking(p);
1695

1696
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697 1698
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1699
		set_task_cpu(p, cpu);
1700
	}
L
Linus Torvalds 已提交
1701 1702
#endif /* CONFIG_SMP */

1703 1704
	ttwu_queue(p, cpu);
stat:
1705
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1706
out:
1707
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1708 1709 1710 1711

	return success;
}

T
Tejun Heo 已提交
1712 1713 1714 1715
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1716
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1717
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718
 * the current task.
T
Tejun Heo 已提交
1719 1720 1721 1722 1723
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1724 1725 1726 1727
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1728 1729
	lockdep_assert_held(&rq->lock);

1730 1731 1732 1733 1734 1735
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1736
	if (!(p->state & TASK_NORMAL))
1737
		goto out;
T
Tejun Heo 已提交
1738

1739
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1740 1741
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1742
	ttwu_do_wakeup(rq, p, 0);
1743
	ttwu_stat(p, smp_processor_id(), 0);
1744 1745
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1746 1747
}

1748 1749 1750 1751 1752
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1753 1754 1755
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1756 1757 1758 1759
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1760
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1761
{
1762 1763
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1764 1765 1766
}
EXPORT_SYMBOL(wake_up_process);

1767
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1768 1769 1770 1771
{
	return try_to_wake_up(p, state, 0);
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1784 1785 1786 1787

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
1788 1789
}

L
Linus Torvalds 已提交
1790 1791 1792
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1793 1794 1795
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1796
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1797
{
P
Peter Zijlstra 已提交
1798 1799 1800
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1801 1802
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1803
	p->se.prev_sum_exec_runtime	= 0;
1804
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1805
	p->se.vruntime			= 0;
1806 1807 1808
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
P
Peter Zijlstra 已提交
1809
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1810 1811

#ifdef CONFIG_SCHEDSTATS
1812
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1813
#endif
N
Nick Piggin 已提交
1814

1815
	RB_CLEAR_NODE(&p->dl.rb_node);
1816
	init_dl_task_timer(&p->dl);
1817
	__dl_clear_params(p);
1818

P
Peter Zijlstra 已提交
1819
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1820

1821 1822 1823
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1824 1825 1826

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828 1829 1830
		p->mm->numa_scan_seq = 0;
	}

1831 1832 1833 1834 1835
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1836 1837
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839
	p->numa_work.next = &p->numa_work;
1840
	p->numa_faults = NULL;
1841 1842
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1843 1844

	p->numa_group = NULL;
1845
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1846 1847
}

1848
#ifdef CONFIG_NUMA_BALANCING
1849
#ifdef CONFIG_SCHED_DEBUG
1850 1851 1852 1853 1854 1855 1856
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1857 1858 1859 1860 1861 1862
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1863
}
1864
#endif /* CONFIG_SCHED_DEBUG */
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1888 1889 1890 1891

/*
 * fork()/clone()-time setup:
 */
1892
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1893
{
1894
	unsigned long flags;
I
Ingo Molnar 已提交
1895 1896
	int cpu = get_cpu();

1897
	__sched_fork(clone_flags, p);
1898
	/*
1899
	 * We mark the process as running here. This guarantees that
1900 1901 1902
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1903
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1904

1905 1906 1907 1908 1909
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1910 1911 1912 1913
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1914
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915
			p->policy = SCHED_NORMAL;
1916
			p->static_prio = NICE_TO_PRIO(0);
1917 1918 1919 1920 1921 1922
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1923

1924 1925 1926 1927 1928 1929
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1930

1931 1932 1933 1934 1935 1936
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1937
		p->sched_class = &fair_sched_class;
1938
	}
1939

P
Peter Zijlstra 已提交
1940 1941 1942
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1943 1944 1945 1946 1947 1948 1949
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1950
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1951
	set_task_cpu(p, cpu);
1952
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953

1954
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1955
	if (likely(sched_info_on()))
1956
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1957
#endif
P
Peter Zijlstra 已提交
1958 1959
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1960
#endif
1961
	init_task_preempt_count(p);
1962
#ifdef CONFIG_SMP
1963
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965
#endif
1966

N
Nick Piggin 已提交
1967
	put_cpu();
1968
	return 0;
L
Linus Torvalds 已提交
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
1990 1991
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1992 1993 1994
	return &cpu_rq(i)->rd->dl_bw;
}

1995
static inline int dl_bw_cpus(int i)
1996
{
1997 1998 1999
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2000 2001
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2002 2003 2004 2005
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2006 2007 2008 2009 2010 2011 2012
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2013
static inline int dl_bw_cpus(int i)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2026 2027 2028
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2029 2030 2031 2032 2033 2034
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035
	u64 period = attr->sched_period ?: attr->sched_deadline;
2036 2037
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038
	int cpus, err = -1;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2049
	cpus = dl_bw_cpus(task_cpu(p));
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2077
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2078 2079
{
	unsigned long flags;
I
Ingo Molnar 已提交
2080
	struct rq *rq;
2081

2082
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 2084 2085 2086 2087 2088
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2089
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 2091
#endif

2092 2093
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2094
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2095
	activate_task(rq, p, 0);
2096
	p->on_rq = TASK_ON_RQ_QUEUED;
2097
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2098
	check_preempt_curr(rq, p, WF_FORK);
2099
#ifdef CONFIG_SMP
2100 2101
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2102
#endif
2103
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2104 2105
}

2106 2107 2108
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2109
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2110
 * @notifier: notifier struct to register
2111 2112 2113 2114 2115 2116 2117 2118 2119
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2120
 * @notifier: notifier struct to unregister
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2134
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135 2136 2137 2138 2139 2140 2141 2142 2143
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2144
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145 2146 2147
		notifier->ops->sched_out(notifier, next);
}

2148
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2160
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2161

2162 2163 2164
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2165
 * @prev: the current task that is being switched out
2166 2167 2168 2169 2170 2171 2172 2173 2174
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2175 2176 2177
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2178
{
2179
	trace_sched_switch(prev, next);
2180
	sched_info_switch(rq, prev, next);
2181
	perf_event_task_sched_out(prev, next);
2182
	fire_sched_out_preempt_notifiers(prev, next);
2183 2184 2185 2186
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2187 2188 2189 2190
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2191 2192 2193 2194
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2195 2196
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2197
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2198 2199
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2200 2201 2202 2203 2204
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2205
 */
2206
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2207 2208
	__releases(rq->lock)
{
2209
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2210
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2211
	long prev_state;
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2217
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2218 2219
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2220
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2226
	prev_state = prev->state;
2227
	vtime_task_switch(prev);
2228
	finish_arch_switch(prev);
2229
	perf_event_task_sched_in(prev, current);
2230
	finish_lock_switch(rq, prev);
2231
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2232

2233
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2234 2235
	if (mm)
		mmdrop(mm);
2236
	if (unlikely(prev_state == TASK_DEAD)) {
2237 2238 2239
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2240 2241 2242
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2243
		 */
2244
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2245
		put_task_struct(prev);
2246
	}
2247 2248

	tick_nohz_task_switch(current);
2249
	return rq;
L
Linus Torvalds 已提交
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2260
		raw_spin_lock_irqsave(&rq->lock, flags);
2261 2262
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2263
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2264 2265 2266 2267 2268 2269

		rq->post_schedule = 0;
	}
}

#else
2270

2271 2272
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2273 2274
}

2275 2276
#endif

L
Linus Torvalds 已提交
2277 2278 2279 2280
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2281
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2282 2283
	__releases(rq->lock)
{
2284
	struct rq *rq;
2285

2286 2287
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2288
	rq = finish_task_switch(prev);
2289
	post_schedule(rq);
2290
	preempt_enable();
2291

L
Linus Torvalds 已提交
2292
	if (current->set_child_tid)
2293
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2294 2295 2296
}

/*
2297
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2298
 */
2299
static inline struct rq *
2300
context_switch(struct rq *rq, struct task_struct *prev,
2301
	       struct task_struct *next)
L
Linus Torvalds 已提交
2302
{
I
Ingo Molnar 已提交
2303
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2304

2305
	prepare_task_switch(rq, prev, next);
2306

I
Ingo Molnar 已提交
2307 2308
	mm = next->mm;
	oldmm = prev->active_mm;
2309 2310 2311 2312 2313
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2314
	arch_start_context_switch(prev);
2315

2316
	if (!mm) {
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2323
	if (!prev->mm) {
L
Linus Torvalds 已提交
2324 2325 2326
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2327 2328 2329 2330 2331 2332
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2333
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2334

2335
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2336 2337
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2338
	barrier();
2339 2340

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2341 2342 2343
}

/*
2344
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2345 2346
 *
 * externally visible scheduler statistics: current number of runnable
2347
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2357
}
L
Linus Torvalds 已提交
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2371
unsigned long long nr_context_switches(void)
2372
{
2373 2374
	int i;
	unsigned long long sum = 0;
2375

2376
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2377
		sum += cpu_rq(i)->nr_switches;
2378

L
Linus Torvalds 已提交
2379 2380
	return sum;
}
2381

L
Linus Torvalds 已提交
2382 2383 2384
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2385

2386
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2387
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2388

L
Linus Torvalds 已提交
2389 2390
	return sum;
}
2391

2392
unsigned long nr_iowait_cpu(int cpu)
2393
{
2394
	struct rq *this = cpu_rq(cpu);
2395 2396
	return atomic_read(&this->nr_iowait);
}
2397

2398 2399 2400 2401 2402 2403 2404
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

I
Ingo Molnar 已提交
2405
#ifdef CONFIG_SMP
2406

2407
/*
P
Peter Zijlstra 已提交
2408 2409
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2410
 */
P
Peter Zijlstra 已提交
2411
void sched_exec(void)
2412
{
P
Peter Zijlstra 已提交
2413
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2414
	unsigned long flags;
2415
	int dest_cpu;
2416

2417
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2418
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2419 2420
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2421

2422
	if (likely(cpu_active(dest_cpu))) {
2423
		struct migration_arg arg = { p, dest_cpu };
2424

2425 2426
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2427 2428
		return;
	}
2429
unlock:
2430
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2431
}
I
Ingo Molnar 已提交
2432

L
Linus Torvalds 已提交
2433 2434 2435
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2436
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2437 2438

EXPORT_PER_CPU_SYMBOL(kstat);
2439
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2440

2441 2442 2443 2444 2445 2446 2447 2448 2449
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2450
	u64 ns;
2451

2452 2453 2454 2455 2456 2457 2458 2459 2460
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2461 2462
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2463
	 */
2464
	if (!p->on_cpu || !task_on_rq_queued(p))
2465 2466 2467
		return p->se.sum_exec_runtime;
#endif

2468
	rq = task_rq_lock(p, &flags);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2479
	task_rq_unlock(rq, p, &flags);
2480 2481 2482

	return ns;
}
2483

2484 2485 2486 2487 2488 2489 2490 2491
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2492
	struct task_struct *curr = rq->curr;
2493 2494

	sched_clock_tick();
I
Ingo Molnar 已提交
2495

2496
	raw_spin_lock(&rq->lock);
2497
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2498
	curr->sched_class->task_tick(rq, curr, 0);
2499
	update_cpu_load_active(rq);
2500
	raw_spin_unlock(&rq->lock);
2501

2502
	perf_event_task_tick();
2503

2504
#ifdef CONFIG_SMP
2505
	rq->idle_balance = idle_cpu(cpu);
2506
	trigger_load_balance(rq);
2507
#endif
2508
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2509 2510
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2522 2523
 *
 * Return: Maximum deferment in nanoseconds.
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2535
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2536
}
2537
#endif
L
Linus Torvalds 已提交
2538

2539
notrace unsigned long get_parent_ip(unsigned long addr)
2540 2541 2542 2543 2544 2545 2546 2547
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2548

2549 2550 2551
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2552
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2553
{
2554
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2555 2556 2557
	/*
	 * Underflow?
	 */
2558 2559
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2560
#endif
2561
	__preempt_count_add(val);
2562
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2563 2564 2565
	/*
	 * Spinlock count overflowing soon?
	 */
2566 2567
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2568
#endif
2569 2570 2571 2572 2573 2574 2575
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2576
}
2577
EXPORT_SYMBOL(preempt_count_add);
2578
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2579

2580
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2581
{
2582
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2583 2584 2585
	/*
	 * Underflow?
	 */
2586
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2587
		return;
L
Linus Torvalds 已提交
2588 2589 2590
	/*
	 * Is the spinlock portion underflowing?
	 */
2591 2592 2593
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2594
#endif
2595

2596 2597
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2598
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2599
}
2600
EXPORT_SYMBOL(preempt_count_sub);
2601
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2602 2603 2604 2605

#endif

/*
I
Ingo Molnar 已提交
2606
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2607
 */
I
Ingo Molnar 已提交
2608
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2609
{
2610 2611 2612
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2613 2614
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2615

I
Ingo Molnar 已提交
2616
	debug_show_held_locks(prev);
2617
	print_modules();
I
Ingo Molnar 已提交
2618 2619
	if (irqs_disabled())
		print_irqtrace_events(prev);
2620 2621 2622 2623 2624 2625 2626
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2627
	dump_stack();
2628
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2629
}
L
Linus Torvalds 已提交
2630

I
Ingo Molnar 已提交
2631 2632 2633 2634 2635
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2636 2637 2638
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2639
	/*
I
Ingo Molnar 已提交
2640
	 * Test if we are atomic. Since do_exit() needs to call into
2641 2642
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2643
	 */
2644
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2645
		__schedule_bug(prev);
2646
	rcu_sleep_check();
I
Ingo Molnar 已提交
2647

L
Linus Torvalds 已提交
2648 2649
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2650
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2651 2652 2653 2654 2655 2656
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2657
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2658
{
2659
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2660
	struct task_struct *p;
L
Linus Torvalds 已提交
2661 2662

	/*
I
Ingo Molnar 已提交
2663 2664
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2665
	 */
2666
	if (likely(prev->sched_class == class &&
2667
		   rq->nr_running == rq->cfs.h_nr_running)) {
2668
		p = fair_sched_class.pick_next_task(rq, prev);
2669 2670 2671 2672 2673 2674 2675 2676
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2677 2678
	}

2679
again:
2680
	for_each_class(class) {
2681
		p = class->pick_next_task(rq, prev);
2682 2683 2684
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2685
			return p;
2686
		}
I
Ingo Molnar 已提交
2687
	}
2688 2689

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2690
}
L
Linus Torvalds 已提交
2691

I
Ingo Molnar 已提交
2692
/*
2693
 * __schedule() is the main scheduler function.
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2728 2729 2730 2731
 *
 * WARNING: all callers must re-check need_resched() afterward and reschedule
 * accordingly in case an event triggered the need for rescheduling (such as
 * an interrupt waking up a task) while preemption was disabled in __schedule().
I
Ingo Molnar 已提交
2732
 */
2733
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2734 2735
{
	struct task_struct *prev, *next;
2736
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2737
	struct rq *rq;
2738
	int cpu;
I
Ingo Molnar 已提交
2739

2740
	preempt_disable();
I
Ingo Molnar 已提交
2741 2742
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2743
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2744 2745 2746
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2747

2748
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2749
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2750

2751 2752 2753 2754 2755 2756
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2757
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2758

2759 2760
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

2761
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2762
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2763
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2764
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2765
		} else {
2766 2767 2768
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2769
			/*
2770 2771 2772
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2782
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2783 2784
	}

2785
	if (task_on_rq_queued(prev))
2786 2787 2788
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2789
	clear_tsk_need_resched(prev);
2790
	clear_preempt_need_resched();
2791
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

2798 2799
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
L
Linus Torvalds 已提交
2800
	} else
2801
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2802

2803
	post_schedule(rq);
L
Linus Torvalds 已提交
2804

2805
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
2806
}
2807

2808 2809
static inline void sched_submit_work(struct task_struct *tsk)
{
2810
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2811 2812 2813 2814 2815 2816 2817 2818 2819
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2820
asmlinkage __visible void __sched schedule(void)
2821
{
2822 2823 2824
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2825 2826 2827
	do {
		__schedule();
	} while (need_resched());
2828
}
L
Linus Torvalds 已提交
2829 2830
EXPORT_SYMBOL(schedule);

2831
#ifdef CONFIG_CONTEXT_TRACKING
2832
asmlinkage __visible void __sched schedule_user(void)
2833 2834 2835 2836 2837 2838
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
2839 2840
	 *
	 * NB: There are buggy callers of this function.  Ideally we
2841
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2842
	 * too frequently to make sense yet.
2843
	 */
2844
	enum ctx_state prev_state = exception_enter();
2845
	schedule();
2846
	exception_exit(prev_state);
2847 2848 2849
}
#endif

2850 2851 2852 2853 2854 2855 2856
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2857
	sched_preempt_enable_no_resched();
2858 2859 2860 2861
	schedule();
	preempt_disable();
}

2862
static void __sched notrace preempt_schedule_common(void)
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
{
	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		__schedule();
		__preempt_count_sub(PREEMPT_ACTIVE);

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (need_resched());
}

L
Linus Torvalds 已提交
2877 2878
#ifdef CONFIG_PREEMPT
/*
2879
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2880
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2881 2882
 * occur there and call schedule directly.
 */
2883
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2884 2885 2886
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2887
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2888
	 */
2889
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2890 2891
		return;

2892
	preempt_schedule_common();
L
Linus Torvalds 已提交
2893
}
2894
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2895
EXPORT_SYMBOL(preempt_schedule);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

#ifdef CONFIG_CONTEXT_TRACKING
/**
 * preempt_schedule_context - preempt_schedule called by tracing
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		__preempt_count_sub(PREEMPT_ACTIVE);
		barrier();
	} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_context);
#endif /* CONFIG_CONTEXT_TRACKING */

2937
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2938 2939

/*
2940
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2941 2942 2943 2944
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2945
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2946
{
2947
	enum ctx_state prev_state;
2948

2949
	/* Catch callers which need to be fixed */
2950
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2951

2952 2953
	prev_state = exception_enter();

2954
	do {
2955
		__preempt_count_add(PREEMPT_ACTIVE);
2956
		local_irq_enable();
2957
		__schedule();
2958
		local_irq_disable();
2959
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2960

2961 2962 2963 2964 2965
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2966
	} while (need_resched());
2967 2968

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2969 2970
}

P
Peter Zijlstra 已提交
2971
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2972
			  void *key)
L
Linus Torvalds 已提交
2973
{
P
Peter Zijlstra 已提交
2974
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2975 2976 2977
}
EXPORT_SYMBOL(default_wake_function);

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2988 2989
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2990
 */
2991
void rt_mutex_setprio(struct task_struct *p, int prio)
2992
{
2993
	int oldprio, queued, running, enqueue_flag = 0;
2994
	struct rq *rq;
2995
	const struct sched_class *prev_class;
2996

2997
	BUG_ON(prio > MAX_PRIO);
2998

2999
	rq = __task_rq_lock(p);
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3019
	trace_sched_pi_setprio(p, prio);
3020
	oldprio = p->prio;
3021
	prev_class = p->sched_class;
3022
	queued = task_on_rq_queued(p);
3023
	running = task_current(rq, p);
3024
	if (queued)
3025
		dequeue_task(rq, p, 0);
3026
	if (running)
3027
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3039 3040 3041
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3042 3043 3044 3045 3046
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3047
		p->sched_class = &dl_sched_class;
3048 3049 3050 3051 3052
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3053
		p->sched_class = &rt_sched_class;
3054 3055 3056
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3057 3058
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3059
		p->sched_class = &fair_sched_class;
3060
	}
I
Ingo Molnar 已提交
3061

3062 3063
	p->prio = prio;

3064 3065
	if (running)
		p->sched_class->set_curr_task(rq);
3066
	if (queued)
3067
		enqueue_task(rq, p, enqueue_flag);
3068

P
Peter Zijlstra 已提交
3069
	check_class_changed(rq, p, prev_class, oldprio);
3070
out_unlock:
3071
	__task_rq_unlock(rq);
3072 3073
}
#endif
3074

3075
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3076
{
3077
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3078
	unsigned long flags;
3079
	struct rq *rq;
L
Linus Torvalds 已提交
3080

3081
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3092
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3093
	 */
3094
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3095 3096 3097
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3098 3099
	queued = task_on_rq_queued(p);
	if (queued)
3100
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3101 3102

	p->static_prio = NICE_TO_PRIO(nice);
3103
	set_load_weight(p);
3104 3105 3106
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3107

3108
	if (queued) {
3109
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3110
		/*
3111 3112
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3113
		 */
3114
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3115
			resched_curr(rq);
L
Linus Torvalds 已提交
3116 3117
	}
out_unlock:
3118
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3119 3120 3121
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3122 3123 3124 3125 3126
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3127
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3128
{
3129
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3130
	int nice_rlim = nice_to_rlimit(nice);
3131

3132
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3133 3134 3135
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3145
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3146
{
3147
	long nice, retval;
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3154
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3155
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3156

3157
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3158 3159 3160
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3175
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3176 3177 3178
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3179
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3187 3188
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3189 3190 3191
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3211 3212
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3213
 */
3214
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3215 3216 3217 3218 3219 3220 3221
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3222 3223
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3224
 */
A
Alexey Dobriyan 已提交
3225
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3226
{
3227
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3228 3229
}

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3245
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3246
	dl_se->flags = attr->sched_flags;
3247
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3268 3269
}

3270 3271 3272 3273 3274 3275
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3276 3277
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3278
{
3279 3280
	int policy = attr->sched_policy;

3281
	if (policy == SETPARAM_POLICY)
3282 3283
		policy = p->policy;

L
Linus Torvalds 已提交
3284
	p->policy = policy;
3285

3286 3287
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3288
	else if (fair_policy(policy))
3289 3290
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3291 3292 3293 3294 3295 3296
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3297
	p->normal_prio = normal_prio(p);
3298 3299
	set_load_weight(p);
}
3300

3301 3302 3303 3304 3305
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3306

3307 3308 3309 3310 3311 3312
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3313 3314 3315
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3316 3317 3318
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3319
}
3320 3321 3322 3323 3324 3325 3326 3327 3328

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3329
	attr->sched_period = dl_se->dl_period;
3330 3331 3332 3333 3334 3335
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3336
 * than the runtime, as well as the period of being zero or
3337
 * greater than deadline. Furthermore, we have to be sure that
3338 3339 3340 3341
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3342 3343 3344 3345
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3372 3373
}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3384 3385
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3386 3387 3388 3389
	rcu_read_unlock();
	return match;
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3404 3405 3406
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3407
{
3408 3409
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3410
	int retval, oldprio, oldpolicy = -1, queued, running;
3411
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3412
	unsigned long flags;
3413
	const struct sched_class *prev_class;
3414
	struct rq *rq;
3415
	int reset_on_fork;
L
Linus Torvalds 已提交
3416

3417 3418
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3419 3420
recheck:
	/* double check policy once rq lock held */
3421 3422
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3423
		policy = oldpolicy = p->policy;
3424
	} else {
3425
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3426

3427 3428
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3429 3430 3431 3432 3433
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3434 3435 3436
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3437 3438
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3439 3440
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3441
	 */
3442
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3443
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3444
		return -EINVAL;
3445 3446
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3447 3448
		return -EINVAL;

3449 3450 3451
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3452
	if (user && !capable(CAP_SYS_NICE)) {
3453
		if (fair_policy(policy)) {
3454
			if (attr->sched_nice < task_nice(p) &&
3455
			    !can_nice(p, attr->sched_nice))
3456 3457 3458
				return -EPERM;
		}

3459
		if (rt_policy(policy)) {
3460 3461
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3462 3463 3464 3465 3466 3467

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3468 3469
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3470 3471
				return -EPERM;
		}
3472

3473 3474 3475 3476 3477 3478 3479 3480 3481
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3482
		/*
3483 3484
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3485
		 */
3486
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3487
			if (!can_nice(p, task_nice(p)))
3488 3489
				return -EPERM;
		}
3490

3491
		/* can't change other user's priorities */
3492
		if (!check_same_owner(p))
3493
			return -EPERM;
3494 3495 3496 3497

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3498
	}
L
Linus Torvalds 已提交
3499

3500
	if (user) {
3501
		retval = security_task_setscheduler(p);
3502 3503 3504 3505
		if (retval)
			return retval;
	}

3506 3507 3508
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3509
	 *
L
Lucas De Marchi 已提交
3510
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3511 3512
	 * runqueue lock must be held.
	 */
3513
	rq = task_rq_lock(p, &flags);
3514

3515 3516 3517 3518
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3519
		task_rq_unlock(rq, p, &flags);
3520 3521 3522
		return -EINVAL;
	}

3523
	/*
3524 3525
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3526
	 */
3527
	if (unlikely(policy == p->policy)) {
3528
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3529 3530 3531
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3532
		if (dl_policy(policy) && dl_param_changed(p, attr))
3533
			goto change;
3534

3535
		p->sched_reset_on_fork = reset_on_fork;
3536
		task_rq_unlock(rq, p, &flags);
3537 3538
		return 0;
	}
3539
change:
3540

3541
	if (user) {
3542
#ifdef CONFIG_RT_GROUP_SCHED
3543 3544 3545 3546 3547
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3548 3549
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3550
			task_rq_unlock(rq, p, &flags);
3551 3552 3553
			return -EPERM;
		}
#endif
3554 3555 3556 3557 3558 3559 3560 3561 3562
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3563 3564
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3565 3566 3567 3568 3569 3570
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3571

L
Linus Torvalds 已提交
3572 3573 3574
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3575
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3576 3577
		goto recheck;
	}
3578 3579 3580 3581 3582 3583

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3584
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3585 3586 3587 3588
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3607
	queued = task_on_rq_queued(p);
3608
	running = task_current(rq, p);
3609
	if (queued)
3610
		dequeue_task(rq, p, 0);
3611
	if (running)
3612
		put_prev_task(rq, p);
3613

3614
	prev_class = p->sched_class;
3615
	__setscheduler(rq, p, attr);
3616

3617 3618
	if (running)
		p->sched_class->set_curr_task(rq);
3619
	if (queued) {
3620 3621 3622 3623 3624 3625
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3626

P
Peter Zijlstra 已提交
3627
	check_class_changed(rq, p, prev_class, oldprio);
3628
	task_rq_unlock(rq, p, &flags);
3629

3630 3631
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3632 3633
	return 0;
}
3634

3635 3636 3637 3638 3639 3640 3641 3642 3643
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3644 3645
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3646 3647 3648 3649 3650 3651 3652
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3653 3654 3655 3656 3657 3658
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3659 3660
 * Return: 0 on success. An error code otherwise.
 *
3661 3662 3663
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3664
		       const struct sched_param *param)
3665
{
3666
	return _sched_setscheduler(p, policy, param, true);
3667
}
L
Linus Torvalds 已提交
3668 3669
EXPORT_SYMBOL_GPL(sched_setscheduler);

3670 3671 3672 3673 3674 3675
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3686 3687
 *
 * Return: 0 on success. An error code otherwise.
3688 3689
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3690
			       const struct sched_param *param)
3691
{
3692
	return _sched_setscheduler(p, policy, param, false);
3693 3694
}

I
Ingo Molnar 已提交
3695 3696
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3697 3698 3699
{
	struct sched_param lparam;
	struct task_struct *p;
3700
	int retval;
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3706 3707 3708

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3709
	p = find_process_by_pid(pid);
3710 3711 3712
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3713

L
Linus Torvalds 已提交
3714 3715 3716
	return retval;
}

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3779
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3780

3781
	return 0;
3782 3783 3784

err_size:
	put_user(sizeof(*attr), &uattr->size);
3785
	return -E2BIG;
3786 3787
}

L
Linus Torvalds 已提交
3788 3789 3790 3791 3792
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3793 3794
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3795
 */
3796 3797
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3798
{
3799 3800 3801 3802
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3803 3804 3805 3806 3807 3808 3809
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3810 3811
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3812
 */
3813
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3814
{
3815
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3816 3817
}

3818 3819 3820
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3821
 * @uattr: structure containing the extended parameters.
3822
 * @flags: for future extension.
3823
 */
3824 3825
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3826 3827 3828 3829 3830
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3831
	if (!uattr || pid < 0 || flags)
3832 3833
		return -EINVAL;

3834 3835 3836
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3837

3838
	if ((int)attr.sched_policy < 0)
3839
		return -EINVAL;
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3851 3852 3853
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3854 3855 3856
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3857
 */
3858
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3859
{
3860
	struct task_struct *p;
3861
	int retval;
L
Linus Torvalds 已提交
3862 3863

	if (pid < 0)
3864
		return -EINVAL;
L
Linus Torvalds 已提交
3865 3866

	retval = -ESRCH;
3867
	rcu_read_lock();
L
Linus Torvalds 已提交
3868 3869 3870 3871
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3872 3873
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3874
	}
3875
	rcu_read_unlock();
L
Linus Torvalds 已提交
3876 3877 3878 3879
	return retval;
}

/**
3880
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3881 3882
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3883 3884 3885
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3886
 */
3887
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3888
{
3889
	struct sched_param lp = { .sched_priority = 0 };
3890
	struct task_struct *p;
3891
	int retval;
L
Linus Torvalds 已提交
3892 3893

	if (!param || pid < 0)
3894
		return -EINVAL;
L
Linus Torvalds 已提交
3895

3896
	rcu_read_lock();
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3906 3907
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3908
	rcu_read_unlock();
L
Linus Torvalds 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3918
	rcu_read_unlock();
L
Linus Torvalds 已提交
3919 3920 3921
	return retval;
}

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3945
				return -EFBIG;
3946 3947 3948 3949 3950
		}

		attr->size = usize;
	}

3951
	ret = copy_to_user(uattr, attr, attr->size);
3952 3953 3954
	if (ret)
		return -EFAULT;

3955
	return 0;
3956 3957 3958
}

/**
3959
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3960
 * @pid: the pid in question.
J
Juri Lelli 已提交
3961
 * @uattr: structure containing the extended parameters.
3962
 * @size: sizeof(attr) for fwd/bwd comp.
3963
 * @flags: for future extension.
3964
 */
3965 3966
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3967 3968 3969 3970 3971 3972 3973 3974
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3975
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3989 3990
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3991 3992 3993
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3994 3995
		attr.sched_priority = p->rt_priority;
	else
3996
		attr.sched_nice = task_nice(p);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4008
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4009
{
4010
	cpumask_var_t cpus_allowed, new_mask;
4011 4012
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4013

4014
	rcu_read_lock();
L
Linus Torvalds 已提交
4015 4016 4017

	p = find_process_by_pid(pid);
	if (!p) {
4018
		rcu_read_unlock();
L
Linus Torvalds 已提交
4019 4020 4021
		return -ESRCH;
	}

4022
	/* Prevent p going away */
L
Linus Torvalds 已提交
4023
	get_task_struct(p);
4024
	rcu_read_unlock();
L
Linus Torvalds 已提交
4025

4026 4027 4028 4029
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4030 4031 4032 4033 4034 4035 4036 4037
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4038
	retval = -EPERM;
E
Eric W. Biederman 已提交
4039 4040 4041 4042
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4043
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4044 4045 4046
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4047

4048
	retval = security_task_setscheduler(p);
4049
	if (retval)
4050
		goto out_free_new_mask;
4051

4052 4053 4054 4055

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4056 4057 4058 4059 4060 4061 4062
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4063 4064 4065
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4066
			retval = -EBUSY;
4067
			rcu_read_unlock();
4068
			goto out_free_new_mask;
4069
		}
4070
		rcu_read_unlock();
4071 4072
	}
#endif
P
Peter Zijlstra 已提交
4073
again:
4074
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4075

P
Paul Menage 已提交
4076
	if (!retval) {
4077 4078
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4079 4080 4081 4082 4083
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4084
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4085 4086 4087
			goto again;
		}
	}
4088
out_free_new_mask:
4089 4090 4091 4092
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4098
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4099
{
4100 4101 4102 4103 4104
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110 4111 4112
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4113 4114
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4115
 */
4116 4117
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4118
{
4119
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4120 4121
	int retval;

4122 4123
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4124

4125 4126 4127 4128 4129
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4130 4131
}

4132
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4133
{
4134
	struct task_struct *p;
4135
	unsigned long flags;
L
Linus Torvalds 已提交
4136 4137
	int retval;

4138
	rcu_read_lock();
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4145 4146 4147 4148
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4149
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4150
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4151
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4152 4153

out_unlock:
4154
	rcu_read_unlock();
L
Linus Torvalds 已提交
4155

4156
	return retval;
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4164 4165
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4166
 */
4167 4168
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4169 4170
{
	int ret;
4171
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4172

A
Anton Blanchard 已提交
4173
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4174 4175
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4176 4177
		return -EINVAL;

4178 4179
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4180

4181 4182
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4183
		size_t retlen = min_t(size_t, len, cpumask_size());
4184 4185

		if (copy_to_user(user_mask_ptr, mask, retlen))
4186 4187
			ret = -EFAULT;
		else
4188
			ret = retlen;
4189 4190
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4191

4192
	return ret;
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4198 4199
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4200 4201
 *
 * Return: 0.
L
Linus Torvalds 已提交
4202
 */
4203
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4204
{
4205
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4206

4207
	schedstat_inc(rq, yld_count);
4208
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4215
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4216
	do_raw_spin_unlock(&rq->lock);
4217
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223

	schedule();

	return 0;
}

4224
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4225
{
P
Peter Zijlstra 已提交
4226
	if (should_resched()) {
4227
		preempt_schedule_common();
L
Linus Torvalds 已提交
4228 4229 4230 4231
		return 1;
	}
	return 0;
}
4232
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4233 4234

/*
4235
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4236 4237
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4238
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4239 4240 4241
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4242
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4243
{
P
Peter Zijlstra 已提交
4244
	int resched = should_resched();
J
Jan Kara 已提交
4245 4246
	int ret = 0;

4247 4248
	lockdep_assert_held(lock);

4249
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4250
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4251
		if (resched)
4252
			preempt_schedule_common();
N
Nick Piggin 已提交
4253 4254
		else
			cpu_relax();
J
Jan Kara 已提交
4255
		ret = 1;
L
Linus Torvalds 已提交
4256 4257
		spin_lock(lock);
	}
J
Jan Kara 已提交
4258
	return ret;
L
Linus Torvalds 已提交
4259
}
4260
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4261

4262
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4263 4264 4265
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4266
	if (should_resched()) {
4267
		local_bh_enable();
4268
		preempt_schedule_common();
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273
		local_bh_disable();
		return 1;
	}
	return 0;
}
4274
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4275 4276 4277 4278

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4297 4298 4299 4300 4301 4302 4303 4304
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4305 4306 4307 4308
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4309 4310
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4311 4312 4313 4314
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4315
 * Return:
4316 4317 4318
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4319
 */
4320
int __sched yield_to(struct task_struct *p, bool preempt)
4321 4322 4323 4324
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4325
	int yielded = 0;
4326 4327 4328 4329 4330 4331

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4332 4333 4334 4335 4336 4337 4338 4339 4340
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4341
	double_rq_lock(rq, p_rq);
4342
	if (task_rq(p) != p_rq) {
4343 4344 4345 4346 4347
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4348
		goto out_unlock;
4349 4350

	if (curr->sched_class != p->sched_class)
4351
		goto out_unlock;
4352 4353

	if (task_running(p_rq, p) || p->state)
4354
		goto out_unlock;
4355 4356

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4357
	if (yielded) {
4358
		schedstat_inc(rq, yld_count);
4359 4360 4361 4362 4363
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4364
			resched_curr(p_rq);
4365
	}
4366

4367
out_unlock:
4368
	double_rq_unlock(rq, p_rq);
4369
out_irq:
4370 4371
	local_irq_restore(flags);

4372
	if (yielded > 0)
4373 4374 4375 4376 4377 4378
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4379
/*
I
Ingo Molnar 已提交
4380
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4381 4382 4383 4384
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4385 4386
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4387 4388
	long ret;

4389 4390 4391 4392 4393 4394
	current->in_iowait = 1;
	if (old_iowait)
		blk_schedule_flush_plug(current);
	else
		blk_flush_plug(current);

4395
	delayacct_blkio_start();
4396
	rq = raw_rq();
L
Linus Torvalds 已提交
4397 4398
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4399
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4400
	atomic_dec(&rq->nr_iowait);
4401
	delayacct_blkio_end();
4402

L
Linus Torvalds 已提交
4403 4404
	return ret;
}
4405
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4406 4407 4408 4409 4410

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4411 4412 4413
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4414
 */
4415
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421 4422 4423
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4424
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4425
	case SCHED_NORMAL:
4426
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4427
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4438 4439 4440
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4441
 */
4442
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4451
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4452
	case SCHED_NORMAL:
4453
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4454
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4467 4468 4469
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4470
 */
4471
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4472
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4473
{
4474
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4475
	unsigned int time_slice;
4476 4477
	unsigned long flags;
	struct rq *rq;
4478
	int retval;
L
Linus Torvalds 已提交
4479 4480 4481
	struct timespec t;

	if (pid < 0)
4482
		return -EINVAL;
L
Linus Torvalds 已提交
4483 4484

	retval = -ESRCH;
4485
	rcu_read_lock();
L
Linus Torvalds 已提交
4486 4487 4488 4489 4490 4491 4492 4493
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4494
	rq = task_rq_lock(p, &flags);
4495 4496 4497
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4498
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4499

4500
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4501
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4502 4503
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4504

L
Linus Torvalds 已提交
4505
out_unlock:
4506
	rcu_read_unlock();
L
Linus Torvalds 已提交
4507 4508 4509
	return retval;
}

4510
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4511

4512
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4513 4514
{
	unsigned long free = 0;
4515
	int ppid;
4516
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4517

4518 4519
	if (state)
		state = __ffs(state) + 1;
4520
	printk(KERN_INFO "%-15.15s %c", p->comm,
4521
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4522
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4523
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4524
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4525
	else
P
Peter Zijlstra 已提交
4526
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4527 4528
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4529
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4530
	else
P
Peter Zijlstra 已提交
4531
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4532 4533
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4534
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4535
#endif
4536
	ppid = 0;
4537
	rcu_read_lock();
4538 4539
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4540
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4541
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4542
		task_pid_nr(p), ppid,
4543
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4544

4545
	print_worker_info(KERN_INFO, p);
4546
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4547 4548
}

I
Ingo Molnar 已提交
4549
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4550
{
4551
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4552

4553
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4554 4555
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4556
#else
P
Peter Zijlstra 已提交
4557 4558
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4559
#endif
4560
	rcu_read_lock();
4561
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4562 4563
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4564
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4565 4566
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4567
		if (!state_filter || (p->state & state_filter))
4568
			sched_show_task(p);
4569
	}
L
Linus Torvalds 已提交
4570

4571 4572
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4573 4574 4575
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4576
	rcu_read_unlock();
I
Ingo Molnar 已提交
4577 4578 4579
	/*
	 * Only show locks if all tasks are dumped:
	 */
4580
	if (!state_filter)
I
Ingo Molnar 已提交
4581
		debug_show_all_locks();
L
Linus Torvalds 已提交
4582 4583
}

4584
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4585
{
I
Ingo Molnar 已提交
4586
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4587 4588
}

4589 4590 4591 4592 4593 4594 4595 4596
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4597
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4598
{
4599
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4600 4601
	unsigned long flags;

4602
	raw_spin_lock_irqsave(&rq->lock, flags);
4603

4604
	__sched_fork(0, idle);
4605
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4606 4607
	idle->se.exec_start = sched_clock();

4608
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4620
	__set_task_cpu(idle, cpu);
4621
	rcu_read_unlock();
L
Linus Torvalds 已提交
4622 4623

	rq->curr = rq->idle = idle;
4624
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4625 4626
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4627
#endif
4628
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4629 4630

	/* Set the preempt count _outside_ the spinlocks! */
4631
	init_idle_preempt_count(idle, cpu);
4632

I
Ingo Molnar 已提交
4633 4634 4635 4636
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4637
	ftrace_graph_init_idle_task(idle, cpu);
4638
	vtime_init_idle(idle, cpu);
4639 4640 4641
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4642 4643
}

4644 4645 4646 4647 4648 4649 4650
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4651 4652 4653
	if (!cpumask_weight(cur))
		return ret;

4654
	rcu_read_lock_sched();
4655 4656 4657 4658 4659 4660 4661 4662
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4663
	rcu_read_unlock_sched();
4664 4665 4666 4667

	return ret;
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4692
		struct dl_bw *dl_b;
4693 4694 4695 4696
		bool overflow;
		int cpus;
		unsigned long flags;

4697 4698
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4714
		rcu_read_unlock_sched();
4715 4716 4717 4718 4719 4720 4721

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4722
#ifdef CONFIG_SMP
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4750 4751
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
4752
	if (p->sched_class->set_cpus_allowed)
4753
		p->sched_class->set_cpus_allowed(p, new_mask);
4754 4755

	cpumask_copy(&p->cpus_allowed, new_mask);
4756
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4757 4758
}

L
Linus Torvalds 已提交
4759 4760 4761
/*
 * This is how migration works:
 *
4762 4763 4764 4765 4766 4767
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4768
 *    it and puts it into the right queue.
4769 4770
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4771 4772 4773 4774 4775 4776 4777 4778
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4779
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4780 4781
 * call is not atomic; no spinlocks may be held.
 */
4782
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4783 4784
{
	unsigned long flags;
4785
	struct rq *rq;
4786
	unsigned int dest_cpu;
4787
	int ret = 0;
L
Linus Torvalds 已提交
4788 4789

	rq = task_rq_lock(p, &flags);
4790

4791 4792 4793
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4794
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4795 4796 4797 4798
		ret = -EINVAL;
		goto out;
	}

4799
	do_set_cpus_allowed(p, new_mask);
4800

L
Linus Torvalds 已提交
4801
	/* Can the task run on the task's current CPU? If so, we're done */
4802
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4803 4804
		goto out;

4805
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4806
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4807
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4808
		/* Need help from migration thread: drop lock and wait. */
4809
		task_rq_unlock(rq, p, &flags);
4810
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4811 4812
		tlb_migrate_finish(p->mm);
		return 0;
4813 4814
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4815
out:
4816
	task_rq_unlock(rq, p, &flags);
4817

L
Linus Torvalds 已提交
4818 4819
	return ret;
}
4820
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4821 4822

/*
I
Ingo Molnar 已提交
4823
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4830 4831
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4832
 */
4833
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4834
{
4835
	struct rq *rq;
4836
	int ret = 0;
L
Linus Torvalds 已提交
4837

4838
	if (unlikely(!cpu_active(dest_cpu)))
4839
		return ret;
L
Linus Torvalds 已提交
4840

4841
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4842

4843
	raw_spin_lock(&p->pi_lock);
4844
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4845 4846
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4847
		goto done;
4848

L
Linus Torvalds 已提交
4849
	/* Affinity changed (again). */
4850
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4851
		goto fail;
L
Linus Torvalds 已提交
4852

4853 4854 4855 4856
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4857 4858
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4859
done:
4860
	ret = 1;
L
Linus Torvalds 已提交
4861
fail:
4862
	raw_spin_unlock(&rq->lock);
4863
	raw_spin_unlock(&p->pi_lock);
4864
	return ret;
L
Linus Torvalds 已提交
4865 4866
}

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4882
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4883 4884
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4885 4886 4887 4888 4889 4890 4891 4892 4893

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4894
	bool queued, running;
4895 4896

	rq = task_rq_lock(p, &flags);
4897
	queued = task_on_rq_queued(p);
4898 4899
	running = task_current(rq, p);

4900
	if (queued)
4901 4902
		dequeue_task(rq, p, 0);
	if (running)
4903
		put_prev_task(rq, p);
4904 4905 4906 4907 4908

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4909
	if (queued)
4910 4911 4912
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4913 4914
#endif

L
Linus Torvalds 已提交
4915
/*
4916 4917 4918
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4919
 */
4920
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4921
{
4922
	struct migration_arg *arg = data;
4923

4924 4925 4926 4927
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4928
	local_irq_disable();
L
Lai Jiangshan 已提交
4929 4930 4931 4932 4933 4934
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4935
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4936
	local_irq_enable();
L
Linus Torvalds 已提交
4937
	return 0;
4938 4939
}

L
Linus Torvalds 已提交
4940
#ifdef CONFIG_HOTPLUG_CPU
4941

4942
/*
4943 4944
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4945
 */
4946
void idle_task_exit(void)
L
Linus Torvalds 已提交
4947
{
4948
	struct mm_struct *mm = current->active_mm;
4949

4950
	BUG_ON(cpu_online(smp_processor_id()));
4951

4952
	if (mm != &init_mm) {
4953
		switch_mm(mm, &init_mm, current);
4954 4955
		finish_arch_post_lock_switch();
	}
4956
	mmdrop(mm);
L
Linus Torvalds 已提交
4957 4958 4959
}

/*
4960 4961 4962 4963 4964
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4965
 */
4966
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4967
{
4968 4969 4970
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4971 4972
}

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4989
/*
4990 4991 4992 4993 4994 4995
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4996
 */
4997
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4998
{
4999
	struct rq *rq = cpu_rq(dead_cpu);
5000 5001
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5002 5003

	/*
5004 5005 5006 5007 5008 5009 5010
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5011
	 */
5012
	rq->stop = NULL;
5013

5014 5015 5016 5017 5018 5019 5020
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
5021
	for ( ; ; ) {
5022 5023 5024 5025 5026
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5027
			break;
5028

5029
		next = pick_next_task(rq, &fake_task);
5030
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5031
		next->sched_class->put_prev_task(rq, next);
5032

5033 5034 5035 5036 5037 5038 5039
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5040
	}
5041

5042
	rq->stop = stop;
5043
}
5044

L
Linus Torvalds 已提交
5045 5046
#endif /* CONFIG_HOTPLUG_CPU */

5047 5048 5049
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5050 5051
	{
		.procname	= "sched_domain",
5052
		.mode		= 0555,
5053
	},
5054
	{}
5055 5056 5057
};

static struct ctl_table sd_ctl_root[] = {
5058 5059
	{
		.procname	= "kernel",
5060
		.mode		= 0555,
5061 5062
		.child		= sd_ctl_dir,
	},
5063
	{}
5064 5065 5066 5067 5068
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5069
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5070 5071 5072 5073

	return entry;
}

5074 5075
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5076
	struct ctl_table *entry;
5077

5078 5079 5080
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5081
	 * will always be set. In the lowest directory the names are
5082 5083 5084
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5085 5086
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5087 5088 5089
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5090 5091 5092 5093 5094

	kfree(*tablep);
	*tablep = NULL;
}

5095
static int min_load_idx = 0;
5096
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5097

5098
static void
5099
set_table_entry(struct ctl_table *entry,
5100
		const char *procname, void *data, int maxlen,
5101 5102
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5103 5104 5105 5106 5107 5108
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5109 5110 5111 5112 5113

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5114 5115 5116 5117 5118
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5119
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5120

5121 5122 5123
	if (table == NULL)
		return NULL;

5124
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5125
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5126
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5127
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5128
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5129
		sizeof(int), 0644, proc_dointvec_minmax, true);
5130
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5131
		sizeof(int), 0644, proc_dointvec_minmax, true);
5132
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5133
		sizeof(int), 0644, proc_dointvec_minmax, true);
5134
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5135
		sizeof(int), 0644, proc_dointvec_minmax, true);
5136
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5137
		sizeof(int), 0644, proc_dointvec_minmax, true);
5138
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5139
		sizeof(int), 0644, proc_dointvec_minmax, false);
5140
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5141
		sizeof(int), 0644, proc_dointvec_minmax, false);
5142
	set_table_entry(&table[9], "cache_nice_tries",
5143
		&sd->cache_nice_tries,
5144
		sizeof(int), 0644, proc_dointvec_minmax, false);
5145
	set_table_entry(&table[10], "flags", &sd->flags,
5146
		sizeof(int), 0644, proc_dointvec_minmax, false);
5147 5148 5149 5150
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5151
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5152
	/* &table[13] is terminator */
5153 5154 5155 5156

	return table;
}

5157
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5158 5159 5160 5161 5162 5163 5164 5165 5166
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5167 5168
	if (table == NULL)
		return NULL;
5169 5170 5171 5172 5173

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5174
		entry->mode = 0555;
5175 5176 5177 5178 5179 5180 5181 5182
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5183
static void register_sched_domain_sysctl(void)
5184
{
5185
	int i, cpu_num = num_possible_cpus();
5186 5187 5188
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5189 5190 5191
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5192 5193 5194
	if (entry == NULL)
		return;

5195
	for_each_possible_cpu(i) {
5196 5197
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5198
		entry->mode = 0555;
5199
		entry->child = sd_alloc_ctl_cpu_table(i);
5200
		entry++;
5201
	}
5202 5203

	WARN_ON(sd_sysctl_header);
5204 5205
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5206

5207
/* may be called multiple times per register */
5208 5209
static void unregister_sched_domain_sysctl(void)
{
5210 5211
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5212
	sd_sysctl_header = NULL;
5213 5214
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5215
}
5216
#else
5217 5218 5219 5220
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5221 5222 5223 5224
{
}
#endif

5225 5226 5227 5228 5229
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5230
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5250
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5251 5252 5253 5254
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5255 5256 5257 5258
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5259
static int
5260
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5261
{
5262
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5263
	unsigned long flags;
5264
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5265

5266
	switch (action & ~CPU_TASKS_FROZEN) {
5267

L
Linus Torvalds 已提交
5268
	case CPU_UP_PREPARE:
5269
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5270
		break;
5271

L
Linus Torvalds 已提交
5272
	case CPU_ONLINE:
5273
		/* Update our root-domain */
5274
		raw_spin_lock_irqsave(&rq->lock, flags);
5275
		if (rq->rd) {
5276
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5277 5278

			set_rq_online(rq);
5279
		}
5280
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5281
		break;
5282

L
Linus Torvalds 已提交
5283
#ifdef CONFIG_HOTPLUG_CPU
5284
	case CPU_DYING:
5285
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5286
		/* Update our root-domain */
5287
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5288
		if (rq->rd) {
5289
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5290
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5291
		}
5292 5293
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5294
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5295
		break;
5296

5297
	case CPU_DEAD:
5298
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5299
		break;
L
Linus Torvalds 已提交
5300 5301
#endif
	}
5302 5303 5304

	update_max_interval();

L
Linus Torvalds 已提交
5305 5306 5307
	return NOTIFY_OK;
}

5308 5309 5310
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5311
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5312
 */
5313
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5314
	.notifier_call = migration_call,
5315
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5316 5317
};

5318
static void set_cpu_rq_start_time(void)
5319 5320 5321 5322 5323 5324
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5325
static int sched_cpu_active(struct notifier_block *nfb,
5326 5327 5328
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5329 5330 5331
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5332 5333 5334 5335 5336 5337 5338 5339
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5340
static int sched_cpu_inactive(struct notifier_block *nfb,
5341 5342 5343 5344
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5345
		set_cpu_active((long)hcpu, false);
5346
		return NOTIFY_OK;
5347 5348
	default:
		return NOTIFY_DONE;
5349 5350 5351
	}
}

5352
static int __init migration_init(void)
L
Linus Torvalds 已提交
5353 5354
{
	void *cpu = (void *)(long)smp_processor_id();
5355
	int err;
5356

5357
	/* Initialize migration for the boot CPU */
5358 5359
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5360 5361
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5362

5363 5364 5365 5366
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5367
	return 0;
L
Linus Torvalds 已提交
5368
}
5369
early_initcall(migration_init);
L
Linus Torvalds 已提交
5370 5371 5372
#endif

#ifdef CONFIG_SMP
5373

5374 5375
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5376
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5377

5378
static __read_mostly int sched_debug_enabled;
5379

5380
static int __init sched_debug_setup(char *str)
5381
{
5382
	sched_debug_enabled = 1;
5383 5384 5385

	return 0;
}
5386 5387 5388 5389 5390 5391
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5392

5393
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5394
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5395
{
I
Ingo Molnar 已提交
5396
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5397

5398
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5399 5400 5401 5402

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5403
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5404
		if (sd->parent)
P
Peter Zijlstra 已提交
5405 5406
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5407
		return -1;
N
Nick Piggin 已提交
5408 5409
	}

5410 5411
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5412

5413
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5414 5415
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5416
	}
5417
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5418 5419
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5420
	}
L
Linus Torvalds 已提交
5421

I
Ingo Molnar 已提交
5422
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5423
	do {
I
Ingo Molnar 已提交
5424
		if (!group) {
P
Peter Zijlstra 已提交
5425 5426
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5427 5428 5429
			break;
		}

5430
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5431 5432
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5433 5434
			break;
		}
L
Linus Torvalds 已提交
5435

5436 5437
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5438 5439
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5440 5441
			break;
		}
L
Linus Torvalds 已提交
5442

5443
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5444

5445 5446
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5447
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5448 5449
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5450
		}
L
Linus Torvalds 已提交
5451

I
Ingo Molnar 已提交
5452 5453
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5454
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5455

5456
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5457
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5458

5459 5460
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5461 5462
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5463 5464
	return 0;
}
L
Linus Torvalds 已提交
5465

I
Ingo Molnar 已提交
5466 5467 5468
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5469

5470
	if (!sched_debug_enabled)
5471 5472
		return;

I
Ingo Molnar 已提交
5473 5474 5475 5476
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5477

I
Ingo Molnar 已提交
5478 5479 5480
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5481
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5482
			break;
L
Linus Torvalds 已提交
5483 5484
		level++;
		sd = sd->parent;
5485
		if (!sd)
I
Ingo Molnar 已提交
5486 5487
			break;
	}
L
Linus Torvalds 已提交
5488
}
5489
#else /* !CONFIG_SCHED_DEBUG */
5490
# define sched_domain_debug(sd, cpu) do { } while (0)
5491 5492 5493 5494
static inline bool sched_debug(void)
{
	return false;
}
5495
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5496

5497
static int sd_degenerate(struct sched_domain *sd)
5498
{
5499
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5500 5501 5502 5503 5504 5505
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5506
			 SD_BALANCE_EXEC |
5507
			 SD_SHARE_CPUCAPACITY |
5508 5509
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5510 5511 5512 5513 5514
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5515
	if (sd->flags & (SD_WAKE_AFFINE))
5516 5517 5518 5519 5520
		return 0;

	return 1;
}

5521 5522
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5523 5524 5525 5526 5527 5528
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5529
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5530 5531 5532 5533 5534 5535 5536
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5537
				SD_BALANCE_EXEC |
5538
				SD_SHARE_CPUCAPACITY |
5539
				SD_SHARE_PKG_RESOURCES |
5540 5541
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5542 5543
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5544 5545 5546 5547 5548 5549 5550
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5551
static void free_rootdomain(struct rcu_head *rcu)
5552
{
5553
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5554

5555
	cpupri_cleanup(&rd->cpupri);
5556
	cpudl_cleanup(&rd->cpudl);
5557
	free_cpumask_var(rd->dlo_mask);
5558 5559 5560 5561 5562 5563
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5564 5565
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5566
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5567 5568
	unsigned long flags;

5569
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5570 5571

	if (rq->rd) {
I
Ingo Molnar 已提交
5572
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5573

5574
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5575
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5576

5577
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5578

I
Ingo Molnar 已提交
5579
		/*
5580
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5581 5582 5583 5584 5585
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5586 5587 5588 5589 5590
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5591
	cpumask_set_cpu(rq->cpu, rd->span);
5592
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5593
		set_rq_online(rq);
G
Gregory Haskins 已提交
5594

5595
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5596 5597

	if (old_rd)
5598
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5599 5600
}

5601
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5602 5603 5604
{
	memset(rd, 0, sizeof(*rd));

5605
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5606
		goto out;
5607
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5608
		goto free_span;
5609
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5610
		goto free_online;
5611 5612
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5613

5614
	init_dl_bw(&rd->dl_bw);
5615 5616
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5617

5618
	if (cpupri_init(&rd->cpupri) != 0)
5619
		goto free_rto_mask;
5620
	return 0;
5621

5622 5623
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5624 5625
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5626 5627 5628 5629
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5630
out:
5631
	return -ENOMEM;
G
Gregory Haskins 已提交
5632 5633
}

5634 5635 5636 5637 5638 5639
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5640 5641
static void init_defrootdomain(void)
{
5642
	init_rootdomain(&def_root_domain);
5643

G
Gregory Haskins 已提交
5644 5645 5646
	atomic_set(&def_root_domain.refcount, 1);
}

5647
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5648 5649 5650 5651 5652 5653 5654
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5655
	if (init_rootdomain(rd) != 0) {
5656 5657 5658
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5659 5660 5661 5662

	return rd;
}

5663
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5674 5675
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5676 5677 5678 5679 5680 5681

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5682 5683 5684
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5685 5686 5687 5688 5689 5690 5691 5692

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5693
		kfree(sd->groups->sgc);
5694
		kfree(sd->groups);
5695
	}
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5710 5711 5712 5713 5714 5715 5716
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5717
 * two cpus are in the same cache domain, see cpus_share_cache().
5718 5719
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5720
DEFINE_PER_CPU(int, sd_llc_size);
5721
DEFINE_PER_CPU(int, sd_llc_id);
5722
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5723 5724
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5725 5726 5727 5728

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5729
	struct sched_domain *busy_sd = NULL;
5730
	int id = cpu;
5731
	int size = 1;
5732 5733

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5734
	if (sd) {
5735
		id = cpumask_first(sched_domain_span(sd));
5736
		size = cpumask_weight(sched_domain_span(sd));
5737
		busy_sd = sd->parent; /* sd_busy */
5738
	}
5739
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5740 5741

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5742
	per_cpu(sd_llc_size, cpu) = size;
5743
	per_cpu(sd_llc_id, cpu) = id;
5744 5745 5746

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5747 5748 5749

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5750 5751
}

L
Linus Torvalds 已提交
5752
/*
I
Ingo Molnar 已提交
5753
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5754 5755
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5756 5757
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5758
{
5759
	struct rq *rq = cpu_rq(cpu);
5760 5761 5762
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5763
	for (tmp = sd; tmp; ) {
5764 5765 5766
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5767

5768
		if (sd_parent_degenerate(tmp, parent)) {
5769
			tmp->parent = parent->parent;
5770 5771
			if (parent->parent)
				parent->parent->child = tmp;
5772 5773 5774 5775 5776 5777 5778
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5779
			destroy_sched_domain(parent, cpu);
5780 5781
		} else
			tmp = tmp->parent;
5782 5783
	}

5784
	if (sd && sd_degenerate(sd)) {
5785
		tmp = sd;
5786
		sd = sd->parent;
5787
		destroy_sched_domain(tmp, cpu);
5788 5789 5790
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5791

5792
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5793

G
Gregory Haskins 已提交
5794
	rq_attach_root(rq, rd);
5795
	tmp = rq->sd;
N
Nick Piggin 已提交
5796
	rcu_assign_pointer(rq->sd, sd);
5797
	destroy_sched_domains(tmp, cpu);
5798 5799

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5805
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5806
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5807 5808 5809
	return 1;
}

I
Ingo Molnar 已提交
5810
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5811

5812
struct s_data {
5813
	struct sched_domain ** __percpu sd;
5814 5815 5816
	struct root_domain	*rd;
};

5817 5818
enum s_alloc {
	sa_rootdomain,
5819
	sa_sd,
5820
	sa_sd_storage,
5821 5822 5823
	sa_none,
};

P
Peter Zijlstra 已提交
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5862 5863 5864 5865 5866 5867 5868
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5869
	struct sched_domain *sibling;
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5880
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5881 5882

		/* See the comment near build_group_mask(). */
5883
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5884 5885
			continue;

5886
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5887
				GFP_KERNEL, cpu_to_node(cpu));
5888 5889 5890 5891 5892

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5893 5894 5895
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5896 5897 5898 5899
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5900 5901
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5902 5903
			build_group_mask(sd, sg);

5904
		/*
5905
		 * Initialize sgc->capacity such that even if we mess up the
5906 5907 5908
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5909
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5910

P
Peter Zijlstra 已提交
5911 5912 5913 5914 5915
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5916
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5917
		    group_balance_cpu(sg) == cpu)
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5937
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5938
{
5939 5940
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5941

5942 5943
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5944

5945
	if (sg) {
5946
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5947 5948
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5949
	}
5950 5951

	return cpu;
5952 5953
}

5954
/*
5955 5956
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5957
 * and ->cpu_capacity to 0.
5958 5959
 *
 * Assumes the sched_domain tree is fully constructed
5960
 */
5961 5962
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5963
{
5964 5965 5966
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5967
	struct cpumask *covered;
5968
	int i;
5969

5970 5971 5972
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5973
	if (cpu != cpumask_first(span))
5974 5975
		return 0;

5976 5977 5978
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5979
	cpumask_clear(covered);
5980

5981 5982
	for_each_cpu(i, span) {
		struct sched_group *sg;
5983
		int group, j;
5984

5985 5986
		if (cpumask_test_cpu(i, covered))
			continue;
5987

5988
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5989
		cpumask_setall(sched_group_mask(sg));
5990

5991 5992 5993
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5994

5995 5996 5997
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5998

5999 6000 6001 6002 6003 6004 6005
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6006 6007

	return 0;
6008
}
6009

6010
/*
6011
 * Initialize sched groups cpu_capacity.
6012
 *
6013
 * cpu_capacity indicates the capacity of sched group, which is used while
6014
 * distributing the load between different sched groups in a sched domain.
6015 6016 6017 6018
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6019
 */
6020
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6021
{
6022
	struct sched_group *sg = sd->groups;
6023

6024
	WARN_ON(!sg);
6025 6026 6027 6028 6029

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6030

P
Peter Zijlstra 已提交
6031
	if (cpu != group_balance_cpu(sg))
6032
		return;
6033

6034 6035
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6036 6037
}

6038 6039 6040 6041 6042
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6043
static int default_relax_domain_level = -1;
6044
int sched_domain_level_max;
6045 6046 6047

static int __init setup_relax_domain_level(char *str)
{
6048 6049
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6050

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6069
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6070 6071
	} else {
		/* turn on idle balance on this domain */
6072
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6073 6074 6075
	}
}

6076 6077 6078
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6079 6080 6081 6082 6083
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6084 6085
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6086 6087
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6088
	case sa_sd_storage:
6089
		__sdt_free(cpu_map); /* fall through */
6090 6091 6092 6093
	case sa_none:
		break;
	}
}
6094

6095 6096 6097
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6098 6099
	memset(d, 0, sizeof(*d));

6100 6101
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6102 6103 6104
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6105
	d->rd = alloc_rootdomain();
6106
	if (!d->rd)
6107
		return sa_sd;
6108 6109
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6110

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6123
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6124
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6125

6126 6127
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6128 6129
}

6130 6131
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6132
enum numa_topology_type sched_numa_topology_type;
6133
static int *sched_domains_numa_distance;
6134
int sched_max_numa_distance;
6135 6136
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6137
#endif
6138

6139 6140 6141
/*
 * SD_flags allowed in topology descriptions.
 *
6142
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6143 6144
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6145
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6146 6147 6148 6149 6150
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6151
	(SD_SHARE_CPUCAPACITY |		\
6152 6153
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6154 6155
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6156 6157

static struct sched_domain *
6158
sd_init(struct sched_domain_topology_level *tl, int cpu)
6159 6160
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6177 6178 6179 6180 6181

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6182
		.imbalance_pct		= 125,
6183 6184 6185 6186

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6187 6188 6189 6190 6191 6192
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6193 6194
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6195
					| 0*SD_BALANCE_WAKE
6196
					| 1*SD_WAKE_AFFINE
6197
					| 0*SD_SHARE_CPUCAPACITY
6198
					| 0*SD_SHARE_PKG_RESOURCES
6199
					| 0*SD_SERIALIZE
6200
					| 0*SD_PREFER_SIBLING
6201 6202
					| 0*SD_NUMA
					| sd_flags
6203
					,
6204

6205 6206
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6207
		.smt_gain		= 0,
6208 6209
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6210 6211 6212
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6213 6214 6215
	};

	/*
6216
	 * Convert topological properties into behaviour.
6217
	 */
6218

6219
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6220
		sd->flags |= SD_PREFER_SIBLING;
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6251 6252 6253 6254

	return sd;
}

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6281 6282 6283 6284 6285
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6307
bool find_numa_distance(int distance)
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6417
		}
6418 6419 6420 6421 6422 6423

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6424
	}
6425 6426 6427 6428

	if (!level)
		return;

6429 6430 6431 6432
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6433
	 * The sched_domains_numa_distance[] array includes the actual distance
6434 6435 6436
	 * numbers.
	 */

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6463
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6464 6465 6466 6467 6468 6469
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6470
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6471 6472 6473 6474 6475 6476 6477
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6478 6479 6480
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6481
	tl = kzalloc((i + level + 1) *
6482 6483 6484 6485 6486 6487 6488
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6489 6490
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6491 6492 6493 6494 6495 6496 6497

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6498
			.sd_flags = cpu_numa_flags,
6499 6500
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6501
			SD_INIT_NAME(NUMA)
6502 6503 6504 6505
		};
	}

	sched_domain_topology = tl;
6506 6507

	sched_domains_numa_levels = level;
6508
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6509 6510

	init_numa_topology_type();
6511
}
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6559 6560 6561 6562 6563
}
#else
static inline void sched_init_numa(void)
{
}
6564 6565 6566 6567 6568 6569 6570

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6571 6572
#endif /* CONFIG_NUMA */

6573 6574 6575 6576 6577
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6578
	for_each_sd_topology(tl) {
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6589 6590
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6591 6592
			return -ENOMEM;

6593 6594 6595
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6596
			struct sched_group_capacity *sgc;
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6610 6611
			sg->next = sg;

6612
			*per_cpu_ptr(sdd->sg, j) = sg;
6613

6614
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6615
					GFP_KERNEL, cpu_to_node(j));
6616
			if (!sgc)
6617 6618
				return -ENOMEM;

6619
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6631
	for_each_sd_topology(tl) {
6632 6633 6634
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6646 6647
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6648 6649
		}
		free_percpu(sdd->sd);
6650
		sdd->sd = NULL;
6651
		free_percpu(sdd->sg);
6652
		sdd->sg = NULL;
6653 6654
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6655 6656 6657
	}
}

6658
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6659 6660
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6661
{
6662
	struct sched_domain *sd = sd_init(tl, cpu);
6663
	if (!sd)
6664
		return child;
6665 6666

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6667 6668 6669
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6670
		child->parent = sd;
6671
		sd->child = child;
P
Peter Zijlstra 已提交
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6686
	}
6687
	set_domain_attribute(sd, attr);
6688 6689 6690 6691

	return sd;
}

6692 6693 6694 6695
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6696 6697
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6698
{
6699
	enum s_alloc alloc_state;
6700
	struct sched_domain *sd;
6701
	struct s_data d;
6702
	int i, ret = -ENOMEM;
6703

6704 6705 6706
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6707

6708
	/* Set up domains for cpus specified by the cpu_map. */
6709
	for_each_cpu(i, cpu_map) {
6710 6711
		struct sched_domain_topology_level *tl;

6712
		sd = NULL;
6713
		for_each_sd_topology(tl) {
6714
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6715 6716
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6717 6718
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6719 6720
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6721
		}
6722 6723 6724 6725 6726 6727
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6728 6729 6730 6731 6732 6733 6734
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6735
		}
6736
	}
6737

6738
	/* Calculate CPU capacity for physical packages and nodes */
6739 6740 6741
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6742

6743 6744
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6745
			init_sched_groups_capacity(i, sd);
6746
		}
6747
	}
6748

L
Linus Torvalds 已提交
6749
	/* Attach the domains */
6750
	rcu_read_lock();
6751
	for_each_cpu(i, cpu_map) {
6752
		sd = *per_cpu_ptr(d.sd, i);
6753
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6754
	}
6755
	rcu_read_unlock();
6756

6757
	ret = 0;
6758
error:
6759
	__free_domain_allocs(&d, alloc_state, cpu_map);
6760
	return ret;
L
Linus Torvalds 已提交
6761
}
P
Paul Jackson 已提交
6762

6763
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6764
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6765 6766
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6767 6768 6769

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6770 6771
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6772
 */
6773
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6774

6775 6776 6777 6778 6779
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6780
int __weak arch_update_cpu_topology(void)
6781
{
6782
	return 0;
6783 6784
}

6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6810
/*
I
Ingo Molnar 已提交
6811
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6812 6813
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6814
 */
6815
static int init_sched_domains(const struct cpumask *cpu_map)
6816
{
6817 6818
	int err;

6819
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6820
	ndoms_cur = 1;
6821
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6822
	if (!doms_cur)
6823 6824
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6825
	err = build_sched_domains(doms_cur[0], NULL);
6826
	register_sched_domain_sysctl();
6827 6828

	return err;
6829 6830 6831 6832 6833 6834
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6835
static void detach_destroy_domains(const struct cpumask *cpu_map)
6836 6837 6838
{
	int i;

6839
	rcu_read_lock();
6840
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6841
		cpu_attach_domain(NULL, &def_root_domain, i);
6842
	rcu_read_unlock();
6843 6844
}

6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6861 6862
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6863
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6864 6865 6866
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6867
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6868 6869 6870
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6871 6872 6873
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6874 6875 6876 6877 6878 6879
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6880
 *
6881
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6882 6883
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6884
 *
P
Paul Jackson 已提交
6885 6886
 * Call with hotplug lock held
 */
6887
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6888
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6889
{
6890
	int i, j, n;
6891
	int new_topology;
P
Paul Jackson 已提交
6892

6893
	mutex_lock(&sched_domains_mutex);
6894

6895 6896 6897
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6898 6899 6900
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6901
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6902 6903 6904

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6905
		for (j = 0; j < n && !new_topology; j++) {
6906
			if (cpumask_equal(doms_cur[i], doms_new[j])
6907
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6908 6909 6910
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6911
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6912 6913 6914 6915
match1:
		;
	}

6916
	n = ndoms_cur;
6917
	if (doms_new == NULL) {
6918
		n = 0;
6919
		doms_new = &fallback_doms;
6920
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6921
		WARN_ON_ONCE(dattr_new);
6922 6923
	}

P
Paul Jackson 已提交
6924 6925
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6926
		for (j = 0; j < n && !new_topology; j++) {
6927
			if (cpumask_equal(doms_new[i], doms_cur[j])
6928
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6929 6930 6931
				goto match2;
		}
		/* no match - add a new doms_new */
6932
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6933 6934 6935 6936 6937
match2:
		;
	}

	/* Remember the new sched domains */
6938 6939
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6940
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6941
	doms_cur = doms_new;
6942
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6943
	ndoms_cur = ndoms_new;
6944 6945

	register_sched_domain_sysctl();
6946

6947
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6948 6949
}

6950 6951
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6952
/*
6953 6954 6955
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6956 6957 6958
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6959
 */
6960 6961
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6962
{
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6985
	case CPU_ONLINE:
6986
		cpuset_update_active_cpus(true);
6987
		break;
6988 6989 6990
	default:
		return NOTIFY_DONE;
	}
6991
	return NOTIFY_OK;
6992
}
6993

6994 6995
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6996
{
6997 6998 6999 7000 7001
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;

	switch (action & ~CPU_TASKS_FROZEN) {
7002
	case CPU_DOWN_PREPARE:
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			bool overflow;
			int cpus;

			rcu_read_lock_sched();
			dl_b = dl_bw_of(cpu);

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			rcu_read_unlock_sched();

7018
			if (overflow)
7019 7020
				return notifier_from_errno(-EBUSY);
		}
7021
		cpuset_update_active_cpus(false);
7022 7023 7024 7025 7026
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7027 7028 7029
	default:
		return NOTIFY_DONE;
	}
7030
	return NOTIFY_OK;
7031 7032
}

L
Linus Torvalds 已提交
7033 7034
void __init sched_init_smp(void)
{
7035 7036 7037
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7038
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7039

7040 7041
	sched_init_numa();

7042 7043 7044 7045 7046
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7047
	mutex_lock(&sched_domains_mutex);
7048
	init_sched_domains(cpu_active_mask);
7049 7050 7051
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7052
	mutex_unlock(&sched_domains_mutex);
7053

7054
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7055 7056
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7057

7058
	init_hrtick();
7059 7060

	/* Move init over to a non-isolated CPU */
7061
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7062
		BUG();
I
Ingo Molnar 已提交
7063
	sched_init_granularity();
7064
	free_cpumask_var(non_isolated_cpus);
7065

7066
	init_sched_rt_class();
7067
	init_sched_dl_class();
L
Linus Torvalds 已提交
7068 7069 7070 7071
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7072
	sched_init_granularity();
L
Linus Torvalds 已提交
7073 7074 7075
}
#endif /* CONFIG_SMP */

7076 7077
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7078 7079 7080 7081 7082 7083 7084
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7085
#ifdef CONFIG_CGROUP_SCHED
7086 7087 7088 7089
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7090
struct task_group root_task_group;
7091
LIST_HEAD(task_groups);
7092
#endif
P
Peter Zijlstra 已提交
7093

7094
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7095

L
Linus Torvalds 已提交
7096 7097
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7098
	int i, j;
7099 7100 7101 7102 7103 7104 7105 7106 7107
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7108
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7109 7110

#ifdef CONFIG_FAIR_GROUP_SCHED
7111
		root_task_group.se = (struct sched_entity **)ptr;
7112 7113
		ptr += nr_cpu_ids * sizeof(void **);

7114
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7115
		ptr += nr_cpu_ids * sizeof(void **);
7116

7117
#endif /* CONFIG_FAIR_GROUP_SCHED */
7118
#ifdef CONFIG_RT_GROUP_SCHED
7119
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7120 7121
		ptr += nr_cpu_ids * sizeof(void **);

7122
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7123 7124
		ptr += nr_cpu_ids * sizeof(void **);

7125
#endif /* CONFIG_RT_GROUP_SCHED */
7126
	}
7127
#ifdef CONFIG_CPUMASK_OFFSTACK
7128 7129 7130
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7131
	}
7132
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7133

7134 7135 7136
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7137
			global_rt_period(), global_rt_runtime());
7138

G
Gregory Haskins 已提交
7139 7140 7141 7142
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7143
#ifdef CONFIG_RT_GROUP_SCHED
7144
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7145
			global_rt_period(), global_rt_runtime());
7146
#endif /* CONFIG_RT_GROUP_SCHED */
7147

D
Dhaval Giani 已提交
7148
#ifdef CONFIG_CGROUP_SCHED
7149 7150
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7151
	INIT_LIST_HEAD(&root_task_group.siblings);
7152
	autogroup_init(&init_task);
7153

D
Dhaval Giani 已提交
7154
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7155

7156
	for_each_possible_cpu(i) {
7157
		struct rq *rq;
L
Linus Torvalds 已提交
7158 7159

		rq = cpu_rq(i);
7160
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7161
		rq->nr_running = 0;
7162 7163
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7164
		init_cfs_rq(&rq->cfs);
7165 7166
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7167
#ifdef CONFIG_FAIR_GROUP_SCHED
7168
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7169
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7170
		/*
7171
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7172 7173 7174 7175
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7176
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7177 7178 7179
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7180
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7181 7182 7183
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7184
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7185
		 *
7186 7187
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7188
		 */
7189
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7190
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7191 7192 7193
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7194
#ifdef CONFIG_RT_GROUP_SCHED
7195
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7196
#endif
L
Linus Torvalds 已提交
7197

I
Ingo Molnar 已提交
7198 7199
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7200 7201 7202

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7203
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7204
		rq->sd = NULL;
G
Gregory Haskins 已提交
7205
		rq->rd = NULL;
7206
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7207
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7208
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7209
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7210
		rq->push_cpu = 0;
7211
		rq->cpu = i;
7212
		rq->online = 0;
7213 7214
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7215
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7216 7217 7218

		INIT_LIST_HEAD(&rq->cfs_tasks);

7219
		rq_attach_root(rq, &def_root_domain);
7220
#ifdef CONFIG_NO_HZ_COMMON
7221
		rq->nohz_flags = 0;
7222
#endif
7223 7224 7225
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7226
#endif
P
Peter Zijlstra 已提交
7227
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7228 7229 7230
		atomic_set(&rq->nr_iowait, 0);
	}

7231
	set_load_weight(&init_task);
7232

7233 7234 7235 7236
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7237 7238 7239 7240 7241 7242
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7243 7244 7245 7246 7247
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7248 7249 7250 7251 7252 7253 7254
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7255 7256 7257

	calc_load_update = jiffies + LOAD_FREQ;

7258
#ifdef CONFIG_SMP
7259
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7260 7261 7262
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7263
	idle_thread_set_boot_cpu();
7264
	set_cpu_rq_start_time();
7265 7266
#endif
	init_sched_fair_class();
7267

7268
	scheduler_running = 1;
L
Linus Torvalds 已提交
7269 7270
}

7271
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7272 7273
static inline int preempt_count_equals(int preempt_offset)
{
7274
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7275

A
Arnd Bergmann 已提交
7276
	return (nested == preempt_offset);
7277 7278
}

7279
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7280
{
P
Peter Zijlstra 已提交
7281 7282 7283 7284 7285
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7286
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7287 7288 7289 7290
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7291
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7292

7293 7294 7295 7296 7297
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7298 7299 7300
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7301
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7302 7303
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7304
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7305 7306 7307 7308 7309
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7310 7311 7312 7313 7314 7315 7316
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7317

7318 7319 7320
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7321 7322 7323
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7324 7325 7326 7327 7328 7329 7330
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7331
	dump_stack();
L
Linus Torvalds 已提交
7332
}
7333
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7334 7335 7336
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7337 7338
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7339
	const struct sched_class *prev_class = p->sched_class;
7340 7341 7342
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7343
	int old_prio = p->prio;
7344
	int queued;
7345

7346 7347
	queued = task_on_rq_queued(p);
	if (queued)
7348
		dequeue_task(rq, p, 0);
7349
	__setscheduler(rq, p, &attr);
7350
	if (queued) {
7351
		enqueue_task(rq, p, 0);
7352
		resched_curr(rq);
7353
	}
P
Peter Zijlstra 已提交
7354 7355

	check_class_changed(rq, p, prev_class, old_prio);
7356 7357
}

L
Linus Torvalds 已提交
7358 7359
void normalize_rt_tasks(void)
{
7360
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7361
	unsigned long flags;
7362
	struct rq *rq;
L
Linus Torvalds 已提交
7363

7364
	read_lock(&tasklist_lock);
7365
	for_each_process_thread(g, p) {
7366 7367 7368
		/*
		 * Only normalize user tasks:
		 */
7369
		if (p->flags & PF_KTHREAD)
7370 7371
			continue;

I
Ingo Molnar 已提交
7372 7373
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7374 7375 7376
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7377
#endif
I
Ingo Molnar 已提交
7378

7379
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7380 7381 7382 7383
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7384
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7385
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7386
			continue;
I
Ingo Molnar 已提交
7387
		}
L
Linus Torvalds 已提交
7388

7389
		rq = task_rq_lock(p, &flags);
7390
		normalize_task(rq, p);
7391
		task_rq_unlock(rq, p, &flags);
7392
	}
7393
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7394 7395 7396
}

#endif /* CONFIG_MAGIC_SYSRQ */
7397

7398
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7399
/*
7400
 * These functions are only useful for the IA64 MCA handling, or kdb.
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7414 7415
 *
 * Return: The current task for @cpu.
7416
 */
7417
struct task_struct *curr_task(int cpu)
7418 7419 7420 7421
{
	return cpu_curr(cpu);
}

7422 7423 7424
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7425 7426 7427 7428 7429 7430
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7431 7432
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7433 7434 7435 7436 7437 7438 7439
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7440
void set_curr_task(int cpu, struct task_struct *p)
7441 7442 7443 7444 7445
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7446

D
Dhaval Giani 已提交
7447
#ifdef CONFIG_CGROUP_SCHED
7448 7449 7450
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7451 7452 7453 7454
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7455
	autogroup_free(tg);
7456 7457 7458 7459
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7460
struct task_group *sched_create_group(struct task_group *parent)
7461 7462 7463 7464 7465 7466 7467
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7468
	if (!alloc_fair_sched_group(tg, parent))
7469 7470
		goto err;

7471
	if (!alloc_rt_sched_group(tg, parent))
7472 7473
		goto err;

7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7485
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7486
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7487 7488 7489 7490 7491

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7492
	list_add_rcu(&tg->siblings, &parent->children);
7493
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7494 7495
}

7496
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7497
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7498 7499
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7500
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7501 7502
}

7503
/* Destroy runqueue etc associated with a task group */
7504
void sched_destroy_group(struct task_group *tg)
7505 7506 7507 7508 7509 7510
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7511
{
7512
	unsigned long flags;
7513
	int i;
S
Srivatsa Vaddagiri 已提交
7514

7515 7516
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7517
		unregister_fair_sched_group(tg, i);
7518 7519

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7520
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7521
	list_del_rcu(&tg->siblings);
7522
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7523 7524
}

7525
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7526 7527 7528
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7529 7530
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7531
{
P
Peter Zijlstra 已提交
7532
	struct task_group *tg;
7533
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7534 7535 7536 7537 7538
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7539
	running = task_current(rq, tsk);
7540
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7541

7542
	if (queued)
S
Srivatsa Vaddagiri 已提交
7543
		dequeue_task(rq, tsk, 0);
7544
	if (unlikely(running))
7545
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7546

7547 7548 7549 7550 7551 7552
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7553 7554 7555 7556
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7557
#ifdef CONFIG_FAIR_GROUP_SCHED
7558
	if (tsk->sched_class->task_move_group)
7559
		tsk->sched_class->task_move_group(tsk, queued);
7560
	else
P
Peter Zijlstra 已提交
7561
#endif
7562
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7563

7564 7565
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7566
	if (queued)
7567
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7568

7569
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7570
}
D
Dhaval Giani 已提交
7571
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7572

7573 7574 7575 7576 7577
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7578

P
Peter Zijlstra 已提交
7579 7580
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7581
{
P
Peter Zijlstra 已提交
7582
	struct task_struct *g, *p;
7583

7584 7585 7586 7587 7588 7589
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7590
	for_each_process_thread(g, p) {
7591
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7592
			return 1;
7593
	}
7594

P
Peter Zijlstra 已提交
7595 7596
	return 0;
}
7597

P
Peter Zijlstra 已提交
7598 7599 7600 7601 7602
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7603

7604
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7605 7606 7607 7608 7609
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7610

P
Peter Zijlstra 已提交
7611 7612
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7613

P
Peter Zijlstra 已提交
7614 7615 7616
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7617 7618
	}

7619 7620 7621 7622 7623
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7624

7625 7626 7627
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7628 7629
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7630

P
Peter Zijlstra 已提交
7631
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7632

7633 7634 7635 7636 7637
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7638

7639 7640 7641
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7642 7643 7644
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7645

P
Peter Zijlstra 已提交
7646 7647 7648 7649
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7650

P
Peter Zijlstra 已提交
7651
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7652
	}
P
Peter Zijlstra 已提交
7653

P
Peter Zijlstra 已提交
7654 7655 7656 7657
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7658 7659
}

P
Peter Zijlstra 已提交
7660
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7661
{
7662 7663
	int ret;

P
Peter Zijlstra 已提交
7664 7665 7666 7667 7668 7669
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7670 7671 7672 7673 7674
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7675 7676
}

7677
static int tg_set_rt_bandwidth(struct task_group *tg,
7678
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7679
{
P
Peter Zijlstra 已提交
7680
	int i, err = 0;
P
Peter Zijlstra 已提交
7681

7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7693
	mutex_lock(&rt_constraints_mutex);
7694
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7695 7696
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7697
		goto unlock;
P
Peter Zijlstra 已提交
7698

7699
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7700 7701
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7702 7703 7704 7705

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7706
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7707
		rt_rq->rt_runtime = rt_runtime;
7708
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7709
	}
7710
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7711
unlock:
7712
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7713 7714 7715
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7716 7717
}

7718
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7719 7720 7721 7722 7723 7724 7725 7726
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7727
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7728 7729
}

7730
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7731 7732 7733
{
	u64 rt_runtime_us;

7734
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7735 7736
		return -1;

7737
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7738 7739 7740
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7741

7742
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7743 7744 7745 7746 7747 7748
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7749
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7750 7751
}

7752
static long sched_group_rt_period(struct task_group *tg)
7753 7754 7755 7756 7757 7758 7759
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7760
#endif /* CONFIG_RT_GROUP_SCHED */
7761

7762
#ifdef CONFIG_RT_GROUP_SCHED
7763 7764 7765 7766 7767
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7768
	read_lock(&tasklist_lock);
7769
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7770
	read_unlock(&tasklist_lock);
7771 7772 7773 7774
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7775

7776
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7777 7778 7779 7780 7781 7782 7783 7784
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7785
#else /* !CONFIG_RT_GROUP_SCHED */
7786 7787
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7788
	unsigned long flags;
7789
	int i, ret = 0;
7790

7791
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7792 7793 7794
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7795
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7796
		rt_rq->rt_runtime = global_rt_runtime();
7797
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7798
	}
7799
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7800

7801
	return ret;
7802
}
7803
#endif /* CONFIG_RT_GROUP_SCHED */
7804

7805
static int sched_dl_global_validate(void)
7806
{
7807 7808
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7809
	u64 new_bw = to_ratio(period, runtime);
7810
	struct dl_bw *dl_b;
7811
	int cpu, ret = 0;
7812
	unsigned long flags;
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7823
	for_each_possible_cpu(cpu) {
7824 7825
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7826

7827
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7828 7829
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7830
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7831

7832 7833
		rcu_read_unlock_sched();

7834 7835
		if (ret)
			break;
7836 7837
	}

7838
	return ret;
7839 7840
}

7841
static void sched_dl_do_global(void)
7842
{
7843
	u64 new_bw = -1;
7844
	struct dl_bw *dl_b;
7845
	int cpu;
7846
	unsigned long flags;
7847

7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7858 7859
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7860

7861
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7862
		dl_b->bw = new_bw;
7863
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7864 7865

		rcu_read_unlock_sched();
7866
	}
7867 7868 7869 7870 7871 7872 7873
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7874 7875
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7876 7877 7878 7879 7880 7881 7882 7883 7884
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7885 7886
}

7887
int sched_rt_handler(struct ctl_table *table, int write,
7888
		void __user *buffer, size_t *lenp,
7889 7890 7891 7892
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7893
	int ret;
7894 7895 7896 7897 7898

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7899
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7900 7901

	if (!ret && write) {
7902 7903 7904 7905
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7906
		ret = sched_dl_global_validate();
7907 7908 7909
		if (ret)
			goto undo;

7910
		ret = sched_rt_global_constraints();
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7921 7922 7923 7924 7925
	}
	mutex_unlock(&mutex);

	return ret;
}
7926

7927
int sched_rr_handler(struct ctl_table *table, int write,
7928 7929 7930 7931 7932 7933 7934 7935
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7936 7937
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7938
	if (!ret && write) {
7939 7940
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7941 7942 7943 7944 7945
	}
	mutex_unlock(&mutex);
	return ret;
}

7946
#ifdef CONFIG_CGROUP_SCHED
7947

7948
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7949
{
7950
	return css ? container_of(css, struct task_group, css) : NULL;
7951 7952
}

7953 7954
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7955
{
7956 7957
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7958

7959
	if (!parent) {
7960
		/* This is early initialization for the top cgroup */
7961
		return &root_task_group.css;
7962 7963
	}

7964
	tg = sched_create_group(parent);
7965 7966 7967 7968 7969 7970
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7971
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7972
{
7973
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7974
	struct task_group *parent = css_tg(css->parent);
7975

T
Tejun Heo 已提交
7976 7977
	if (parent)
		sched_online_group(tg, parent);
7978 7979 7980
	return 0;
}

7981
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7982
{
7983
	struct task_group *tg = css_tg(css);
7984 7985 7986 7987

	sched_destroy_group(tg);
}

7988
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7989
{
7990
	struct task_group *tg = css_tg(css);
7991 7992 7993 7994

	sched_offline_group(tg);
}

7995 7996 7997 7998 7999
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

8000
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8001
				 struct cgroup_taskset *tset)
8002
{
8003 8004
	struct task_struct *task;

8005
	cgroup_taskset_for_each(task, tset) {
8006
#ifdef CONFIG_RT_GROUP_SCHED
8007
		if (!sched_rt_can_attach(css_tg(css), task))
8008
			return -EINVAL;
8009
#else
8010 8011 8012
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8013
#endif
8014
	}
8015 8016
	return 0;
}
8017

8018
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8019
			      struct cgroup_taskset *tset)
8020
{
8021 8022
	struct task_struct *task;

8023
	cgroup_taskset_for_each(task, tset)
8024
		sched_move_task(task);
8025 8026
}

8027 8028 8029
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8042
#ifdef CONFIG_FAIR_GROUP_SCHED
8043 8044
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8045
{
8046
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8047 8048
}

8049 8050
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8051
{
8052
	struct task_group *tg = css_tg(css);
8053

8054
	return (u64) scale_load_down(tg->shares);
8055
}
8056 8057

#ifdef CONFIG_CFS_BANDWIDTH
8058 8059
static DEFINE_MUTEX(cfs_constraints_mutex);

8060 8061 8062
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8063 8064
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8065 8066
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8067
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8068
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8089 8090 8091 8092 8093
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8094 8095 8096 8097 8098
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8099
	runtime_enabled = quota != RUNTIME_INF;
8100
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8101 8102 8103 8104 8105 8106
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8107 8108 8109
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8110

P
Paul Turner 已提交
8111
	__refill_cfs_bandwidth_runtime(cfs_b);
8112 8113 8114
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
8115
		__start_cfs_bandwidth(cfs_b, true);
8116
	}
8117 8118
	raw_spin_unlock_irq(&cfs_b->lock);

8119
	for_each_online_cpu(i) {
8120
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8121
		struct rq *rq = cfs_rq->rq;
8122 8123

		raw_spin_lock_irq(&rq->lock);
8124
		cfs_rq->runtime_enabled = runtime_enabled;
8125
		cfs_rq->runtime_remaining = 0;
8126

8127
		if (cfs_rq->throttled)
8128
			unthrottle_cfs_rq(cfs_rq);
8129 8130
		raw_spin_unlock_irq(&rq->lock);
	}
8131 8132
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8133 8134
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8135
	put_online_cpus();
8136

8137
	return ret;
8138 8139 8140 8141 8142 8143
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8144
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8157
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8158 8159
		return -1;

8160
	quota_us = tg->cfs_bandwidth.quota;
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8171
	quota = tg->cfs_bandwidth.quota;
8172 8173 8174 8175 8176 8177 8178 8179

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8180
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8181 8182 8183 8184 8185
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8186 8187
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8188
{
8189
	return tg_get_cfs_quota(css_tg(css));
8190 8191
}

8192 8193
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8194
{
8195
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8196 8197
}

8198 8199
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8200
{
8201
	return tg_get_cfs_period(css_tg(css));
8202 8203
}

8204 8205
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8206
{
8207
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8208 8209
}

8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8242
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 8244 8245 8246 8247
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8248
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8249 8250

		quota = normalize_cfs_quota(tg, d);
8251
		parent_quota = parent_b->hierarchical_quota;
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8262
	cfs_b->hierarchical_quota = quota;
8263 8264 8265 8266 8267 8268

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8269
	int ret;
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8281 8282 8283 8284 8285
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8286
}
8287

8288
static int cpu_stats_show(struct seq_file *sf, void *v)
8289
{
8290
	struct task_group *tg = css_tg(seq_css(sf));
8291
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8292

8293 8294 8295
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8296 8297 8298

	return 0;
}
8299
#endif /* CONFIG_CFS_BANDWIDTH */
8300
#endif /* CONFIG_FAIR_GROUP_SCHED */
8301

8302
#ifdef CONFIG_RT_GROUP_SCHED
8303 8304
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8305
{
8306
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8307 8308
}

8309 8310
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8311
{
8312
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8313
}
8314

8315 8316
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8317
{
8318
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8319 8320
}

8321 8322
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8323
{
8324
	return sched_group_rt_period(css_tg(css));
8325
}
8326
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8327

8328
static struct cftype cpu_files[] = {
8329
#ifdef CONFIG_FAIR_GROUP_SCHED
8330 8331
	{
		.name = "shares",
8332 8333
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8334
	},
8335
#endif
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8347 8348
	{
		.name = "stat",
8349
		.seq_show = cpu_stats_show,
8350
	},
8351
#endif
8352
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8353
	{
P
Peter Zijlstra 已提交
8354
		.name = "rt_runtime_us",
8355 8356
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8357
	},
8358 8359
	{
		.name = "rt_period_us",
8360 8361
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8362
	},
8363
#endif
8364
	{ }	/* terminate */
8365 8366
};

8367
struct cgroup_subsys cpu_cgrp_subsys = {
8368 8369
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8370 8371
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8372
	.fork		= cpu_cgroup_fork,
8373 8374
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8375
	.exit		= cpu_cgroup_exit,
8376
	.legacy_cftypes	= cpu_files,
8377 8378 8379
	.early_init	= 1,
};

8380
#endif	/* CONFIG_CGROUP_SCHED */
8381

8382 8383 8384 8385 8386
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}