intel_ringbuffer.c 75.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (INTEL_GEN(dev_priv) > 2) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (INTEL_GEN(dev_priv) > 2) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (HWS_NEEDS_PHYSICAL(dev_priv))
563
		ring_setup_phys_status_page(engine);
564 565
	else
		intel_ring_setup_status_page(engine);
566

567 568
	intel_engine_reset_irq(engine);

569
	/* Enforce ordering by reading HEAD register back */
570
	I915_READ_HEAD(engine);
571

572 573 574 575
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
576
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
577 578

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
579
	if (I915_READ_HEAD(engine))
580
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
581
			  engine->name, I915_READ_HEAD(engine));
582 583 584 585 586

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
587

588
	I915_WRITE_CTL(engine,
589
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
590
			| RING_VALID);
591 592

	/* If the head is still not zero, the ring is dead */
593 594 595
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
596
		DRM_ERROR("%s initialization failed "
597
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
598 599 600
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
601 602
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
603
			  I915_READ_START(engine),
604
			  i915_ggtt_offset(ring->vma));
605 606
		ret = -EIO;
		goto out;
607 608
	}

609
	intel_engine_init_hangcheck(engine);
610

611
out:
612
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
613 614

	return ret;
615 616
}

617 618 619 620 621 622 623 624 625
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

626
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
627
{
628
	struct intel_ring *ring = req->ring;
629 630
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
631

632
	if (w->count == 0)
633
		return 0;
634

635
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
636 637
	if (ret)
		return ret;
638

639
	ret = intel_ring_begin(req, (w->count * 2 + 2));
640 641 642
	if (ret)
		return ret;

643
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
644
	for (i = 0; i < w->count; i++) {
645 646
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
647
	}
648
	intel_ring_emit(ring, MI_NOOP);
649

650
	intel_ring_advance(ring);
651

652
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
653 654
	if (ret)
		return ret;
655

656
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
657

658
	return 0;
659 660
}

661
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
662 663 664
{
	int ret;

665
	ret = intel_ring_workarounds_emit(req);
666 667 668
	if (ret != 0)
		return ret;

669
	ret = i915_gem_render_state_init(req);
670
	if (ret)
671
		return ret;
672

673
	return 0;
674 675
}

676
static int wa_add(struct drm_i915_private *dev_priv,
677 678
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
679 680 681 682 683 684 685 686 687 688 689 690 691
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
692 693
}

694
#define WA_REG(addr, mask, val) do { \
695
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
696 697
		if (r) \
			return r; \
698
	} while (0)
699 700

#define WA_SET_BIT_MASKED(addr, mask) \
701
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
702 703

#define WA_CLR_BIT_MASKED(addr, mask) \
704
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
705

706
#define WA_SET_FIELD_MASKED(addr, mask, value) \
707
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
708

709 710
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
711

712
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
713

714 715
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
716
{
717
	struct drm_i915_private *dev_priv = engine->i915;
718
	struct i915_workarounds *wa = &dev_priv->workarounds;
719
	const uint32_t index = wa->hw_whitelist_count[engine->id];
720 721 722 723

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

724
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
725
		 i915_mmio_reg_offset(reg));
726
	wa->hw_whitelist_count[engine->id]++;
727 728 729 730

	return 0;
}

731
static int gen8_init_workarounds(struct intel_engine_cs *engine)
732
{
733
	struct drm_i915_private *dev_priv = engine->i915;
734 735

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
736

737 738 739
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

740 741 742 743
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

744 745 746 747 748
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
749
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
750
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
751
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
752 753
			  HDC_FORCE_NON_COHERENT);

754 755 756 757 758 759 760 761 762 763
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

764 765 766
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

767 768 769 770 771 772 773 774 775 776 777 778
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

779 780 781
	return 0;
}

782
static int bdw_init_workarounds(struct intel_engine_cs *engine)
783
{
784
	struct drm_i915_private *dev_priv = engine->i915;
785
	int ret;
786

787
	ret = gen8_init_workarounds(engine);
788 789 790
	if (ret)
		return ret;

791
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
792
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
793

794
	/* WaDisableDopClockGating:bdw */
795 796
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
797

798 799
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
800

801
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
802 803 804
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
805
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
806 807 808 809

	return 0;
}

810
static int chv_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815
	ret = gen8_init_workarounds(engine);
816 817 818
	if (ret)
		return ret;

819
	/* WaDisableThreadStallDopClockGating:chv */
820
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
821

822 823 824
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

825 826 827
	return 0;
}

828
static int gen9_init_workarounds(struct intel_engine_cs *engine)
829
{
830
	struct drm_i915_private *dev_priv = engine->i915;
831
	int ret;
832

833 834 835
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

836
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
837 838 839
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

840
	/* WaDisableKillLogic:bxt,skl,kbl */
841 842 843
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

844 845
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
846
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
847
			  FLOW_CONTROL_ENABLE |
848 849
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

850
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
851 852 853
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

854
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
855 856
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
857 858
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
859

860
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
861 862
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
863 864
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
865 866 867 868 869
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
870 871
	}

872 873
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
874 875 876
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
877

878 879
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
880 881
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
882

883
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
884 885 886
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

887
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
888 889
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
890 891 892
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

893 894 895 896
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

919 920 921 922
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
923 924 925
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

926
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
927 928
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

929
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
930 931 932
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

933 934 935 936 937
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

938
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
939
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
940 941 942
	if (ret)
		return ret;

943
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
944
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
945 946 947
	if (ret)
		return ret;

948 949 950
	return 0;
}

951
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
952
{
953
	struct drm_i915_private *dev_priv = engine->i915;
954 955 956 957 958 959 960 961 962 963
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
964
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
965 966 967 968 969 970 971 972
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
973
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

992
static int skl_init_workarounds(struct intel_engine_cs *engine)
993
{
994
	struct drm_i915_private *dev_priv = engine->i915;
995
	int ret;
996

997
	ret = gen9_init_workarounds(engine);
998 999
	if (ret)
		return ret;
1000

1001 1002 1003 1004 1005
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1006
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1007 1008 1009 1010
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1011
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1012 1013 1014 1015 1016 1017 1018 1019
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1020
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1021 1022 1023 1024 1025
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1026
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1027 1028 1029 1030
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1031
	/* WaDisablePowerCompilerClockGating:skl */
1032
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1033 1034 1035
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1036
	/* WaBarrierPerformanceFixDisable:skl */
1037
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1038 1039 1040 1041
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1042
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1043
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1044 1045 1046 1047
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1048 1049 1050
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1051 1052 1053 1054 1055
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1056
	/* WaDisableLSQCROPERFforOCL:skl */
1057
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1058 1059 1060
	if (ret)
		return ret;

1061
	return skl_tune_iz_hashing(engine);
1062 1063
}

1064
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1065
{
1066
	struct drm_i915_private *dev_priv = engine->i915;
1067
	int ret;
1068

1069
	ret = gen9_init_workarounds(engine);
1070 1071
	if (ret)
		return ret;
1072

1073 1074
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1075
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1076 1077 1078
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1079
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1080 1081 1082 1083
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1084 1085 1086 1087
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1088 1089 1090 1091 1092 1093
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1094
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1095
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1096 1097 1098 1099 1100
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1101 1102 1103
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1104
	/* WaDisableLSQCROPERFforOCL:bxt */
1105
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1106
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1107 1108
		if (ret)
			return ret;
1109

1110
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1111 1112
		if (ret)
			return ret;
1113 1114
	}

1115
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1116
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1117 1118
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1119

1120 1121
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1122 1123 1124
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1125 1126 1127 1128 1129
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1130 1131 1132
	return 0;
}

1133 1134
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1135
	struct drm_i915_private *dev_priv = engine->i915;
1136 1137 1138 1139 1140 1141
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1142 1143 1144 1145
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1146 1147 1148 1149 1150
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1151 1152 1153 1154 1155
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1156 1157 1158 1159 1160 1161 1162 1163
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1164 1165
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1166 1167 1168
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1169 1170 1171
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1172 1173 1174 1175 1176
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1177 1178 1179 1180
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1181 1182 1183 1184 1185
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1186 1187 1188
	return 0;
}

1189
int init_workarounds_ring(struct intel_engine_cs *engine)
1190
{
1191
	struct drm_i915_private *dev_priv = engine->i915;
1192

1193
	WARN_ON(engine->id != RCS);
1194 1195

	dev_priv->workarounds.count = 0;
1196
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1197

1198
	if (IS_BROADWELL(dev_priv))
1199
		return bdw_init_workarounds(engine);
1200

1201
	if (IS_CHERRYVIEW(dev_priv))
1202
		return chv_init_workarounds(engine);
1203

1204
	if (IS_SKYLAKE(dev_priv))
1205
		return skl_init_workarounds(engine);
1206

1207
	if (IS_BROXTON(dev_priv))
1208
		return bxt_init_workarounds(engine);
1209

1210 1211 1212
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1213 1214 1215
	return 0;
}

1216
static int init_render_ring(struct intel_engine_cs *engine)
1217
{
1218
	struct drm_i915_private *dev_priv = engine->i915;
1219
	int ret = init_ring_common(engine);
1220 1221
	if (ret)
		return ret;
1222

1223
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1224
	if (IS_GEN(dev_priv, 4, 6))
1225
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1226 1227 1228 1229

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1230
	 *
1231
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1232
	 */
1233
	if (IS_GEN(dev_priv, 6, 7))
1234 1235
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1236
	/* Required for the hardware to program scanline values for waiting */
1237
	/* WaEnableFlushTlbInvalidationMode:snb */
1238
	if (IS_GEN6(dev_priv))
1239
		I915_WRITE(GFX_MODE,
1240
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1241

1242
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1243
	if (IS_GEN7(dev_priv))
1244
		I915_WRITE(GFX_MODE_GEN7,
1245
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1246
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1247

1248
	if (IS_GEN6(dev_priv)) {
1249 1250 1251 1252 1253 1254
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1255
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1256 1257
	}

1258
	if (IS_GEN(dev_priv, 6, 7))
1259
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1260

1261 1262
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1263

1264
	return init_workarounds_ring(engine);
1265 1266
}

1267
static void render_ring_cleanup(struct intel_engine_cs *engine)
1268
{
1269
	struct drm_i915_private *dev_priv = engine->i915;
1270

1271
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1272 1273
}

1274
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1275
{
1276 1277
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1278
	struct intel_engine_cs *waiter;
1279 1280
	enum intel_engine_id id;
	int ret, num_rings;
1281

1282
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1283
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1284 1285 1286
	if (ret)
		return ret;

1287
	for_each_engine_id(waiter, dev_priv, id) {
1288
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1289 1290 1291
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1292 1293
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1294 1295 1296
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1297 1298 1299 1300 1301
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1302 1303
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1304
		intel_ring_emit(ring, 0);
1305
	}
1306
	intel_ring_advance(ring);
1307 1308 1309 1310

	return 0;
}

1311
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1312
{
1313 1314
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1315
	struct intel_engine_cs *waiter;
1316 1317
	enum intel_engine_id id;
	int ret, num_rings;
1318

1319
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1320
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1321 1322 1323
	if (ret)
		return ret;

1324
	for_each_engine_id(waiter, dev_priv, id) {
1325
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1326 1327 1328
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1329
		intel_ring_emit(ring,
1330
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1331
		intel_ring_emit(ring,
1332 1333
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1334 1335 1336
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1337 1338
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1339
		intel_ring_emit(ring, 0);
1340
	}
1341
	intel_ring_advance(ring);
1342 1343 1344 1345

	return 0;
}

1346
static int gen6_signal(struct drm_i915_gem_request *req)
1347
{
1348 1349
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1350
	struct intel_engine_cs *engine;
1351
	int ret, num_rings;
1352

1353
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1354
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1355 1356 1357
	if (ret)
		return ret;

1358 1359 1360 1361 1362
	for_each_engine(engine, dev_priv) {
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1363

1364
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1365
		if (i915_mmio_reg_valid(mbox_reg)) {
1366 1367 1368
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1369 1370
		}
	}
1371

1372 1373
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1374 1375
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1376

1377
	return 0;
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1389
{
1390
	struct intel_ring *ring = req->ring;
1391
	int ret;
1392

1393
	ret = intel_ring_begin(req, 4);
1394 1395 1396
	if (ret)
		return ret;

1397 1398 1399 1400
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1401 1402 1403
	intel_ring_advance(ring);

	req->tail = ring->tail;
1404 1405 1406 1407

	return 0;
}

1408
/**
1409
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1410 1411 1412 1413 1414 1415
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1416
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1417
{
1418
	int ret;
1419

1420 1421 1422
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1423 1424 1425 1426

	return i9xx_emit_request(req);
}

1427
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1428 1429
{
	struct intel_engine_cs *engine = req->engine;
1430
	struct intel_ring *ring = req->ring;
1431 1432
	int ret;

1433 1434 1435 1436 1437 1438 1439
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1440 1441 1442
	if (ret)
		return ret;

1443 1444 1445 1446 1447 1448 1449
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1450
	/* We're thrashing one dword of HWS. */
1451 1452 1453
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1454
	intel_ring_advance(ring);
1455 1456

	req->tail = ring->tail;
1457 1458 1459 1460

	return 0;
}

1461 1462 1463 1464 1465 1466 1467
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1468 1469

static int
1470 1471
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1472
{
1473 1474 1475
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1476
	struct i915_hw_ppgtt *ppgtt;
1477 1478
	int ret;

1479
	ret = intel_ring_begin(req, 4);
1480 1481 1482
	if (ret)
		return ret;

1483 1484 1485 1486 1487 1488 1489 1490
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1491 1492 1493 1494 1495 1496

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1497 1498 1499
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1500 1501 1502
	return 0;
}

1503
static int
1504 1505
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1506
{
1507
	struct intel_ring *ring = req->ring;
1508 1509 1510
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1511
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1512
	int ret;
1513

1514
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1515

1516
	ret = intel_ring_begin(req, 4);
1517 1518 1519
	if (ret)
		return ret;

1520
	intel_ring_emit(ring, dw1 | wait_mbox);
1521 1522 1523 1524
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1525 1526 1527 1528
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1529 1530 1531 1532

	return 0;
}

1533
static void
1534
gen5_seqno_barrier(struct intel_engine_cs *engine)
1535
{
1536 1537 1538
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1539
	 *
1540 1541 1542 1543 1544 1545 1546
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1547
	 */
1548
	usleep_range(125, 250);
1549 1550
}

1551 1552
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1553
{
1554
	struct drm_i915_private *dev_priv = engine->i915;
1555

1556 1557
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1558 1559 1560 1561 1562 1563 1564 1565 1566
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1567 1568 1569
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1570
	 */
1571
	spin_lock_irq(&dev_priv->uncore.lock);
1572
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1573
	spin_unlock_irq(&dev_priv->uncore.lock);
1574 1575
}

1576 1577
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1578
{
1579
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1580 1581 1582
}

static void
1583
gen5_irq_disable(struct intel_engine_cs *engine)
1584
{
1585
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1586 1587
}

1588 1589
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1590
{
1591
	struct drm_i915_private *dev_priv = engine->i915;
1592

1593 1594 1595
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1596 1597
}

1598
static void
1599
i9xx_irq_disable(struct intel_engine_cs *engine)
1600
{
1601
	struct drm_i915_private *dev_priv = engine->i915;
1602

1603 1604
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1605 1606
}

1607 1608
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1609
{
1610
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1611

1612 1613 1614
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1615 1616 1617
}

static void
1618
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1619
{
1620
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1621

1622 1623
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1624 1625
}

1626
static int
1627
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1628
{
1629
	struct intel_ring *ring = req->ring;
1630 1631
	int ret;

1632
	ret = intel_ring_begin(req, 2);
1633 1634 1635
	if (ret)
		return ret;

1636 1637 1638
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1639
	return 0;
1640 1641
}

1642 1643
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1644
{
1645
	struct drm_i915_private *dev_priv = engine->i915;
1646

1647 1648 1649
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1650
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1651 1652 1653
}

static void
1654
gen6_irq_disable(struct intel_engine_cs *engine)
1655
{
1656
	struct drm_i915_private *dev_priv = engine->i915;
1657

1658
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1659
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1660 1661
}

1662 1663
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1666

1667 1668
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1669 1670 1671
}

static void
1672
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1673
{
1674
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1675

1676 1677
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1678 1679
}

1680 1681
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1682
{
1683
	struct drm_i915_private *dev_priv = engine->i915;
1684

1685 1686 1687
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1688
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1689 1690 1691
}

static void
1692
gen8_irq_disable(struct intel_engine_cs *engine)
1693
{
1694
	struct drm_i915_private *dev_priv = engine->i915;
1695

1696
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1697 1698
}

1699
static int
1700 1701 1702
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1703
{
1704
	struct intel_ring *ring = req->ring;
1705
	int ret;
1706

1707
	ret = intel_ring_begin(req, 2);
1708 1709 1710
	if (ret)
		return ret;

1711
	intel_ring_emit(ring,
1712 1713
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1714 1715
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1716 1717
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1718

1719 1720 1721
	return 0;
}

1722 1723
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1724 1725
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1726
static int
1727 1728 1729
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1730
{
1731
	struct intel_ring *ring = req->ring;
1732
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1733
	int ret;
1734

1735
	ret = intel_ring_begin(req, 6);
1736 1737
	if (ret)
		return ret;
1738

1739
	/* Evict the invalid PTE TLBs */
1740 1741 1742 1743 1744 1745 1746
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1747

1748
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1749 1750 1751
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1752
		ret = intel_ring_begin(req, 6 + 2);
1753 1754
		if (ret)
			return ret;
1755 1756 1757 1758 1759

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1760 1761
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1762
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1763 1764 1765 1766
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1767

1768 1769 1770
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1771 1772

		/* ... and execute it. */
1773
		offset = cs_offset;
1774
	}
1775

1776
	ret = intel_ring_begin(req, 2);
1777 1778 1779
	if (ret)
		return ret;

1780 1781 1782 1783
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1784

1785 1786 1787 1788
	return 0;
}

static int
1789 1790 1791
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1792
{
1793
	struct intel_ring *ring = req->ring;
1794 1795
	int ret;

1796
	ret = intel_ring_begin(req, 2);
1797 1798 1799
	if (ret)
		return ret;

1800 1801 1802 1803
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1804 1805 1806 1807

	return 0;
}

1808
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1809
{
1810
	struct drm_i915_private *dev_priv = engine->i915;
1811 1812 1813 1814

	if (!dev_priv->status_page_dmah)
		return;

1815
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1816
	engine->status_page.page_addr = NULL;
1817 1818
}

1819
static void cleanup_status_page(struct intel_engine_cs *engine)
1820
{
1821
	struct i915_vma *vma;
1822

1823 1824
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1825 1826
		return;

1827 1828 1829
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1830 1831
}

1832
static int init_status_page(struct intel_engine_cs *engine)
1833
{
1834 1835 1836 1837
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1838

1839 1840 1841 1842 1843
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1844

1845 1846 1847
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1848

1849 1850 1851 1852
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1853
	}
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1871

1872
	engine->status_page.vma = vma;
1873
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1874 1875
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1876

1877 1878
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1879
	return 0;
1880 1881 1882 1883

err:
	i915_gem_object_put(obj);
	return ret;
1884 1885
}

1886
static int init_phys_status_page(struct intel_engine_cs *engine)
1887
{
1888
	struct drm_i915_private *dev_priv = engine->i915;
1889

1890 1891 1892 1893
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1894

1895 1896
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1897 1898 1899 1900

	return 0;
}

1901
int intel_ring_pin(struct intel_ring *ring)
1902
{
1903
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1904
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1905
	enum i915_map_type map;
1906
	struct i915_vma *vma = ring->vma;
1907
	void *addr;
1908 1909
	int ret;

1910
	GEM_BUG_ON(ring->vaddr);
1911

1912 1913 1914
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1915
		flags |= PIN_MAPPABLE;
1916

1917
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1918
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1919 1920 1921 1922
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1923
			return ret;
1924
	}
1925

1926 1927 1928
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1929

1930
	if (i915_vma_is_map_and_fenceable(vma))
1931 1932
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1933
		addr = i915_gem_object_pin_map(vma->obj, map);
1934 1935
	if (IS_ERR(addr))
		goto err;
1936

1937
	ring->vaddr = addr;
1938
	return 0;
1939

1940 1941 1942
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1943 1944
}

1945 1946 1947 1948 1949
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1950
	if (i915_vma_is_map_and_fenceable(ring->vma))
1951
		i915_vma_unpin_iomap(ring->vma);
1952 1953
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1954 1955
	ring->vaddr = NULL;

1956
	i915_vma_unpin(ring->vma);
1957 1958
}

1959 1960
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1961
{
1962
	struct drm_i915_gem_object *obj;
1963
	struct i915_vma *vma;
1964

1965 1966
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1967 1968 1969
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1970

1971 1972 1973
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1974 1975 1976 1977 1978
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1979

1980 1981 1982
err:
	i915_gem_object_put(obj);
	return vma;
1983 1984
}

1985 1986
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1987
{
1988
	struct intel_ring *ring;
1989
	struct i915_vma *vma;
1990

1991 1992
	GEM_BUG_ON(!is_power_of_2(size));

1993
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1994
	if (!ring)
1995 1996
		return ERR_PTR(-ENOMEM);

1997
	ring->engine = engine;
1998

1999 2000
	INIT_LIST_HEAD(&ring->request_list);

2001 2002 2003 2004 2005 2006
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2007
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2008 2009 2010 2011 2012
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2013 2014
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2015
		kfree(ring);
2016
		return ERR_CAST(vma);
2017
	}
2018
	ring->vma = vma;
2019 2020 2021 2022 2023

	return ring;
}

void
2024
intel_ring_free(struct intel_ring *ring)
2025
{
2026
	i915_vma_put(ring->vma);
2027 2028 2029
	kfree(ring);
}

2030 2031 2032 2033 2034 2035
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2036
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2037 2038 2039 2040 2041

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2042 2043 2044 2045
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2046 2047
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2048 2049 2050 2051
		if (ret)
			goto error;
	}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2062
	i915_gem_context_get(ctx);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2075
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2076 2077 2078 2079 2080

	if (--ce->pin_count)
		return;

	if (ce->state)
2081
		i915_vma_unpin(ce->state);
2082

2083
	i915_gem_context_put(ctx);
2084 2085
}

2086
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2087
{
2088
	struct drm_i915_private *dev_priv = engine->i915;
2089
	struct intel_ring *ring;
2090 2091
	int ret;

2092
	WARN_ON(engine->buffer);
2093

2094 2095
	intel_engine_setup_common(engine);

2096 2097
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2098

2099
	ret = intel_engine_init_common(engine);
2100 2101
	if (ret)
		goto error;
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2114 2115 2116
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2117 2118
		goto error;
	}
2119

2120 2121 2122
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2123
		if (ret)
2124
			goto error;
2125
	} else {
2126
		ret = init_status_page(engine);
2127
		if (ret)
2128
			goto error;
2129 2130
	}

2131
	ret = intel_ring_pin(ring);
2132
	if (ret) {
2133
		intel_ring_free(ring);
2134
		goto error;
2135
	}
2136
	engine->buffer = ring;
2137

2138
	return 0;
2139

2140
error:
2141
	intel_engine_cleanup(engine);
2142
	return ret;
2143 2144
}

2145
void intel_engine_cleanup(struct intel_engine_cs *engine)
2146
{
2147
	struct drm_i915_private *dev_priv;
2148

2149
	if (!intel_engine_initialized(engine))
2150 2151
		return;

2152
	dev_priv = engine->i915;
2153

2154
	if (engine->buffer) {
2155 2156
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2157

2158
		intel_ring_unpin(engine->buffer);
2159
		intel_ring_free(engine->buffer);
2160
		engine->buffer = NULL;
2161
	}
2162

2163 2164
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2165

2166
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2167 2168
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2169 2170
	} else {
		cleanup_status_page(engine);
2171
	}
2172

2173
	intel_engine_cleanup_common(engine);
2174 2175 2176

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2177
	engine->i915 = NULL;
2178 2179
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv) {
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2190
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2191
{
2192 2193 2194 2195 2196 2197
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2198
	request->reserved_space += LEGACY_REQUEST_SIZE;
2199

2200
	request->ring = request->engine->buffer;
2201 2202 2203 2204 2205

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2206
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2207
	return 0;
2208 2209
}

2210 2211
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2212
	struct intel_ring *ring = req->ring;
2213
	struct drm_i915_gem_request *target;
2214
	int ret;
2215

2216 2217
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2229
	GEM_BUG_ON(!req->reserved_space);
2230

2231
	list_for_each_entry(target, &ring->request_list, ring_link) {
2232 2233 2234
		unsigned space;

		/* Would completion of this request free enough space? */
2235 2236
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2237 2238
		if (space >= bytes)
			break;
2239
	}
2240

2241
	if (WARN_ON(&target->ring_link == &ring->request_list))
2242 2243
		return -ENOSPC;

2244 2245
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2246
				NULL, NO_WAITBOOST);
2247 2248 2249 2250 2251 2252 2253 2254
	if (ret)
		return ret;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2255 2256
}

2257
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2258
{
2259
	struct intel_ring *ring = req->ring;
2260 2261
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2262 2263
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2264
	bool need_wrap = false;
2265

2266
	total_bytes = bytes + req->reserved_space;
2267

2268 2269 2270 2271 2272 2273 2274
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2275 2276 2277 2278 2279 2280 2281
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2282
		wait_bytes = remain_actual + req->reserved_space;
2283
	} else {
2284 2285
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2286 2287
	}

2288
	if (wait_bytes > ring->space) {
2289
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2290 2291 2292 2293
		if (unlikely(ret))
			return ret;
	}

2294
	if (unlikely(need_wrap)) {
2295 2296
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2297

2298
		/* Fill the tail with MI_NOOP */
2299 2300 2301
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2302
	}
2303

2304 2305
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2306
	return 0;
2307
}
2308

2309
/* Align the ring tail to a cacheline boundary */
2310
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2311
{
2312
	struct intel_ring *ring = req->ring;
2313 2314
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2315 2316 2317 2318 2319
	int ret;

	if (num_dwords == 0)
		return 0;

2320
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2321
	ret = intel_ring_begin(req, num_dwords);
2322 2323 2324 2325
	if (ret)
		return ret;

	while (num_dwords--)
2326
		intel_ring_emit(ring, MI_NOOP);
2327

2328
	intel_ring_advance(ring);
2329 2330 2331 2332

	return 0;
}

2333
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2334
{
2335
	struct drm_i915_private *dev_priv = request->i915;
2336

2337 2338
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2339
       /* Every tail move must follow the sequence below */
2340 2341 2342 2343

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2344 2345
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2346 2347

	/* Clear the context id. Here be magic! */
2348
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2349

2350
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2351 2352 2353 2354 2355
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2356
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2357

2358
	/* Now that the ring is fully powered up, update the tail */
2359
	i9xx_submit_request(request);
2360 2361 2362 2363

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2364 2365 2366 2367
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2368 2369
}

2370
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2371
{
2372
	struct intel_ring *ring = req->ring;
2373
	uint32_t cmd;
2374 2375
	int ret;

2376
	ret = intel_ring_begin(req, 4);
2377 2378 2379
	if (ret)
		return ret;

2380
	cmd = MI_FLUSH_DW;
2381
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2382
		cmd += 1;
2383 2384 2385 2386 2387 2388 2389 2390

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2391 2392 2393 2394 2395 2396
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2397
	if (mode & EMIT_INVALIDATE)
2398 2399
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2400 2401
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2402
	if (INTEL_GEN(req->i915) >= 8) {
2403 2404
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2405
	} else  {
2406 2407
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2408
	}
2409
	intel_ring_advance(ring);
2410
	return 0;
2411 2412
}

2413
static int
2414 2415 2416
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2417
{
2418
	struct intel_ring *ring = req->ring;
2419
	bool ppgtt = USES_PPGTT(req->i915) &&
2420
			!(dispatch_flags & I915_DISPATCH_SECURE);
2421 2422
	int ret;

2423
	ret = intel_ring_begin(req, 4);
2424 2425 2426 2427
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2428
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2429 2430
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2431 2432 2433 2434
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2435 2436 2437 2438

	return 0;
}

2439
static int
2440 2441 2442
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2443
{
2444
	struct intel_ring *ring = req->ring;
2445 2446
	int ret;

2447
	ret = intel_ring_begin(req, 2);
2448 2449 2450
	if (ret)
		return ret;

2451
	intel_ring_emit(ring,
2452
			MI_BATCH_BUFFER_START |
2453
			(dispatch_flags & I915_DISPATCH_SECURE ?
2454 2455 2456
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2457
	/* bit0-7 is the length on GEN6+ */
2458 2459
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2460 2461 2462 2463

	return 0;
}

2464
static int
2465 2466 2467
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2468
{
2469
	struct intel_ring *ring = req->ring;
2470
	int ret;
2471

2472
	ret = intel_ring_begin(req, 2);
2473 2474
	if (ret)
		return ret;
2475

2476
	intel_ring_emit(ring,
2477
			MI_BATCH_BUFFER_START |
2478 2479
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2480
	/* bit0-7 is the length on GEN6+ */
2481 2482
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2483

2484
	return 0;
2485 2486
}

2487 2488
/* Blitter support (SandyBridge+) */

2489
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2490
{
2491
	struct intel_ring *ring = req->ring;
2492
	uint32_t cmd;
2493 2494
	int ret;

2495
	ret = intel_ring_begin(req, 4);
2496 2497 2498
	if (ret)
		return ret;

2499
	cmd = MI_FLUSH_DW;
2500
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2501
		cmd += 1;
2502 2503 2504 2505 2506 2507 2508 2509

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2510 2511 2512 2513 2514 2515
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2516
	if (mode & EMIT_INVALIDATE)
2517
		cmd |= MI_INVALIDATE_TLB;
2518 2519
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2520
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2521
	if (INTEL_GEN(req->i915) >= 8) {
2522 2523
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2524
	} else  {
2525 2526
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2527
	}
2528
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2529

2530
	return 0;
Z
Zou Nan hai 已提交
2531 2532
}

2533 2534 2535
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2536
	struct drm_i915_gem_object *obj;
2537
	int ret, i;
2538

2539
	if (!i915.semaphores)
2540 2541
		return;

2542 2543 2544
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2545
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2546 2547
		if (IS_ERR(obj))
			goto err;
2548

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2563 2564

	if (INTEL_GEN(dev_priv) >= 8) {
2565
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2566

2567
		engine->semaphore.sync_to = gen8_ring_sync_to;
2568
		engine->semaphore.signal = gen8_xcs_signal;
2569 2570

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2571
			u32 ring_offset;
2572 2573 2574 2575 2576 2577 2578 2579

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2580
	} else if (INTEL_GEN(dev_priv) >= 6) {
2581
		engine->semaphore.sync_to = gen6_ring_sync_to;
2582
		engine->semaphore.signal = gen6_signal;
2583 2584 2585 2586 2587 2588 2589 2590

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2591
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2592 2593 2594
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2595 2596 2597 2598 2599
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2600
				},
2601 2602 2603 2604
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2605
				},
2606 2607 2608 2609
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2610
				},
2611 2612 2613 2614
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2615 2616 2617 2618 2619
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2620
			if (i == engine->hw_id) {
2621 2622 2623
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2624 2625
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2626 2627 2628 2629 2630
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2631
	}
2632 2633 2634 2635 2636 2637 2638 2639

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2640 2641
}

2642 2643 2644
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2645 2646
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2647
	if (INTEL_GEN(dev_priv) >= 8) {
2648 2649
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2650 2651
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2652 2653
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2654 2655
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2656 2657
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2658
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2659
	} else if (INTEL_GEN(dev_priv) >= 3) {
2660 2661
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2662
	} else {
2663 2664
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2665 2666 2667
	}
}

2668 2669 2670
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2671 2672 2673
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2674
	engine->init_hw = init_ring_common;
2675
	engine->reset_hw = reset_ring_common;
2676

2677
	engine->emit_request = i9xx_emit_request;
2678 2679
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2680
	engine->submit_request = i9xx_submit_request;
2681 2682

	if (INTEL_GEN(dev_priv) >= 8)
2683
		engine->emit_bb_start = gen8_emit_bb_start;
2684
	else if (INTEL_GEN(dev_priv) >= 6)
2685
		engine->emit_bb_start = gen6_emit_bb_start;
2686
	else if (INTEL_GEN(dev_priv) >= 4)
2687
		engine->emit_bb_start = i965_emit_bb_start;
2688
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2689
		engine->emit_bb_start = i830_emit_bb_start;
2690
	else
2691
		engine->emit_bb_start = i915_emit_bb_start;
2692 2693
}

2694
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2695
{
2696
	struct drm_i915_private *dev_priv = engine->i915;
2697
	int ret;
2698

2699 2700
	intel_ring_default_vfuncs(dev_priv, engine);

2701 2702
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2703

2704
	if (INTEL_GEN(dev_priv) >= 8) {
2705
		engine->init_context = intel_rcs_ctx_init;
2706
		engine->emit_request = gen8_render_emit_request;
2707
		engine->emit_flush = gen8_render_ring_flush;
2708
		if (i915.semaphores)
2709
			engine->semaphore.signal = gen8_rcs_signal;
2710
	} else if (INTEL_GEN(dev_priv) >= 6) {
2711
		engine->init_context = intel_rcs_ctx_init;
2712
		engine->emit_flush = gen7_render_ring_flush;
2713
		if (IS_GEN6(dev_priv))
2714
			engine->emit_flush = gen6_render_ring_flush;
2715
	} else if (IS_GEN5(dev_priv)) {
2716
		engine->emit_flush = gen4_render_ring_flush;
2717
	} else {
2718
		if (INTEL_GEN(dev_priv) < 4)
2719
			engine->emit_flush = gen2_render_ring_flush;
2720
		else
2721
			engine->emit_flush = gen4_render_ring_flush;
2722
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2723
	}
B
Ben Widawsky 已提交
2724

2725
	if (IS_HASWELL(dev_priv))
2726
		engine->emit_bb_start = hsw_emit_bb_start;
2727

2728 2729
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2730

2731
	ret = intel_init_ring_buffer(engine);
2732 2733 2734
	if (ret)
		return ret;

2735
	if (INTEL_GEN(dev_priv) >= 6) {
2736
		ret = intel_engine_create_scratch(engine, 4096);
2737 2738 2739
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2740
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2741 2742 2743 2744 2745
		if (ret)
			return ret;
	}

	return 0;
2746 2747
}

2748
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2749
{
2750
	struct drm_i915_private *dev_priv = engine->i915;
2751

2752 2753
	intel_ring_default_vfuncs(dev_priv, engine);

2754
	if (INTEL_GEN(dev_priv) >= 6) {
2755
		/* gen6 bsd needs a special wa for tail updates */
2756
		if (IS_GEN6(dev_priv))
2757
			engine->submit_request = gen6_bsd_submit_request;
2758
		engine->emit_flush = gen6_bsd_ring_flush;
2759
		if (INTEL_GEN(dev_priv) < 8)
2760
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2761
	} else {
2762
		engine->mmio_base = BSD_RING_BASE;
2763
		engine->emit_flush = bsd_ring_flush;
2764
		if (IS_GEN5(dev_priv))
2765
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2766
		else
2767
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2768 2769
	}

2770
	return intel_init_ring_buffer(engine);
2771
}
2772

2773
/**
2774
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2775
 */
2776
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2777
{
2778
	struct drm_i915_private *dev_priv = engine->i915;
2779 2780 2781

	intel_ring_default_vfuncs(dev_priv, engine);

2782
	engine->emit_flush = gen6_bsd_ring_flush;
2783

2784
	return intel_init_ring_buffer(engine);
2785 2786
}

2787
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2788
{
2789
	struct drm_i915_private *dev_priv = engine->i915;
2790 2791 2792

	intel_ring_default_vfuncs(dev_priv, engine);

2793
	engine->emit_flush = gen6_ring_flush;
2794
	if (INTEL_GEN(dev_priv) < 8)
2795
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2796

2797
	return intel_init_ring_buffer(engine);
2798
}
2799

2800
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2801
{
2802
	struct drm_i915_private *dev_priv = engine->i915;
2803 2804 2805

	intel_ring_default_vfuncs(dev_priv, engine);

2806
	engine->emit_flush = gen6_ring_flush;
2807

2808
	if (INTEL_GEN(dev_priv) < 8) {
2809
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2810 2811
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2812
	}
B
Ben Widawsky 已提交
2813

2814
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2815
}