intel_ringbuffer.c 77.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178 179
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214 215
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288 289
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374
	u32 flags = 0;
375
	int ret;
B
Ben Widawsky 已提交
376 377 378

	flags |= PIPE_CONTROL_CS_STALL;

379
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
380 381
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
384
	}
385
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
386 387 388 389 390 391 392 393
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394 395

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396
		ret = gen8_emit_pipe_control(req,
397 398 399 400 401
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
402 403
	}

404
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
405 406
}

407
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408
{
409
	struct drm_i915_private *dev_priv = engine->i915;
410
	u64 acthd;
411

412
	if (INTEL_GEN(dev_priv) >= 8)
413 414
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
415
	else if (INTEL_GEN(dev_priv) >= 4)
416
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417 418 419 420
	else
		acthd = I915_READ(ACTHD);

	return acthd;
421 422
}

423
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426 427 428
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
429
	if (INTEL_GEN(dev_priv) >= 4)
430 431 432 433
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

434
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_private *dev_priv = engine->i915;
437
	i915_reg_t mmio;
438 439 440 441

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
442
	if (IS_GEN7(dev_priv)) {
443
		switch (engine->id) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
462
	} else if (IS_GEN6(dev_priv)) {
463
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464 465
	} else {
		/* XXX: gen8 returns to sanity */
466
		mmio = RING_HWS_PGA(engine->mmio_base);
467 468
	}

469
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
470 471 472 473 474 475 476 477 478
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
479
	if (IS_GEN(dev_priv, 6, 7)) {
480
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481 482

		/* ring should be idle before issuing a sync flush*/
483
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484 485 486 487

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
488 489 490
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
491
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492
				  engine->name);
493 494 495
	}
}

496
static bool stop_ring(struct intel_engine_cs *engine)
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499

500
	if (!IS_GEN2(dev_priv)) {
501
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502 503 504 505 506
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
507 508
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
509 510 511 512
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
513
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514
				return false;
515 516
		}
	}
517

518 519
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
520
	I915_WRITE_TAIL(engine, 0);
521

522
	if (!IS_GEN2(dev_priv)) {
523 524
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525
	}
526

527
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528
}
529

530
static int init_ring_common(struct intel_engine_cs *engine)
531
{
532
	struct drm_i915_private *dev_priv = engine->i915;
533 534
	struct intel_ring *ring = engine->buffer;
	struct drm_i915_gem_object *obj = ring->obj;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (I915_NEED_GFX_HWS(dev_priv))
563
		intel_ring_setup_status_page(engine);
564
	else
565
		ring_setup_phys_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588 589 590
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
593 594 595 596 597 598
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
void intel_fini_pipe_control(struct intel_engine_cs *engine)
617
{
618
	if (engine->scratch.obj == NULL)
619 620
		return;

621
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
622
	i915_gem_object_put(engine->scratch.obj);
623
	engine->scratch.obj = NULL;
624 625
}

626
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;

631
	WARN_ON(engine->scratch.obj);
632

633
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
634
	if (!obj)
635
		obj = i915_gem_object_create(&engine->i915->drm, size);
636 637 638
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
639 640
		goto err;
	}
641

642
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, PIN_HIGH);
643 644
	if (ret)
		goto err_unref;
645

646 647
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
648
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
649
			 engine->name, engine->scratch.gtt_offset);
650 651 652
	return 0;

err_unref:
653
	i915_gem_object_put(engine->scratch.obj);
654 655 656 657
err:
	return ret;
}

658
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
659
{
660
	struct intel_ring *ring = req->ring;
661 662
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
663

664
	if (w->count == 0)
665
		return 0;
666

667
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
668 669
	if (ret)
		return ret;
670

671
	ret = intel_ring_begin(req, (w->count * 2 + 2));
672 673 674
	if (ret)
		return ret;

675
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
676
	for (i = 0; i < w->count; i++) {
677 678
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
679
	}
680
	intel_ring_emit(ring, MI_NOOP);
681

682
	intel_ring_advance(ring);
683

684
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
685 686
	if (ret)
		return ret;
687

688
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
689

690
	return 0;
691 692
}

693
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
694 695 696
{
	int ret;

697
	ret = intel_ring_workarounds_emit(req);
698 699 700
	if (ret != 0)
		return ret;

701
	ret = i915_gem_render_state_init(req);
702
	if (ret)
703
		return ret;
704

705
	return 0;
706 707
}

708
static int wa_add(struct drm_i915_private *dev_priv,
709 710
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
711 712 713 714 715 716 717 718 719 720 721 722 723
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
724 725
}

726
#define WA_REG(addr, mask, val) do { \
727
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
728 729
		if (r) \
			return r; \
730
	} while (0)
731 732

#define WA_SET_BIT_MASKED(addr, mask) \
733
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
734 735

#define WA_CLR_BIT_MASKED(addr, mask) \
736
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
737

738
#define WA_SET_FIELD_MASKED(addr, mask, value) \
739
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
740

741 742
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
743

744
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
745

746 747
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
748
{
749
	struct drm_i915_private *dev_priv = engine->i915;
750
	struct i915_workarounds *wa = &dev_priv->workarounds;
751
	const uint32_t index = wa->hw_whitelist_count[engine->id];
752 753 754 755

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

756
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
757
		 i915_mmio_reg_offset(reg));
758
	wa->hw_whitelist_count[engine->id]++;
759 760 761 762

	return 0;
}

763
static int gen8_init_workarounds(struct intel_engine_cs *engine)
764
{
765
	struct drm_i915_private *dev_priv = engine->i915;
766 767

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
768

769 770 771
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

772 773 774 775
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

776 777 778 779 780
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
781
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
782
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
783
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
784 785
			  HDC_FORCE_NON_COHERENT);

786 787 788 789 790 791 792 793 794 795
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

796 797 798
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

811 812 813
	return 0;
}

814
static int bdw_init_workarounds(struct intel_engine_cs *engine)
815
{
816
	struct drm_i915_private *dev_priv = engine->i915;
817
	int ret;
818

819
	ret = gen8_init_workarounds(engine);
820 821 822
	if (ret)
		return ret;

823
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
824
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
825

826
	/* WaDisableDopClockGating:bdw */
827 828
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
829

830 831
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
832

833
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
834 835 836
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
837
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
838 839 840 841

	return 0;
}

842
static int chv_init_workarounds(struct intel_engine_cs *engine)
843
{
844
	struct drm_i915_private *dev_priv = engine->i915;
845
	int ret;
846

847
	ret = gen8_init_workarounds(engine);
848 849 850
	if (ret)
		return ret;

851
	/* WaDisableThreadStallDopClockGating:chv */
852
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
853

854 855 856
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

857 858 859
	return 0;
}

860
static int gen9_init_workarounds(struct intel_engine_cs *engine)
861
{
862
	struct drm_i915_private *dev_priv = engine->i915;
863
	int ret;
864

865 866 867
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

868
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
869 870 871
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

872
	/* WaDisableKillLogic:bxt,skl,kbl */
873 874 875
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

876 877
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
878
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
879
			  FLOW_CONTROL_ENABLE |
880 881
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

882
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
883 884 885
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

886
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
887 888
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
889 890
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
891

892
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
893 894
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895 896
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
897 898 899 900 901
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
902 903
	}

904 905
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
906 907 908
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
909

910 911
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
912 913
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
914

915
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
916 917 918
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

919
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
920 921
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
922 923 924
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

925 926 927 928
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

951 952 953 954
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
955 956 957
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

958
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
959 960
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

961
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
962 963 964
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

965 966 967 968 969
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

970
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
971
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
972 973 974
	if (ret)
		return ret;

975
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
976
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
977 978 979
	if (ret)
		return ret;

980 981 982
	return 0;
}

983
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
984
{
985
	struct drm_i915_private *dev_priv = engine->i915;
986 987 988 989 990 991 992 993 994 995
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
996
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1024
static int skl_init_workarounds(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_private *dev_priv = engine->i915;
1027
	int ret;
1028

1029
	ret = gen9_init_workarounds(engine);
1030 1031
	if (ret)
		return ret;
1032

1033 1034 1035 1036 1037
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1038
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1039 1040 1041 1042
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1043
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1044 1045 1046 1047 1048 1049 1050 1051
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1052
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1053 1054 1055 1056 1057
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1058
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1059 1060 1061 1062
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1063
	/* WaDisablePowerCompilerClockGating:skl */
1064
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1065 1066 1067
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1068
	/* WaBarrierPerformanceFixDisable:skl */
1069
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1070 1071 1072 1073
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1074
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1075
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1076 1077 1078 1079
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1080 1081 1082
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1083 1084 1085 1086 1087
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1088
	/* WaDisableLSQCROPERFforOCL:skl */
1089
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1090 1091 1092
	if (ret)
		return ret;

1093
	return skl_tune_iz_hashing(engine);
1094 1095
}

1096
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1097
{
1098
	struct drm_i915_private *dev_priv = engine->i915;
1099
	int ret;
1100

1101
	ret = gen9_init_workarounds(engine);
1102 1103
	if (ret)
		return ret;
1104

1105 1106
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1107
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1108 1109 1110
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1111
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1112 1113 1114 1115
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1116 1117 1118 1119
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1120 1121 1122 1123 1124 1125
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1126
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1127
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1128 1129 1130 1131 1132
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1133 1134 1135
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1136
	/* WaDisableLSQCROPERFforOCL:bxt */
1137
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1138
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1139 1140
		if (ret)
			return ret;
1141

1142
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1143 1144
		if (ret)
			return ret;
1145 1146
	}

1147
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1148
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1149 1150
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1151

1152 1153 1154 1155 1156
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1157 1158 1159 1160 1161
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1162 1163 1164
	return 0;
}

1165 1166
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1167
	struct drm_i915_private *dev_priv = engine->i915;
1168 1169 1170 1171 1172 1173
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1174 1175 1176 1177
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1178 1179 1180 1181 1182
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1183 1184 1185 1186 1187
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1188 1189 1190 1191 1192 1193 1194 1195
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1196 1197 1198 1199 1200
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1201 1202 1203
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1204 1205 1206 1207 1208
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1209 1210 1211 1212
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1213 1214 1215 1216 1217
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1218 1219 1220
	return 0;
}

1221
int init_workarounds_ring(struct intel_engine_cs *engine)
1222
{
1223
	struct drm_i915_private *dev_priv = engine->i915;
1224

1225
	WARN_ON(engine->id != RCS);
1226 1227

	dev_priv->workarounds.count = 0;
1228
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1229

1230
	if (IS_BROADWELL(dev_priv))
1231
		return bdw_init_workarounds(engine);
1232

1233
	if (IS_CHERRYVIEW(dev_priv))
1234
		return chv_init_workarounds(engine);
1235

1236
	if (IS_SKYLAKE(dev_priv))
1237
		return skl_init_workarounds(engine);
1238

1239
	if (IS_BROXTON(dev_priv))
1240
		return bxt_init_workarounds(engine);
1241

1242 1243 1244
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1245 1246 1247
	return 0;
}

1248
static int init_render_ring(struct intel_engine_cs *engine)
1249
{
1250
	struct drm_i915_private *dev_priv = engine->i915;
1251
	int ret = init_ring_common(engine);
1252 1253
	if (ret)
		return ret;
1254

1255
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1256
	if (IS_GEN(dev_priv, 4, 6))
1257
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1258 1259 1260 1261

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1262
	 *
1263
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1264
	 */
1265
	if (IS_GEN(dev_priv, 6, 7))
1266 1267
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1268
	/* Required for the hardware to program scanline values for waiting */
1269
	/* WaEnableFlushTlbInvalidationMode:snb */
1270
	if (IS_GEN6(dev_priv))
1271
		I915_WRITE(GFX_MODE,
1272
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1273

1274
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1275
	if (IS_GEN7(dev_priv))
1276
		I915_WRITE(GFX_MODE_GEN7,
1277
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1278
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1279

1280
	if (IS_GEN6(dev_priv)) {
1281 1282 1283 1284 1285 1286
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1287
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1288 1289
	}

1290
	if (IS_GEN(dev_priv, 6, 7))
1291
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1292

1293 1294
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1295

1296
	return init_workarounds_ring(engine);
1297 1298
}

1299
static void render_ring_cleanup(struct intel_engine_cs *engine)
1300
{
1301
	struct drm_i915_private *dev_priv = engine->i915;
1302 1303 1304

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1305
		i915_gem_object_put(dev_priv->semaphore_obj);
1306 1307
		dev_priv->semaphore_obj = NULL;
	}
1308

1309
	intel_fini_pipe_control(engine);
1310 1311
}

1312
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1313
{
1314 1315
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1316
	struct intel_engine_cs *waiter;
1317 1318
	enum intel_engine_id id;
	int ret, num_rings;
1319

1320
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1321
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1322 1323 1324
	if (ret)
		return ret;

1325
	for_each_engine_id(waiter, dev_priv, id) {
1326
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1327 1328 1329
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1330 1331
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1332 1333 1334
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1335 1336 1337 1338 1339
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1340 1341
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1342
		intel_ring_emit(ring, 0);
1343
	}
1344
	intel_ring_advance(ring);
1345 1346 1347 1348

	return 0;
}

1349
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1350
{
1351 1352
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1353
	struct intel_engine_cs *waiter;
1354 1355
	enum intel_engine_id id;
	int ret, num_rings;
1356

1357
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1358
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1359 1360 1361
	if (ret)
		return ret;

1362
	for_each_engine_id(waiter, dev_priv, id) {
1363
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1364 1365 1366
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1367
		intel_ring_emit(ring,
1368
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1369
		intel_ring_emit(ring,
1370 1371
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1372 1373 1374
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1375 1376
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1377
		intel_ring_emit(ring, 0);
1378
	}
1379
	intel_ring_advance(ring);
1380 1381 1382 1383

	return 0;
}

1384
static int gen6_signal(struct drm_i915_gem_request *req)
1385
{
1386 1387
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1388
	struct intel_engine_cs *useless;
1389 1390
	enum intel_engine_id id;
	int ret, num_rings;
1391

1392
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1393
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1394 1395 1396
	if (ret)
		return ret;

1397
	for_each_engine_id(useless, dev_priv, id) {
1398
		i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1399 1400

		if (i915_mmio_reg_valid(mbox_reg)) {
1401 1402 1403
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1404 1405
		}
	}
1406

1407 1408
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1409 1410
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1411

1412
	return 0;
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1424
{
1425
	struct intel_ring *ring = req->ring;
1426
	int ret;
1427

1428
	ret = intel_ring_begin(req, 4);
1429 1430 1431
	if (ret)
		return ret;

1432 1433 1434 1435
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1436 1437 1438
	intel_ring_advance(ring);

	req->tail = ring->tail;
1439 1440 1441 1442

	return 0;
}

1443
/**
1444
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1445 1446 1447 1448 1449 1450
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1451
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1452
{
1453
	int ret;
1454

1455 1456 1457
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1458 1459 1460 1461

	return i9xx_emit_request(req);
}

1462
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1463 1464
{
	struct intel_engine_cs *engine = req->engine;
1465
	struct intel_ring *ring = req->ring;
1466 1467
	int ret;

1468 1469 1470 1471 1472 1473 1474
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1475 1476 1477
	if (ret)
		return ret;

1478 1479 1480 1481 1482 1483 1484
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1485
	/* We're thrashing one dword of HWS. */
1486 1487 1488
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1489
	intel_ring_advance(ring);
1490 1491

	req->tail = ring->tail;
1492 1493 1494 1495

	return 0;
}

1496 1497 1498 1499 1500 1501 1502
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1503 1504

static int
1505 1506
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1507
{
1508 1509 1510
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1511
	struct i915_hw_ppgtt *ppgtt;
1512 1513
	int ret;

1514
	ret = intel_ring_begin(req, 4);
1515 1516 1517
	if (ret)
		return ret;

1518 1519 1520 1521 1522 1523 1524 1525
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1526 1527 1528 1529 1530 1531

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1532 1533 1534
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1535 1536 1537
	return 0;
}

1538
static int
1539 1540
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1541
{
1542
	struct intel_ring *ring = req->ring;
1543 1544 1545
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1546
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1547
	int ret;
1548

1549
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1550

1551
	ret = intel_ring_begin(req, 4);
1552 1553 1554
	if (ret)
		return ret;

1555
	intel_ring_emit(ring, dw1 | wait_mbox);
1556 1557 1558 1559
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1560 1561 1562 1563
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1564 1565 1566 1567

	return 0;
}

1568
static void
1569
gen5_seqno_barrier(struct intel_engine_cs *engine)
1570
{
1571 1572 1573
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1574
	 *
1575 1576 1577 1578 1579 1580 1581
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1582
	 */
1583
	usleep_range(125, 250);
1584 1585
}

1586 1587
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1588
{
1589
	struct drm_i915_private *dev_priv = engine->i915;
1590

1591 1592
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1593 1594 1595 1596 1597 1598 1599 1600 1601
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1602 1603 1604
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1605
	 */
1606
	spin_lock_irq(&dev_priv->uncore.lock);
1607
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1608
	spin_unlock_irq(&dev_priv->uncore.lock);
1609 1610
}

1611 1612
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1613
{
1614
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1615 1616 1617
}

static void
1618
gen5_irq_disable(struct intel_engine_cs *engine)
1619
{
1620
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1621 1622
}

1623 1624
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1625
{
1626
	struct drm_i915_private *dev_priv = engine->i915;
1627

1628 1629 1630
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1631 1632
}

1633
static void
1634
i9xx_irq_disable(struct intel_engine_cs *engine)
1635
{
1636
	struct drm_i915_private *dev_priv = engine->i915;
1637

1638 1639
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1640 1641
}

1642 1643
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1644
{
1645
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1646

1647 1648 1649
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1650 1651 1652
}

static void
1653
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1654
{
1655
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1656

1657 1658
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1659 1660
}

1661
static int
1662
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1663
{
1664
	struct intel_ring *ring = req->ring;
1665 1666
	int ret;

1667
	ret = intel_ring_begin(req, 2);
1668 1669 1670
	if (ret)
		return ret;

1671 1672 1673
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1674
	return 0;
1675 1676
}

1677 1678
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1679
{
1680
	struct drm_i915_private *dev_priv = engine->i915;
1681

1682 1683 1684
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1685
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1686 1687 1688
}

static void
1689
gen6_irq_disable(struct intel_engine_cs *engine)
1690
{
1691
	struct drm_i915_private *dev_priv = engine->i915;
1692

1693
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1694
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1695 1696
}

1697 1698
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1699
{
1700
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1701

1702 1703
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1704 1705 1706
}

static void
1707
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1708
{
1709
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1710

1711 1712
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1713 1714
}

1715 1716
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1717
{
1718
	struct drm_i915_private *dev_priv = engine->i915;
1719

1720 1721 1722
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1723
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1724 1725 1726
}

static void
1727
gen8_irq_disable(struct intel_engine_cs *engine)
1728
{
1729
	struct drm_i915_private *dev_priv = engine->i915;
1730

1731
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1732 1733
}

1734
static int
1735 1736 1737
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1738
{
1739
	struct intel_ring *ring = req->ring;
1740
	int ret;
1741

1742
	ret = intel_ring_begin(req, 2);
1743 1744 1745
	if (ret)
		return ret;

1746
	intel_ring_emit(ring,
1747 1748
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1749 1750
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1751 1752
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1753

1754 1755 1756
	return 0;
}

1757 1758
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1759 1760
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1761
static int
1762 1763 1764
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1765
{
1766
	struct intel_ring *ring = req->ring;
1767
	u32 cs_offset = req->engine->scratch.gtt_offset;
1768
	int ret;
1769

1770
	ret = intel_ring_begin(req, 6);
1771 1772
	if (ret)
		return ret;
1773

1774
	/* Evict the invalid PTE TLBs */
1775 1776 1777 1778 1779 1780 1781
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1782

1783
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1784 1785 1786
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1787
		ret = intel_ring_begin(req, 6 + 2);
1788 1789
		if (ret)
			return ret;
1790 1791 1792 1793 1794

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1795 1796
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1797
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1798 1799 1800 1801
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1802

1803 1804 1805
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1806 1807

		/* ... and execute it. */
1808
		offset = cs_offset;
1809
	}
1810

1811
	ret = intel_ring_begin(req, 2);
1812 1813 1814
	if (ret)
		return ret;

1815 1816 1817 1818
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1819

1820 1821 1822 1823
	return 0;
}

static int
1824 1825 1826
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1827
{
1828
	struct intel_ring *ring = req->ring;
1829 1830
	int ret;

1831
	ret = intel_ring_begin(req, 2);
1832 1833 1834
	if (ret)
		return ret;

1835 1836 1837 1838
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1839 1840 1841 1842

	return 0;
}

1843
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1844
{
1845
	struct drm_i915_private *dev_priv = engine->i915;
1846 1847 1848 1849

	if (!dev_priv->status_page_dmah)
		return;

1850
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1851
	engine->status_page.page_addr = NULL;
1852 1853
}

1854
static void cleanup_status_page(struct intel_engine_cs *engine)
1855
{
1856
	struct drm_i915_gem_object *obj;
1857

1858
	obj = engine->status_page.obj;
1859
	if (obj == NULL)
1860 1861
		return;

1862
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1863
	i915_gem_object_ggtt_unpin(obj);
1864
	i915_gem_object_put(obj);
1865
	engine->status_page.obj = NULL;
1866 1867
}

1868
static int init_status_page(struct intel_engine_cs *engine)
1869
{
1870
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1871

1872
	if (obj == NULL) {
1873
		unsigned flags;
1874
		int ret;
1875

1876
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1877
		if (IS_ERR(obj)) {
1878
			DRM_ERROR("Failed to allocate status page\n");
1879
			return PTR_ERR(obj);
1880
		}
1881

1882 1883 1884 1885
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1886
		flags = 0;
1887
		if (!HAS_LLC(engine->i915))
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
1899
		ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, flags);
1900 1901
		if (ret) {
err_unref:
1902
			i915_gem_object_put(obj);
1903 1904 1905
			return ret;
		}

1906
		engine->status_page.obj = obj;
1907
	}
1908

1909 1910 1911
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1912

1913
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1914
			engine->name, engine->status_page.gfx_addr);
1915 1916 1917 1918

	return 0;
}

1919
static int init_phys_status_page(struct intel_engine_cs *engine)
1920
{
1921
	struct drm_i915_private *dev_priv = engine->i915;
1922 1923 1924

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1925
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1926 1927 1928 1929
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1930 1931
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1932 1933 1934 1935

	return 0;
}

1936
int intel_ring_pin(struct intel_ring *ring)
1937
{
1938
	struct drm_i915_private *dev_priv = ring->engine->i915;
1939
	struct drm_i915_gem_object *obj = ring->obj;
1940 1941
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
1942
	void *addr;
1943 1944
	int ret;

1945
	if (HAS_LLC(dev_priv) && !obj->stolen) {
1946
		ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE, flags);
1947 1948
		if (ret)
			return ret;
1949

1950
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
1951 1952
		if (ret)
			goto err_unpin;
1953

1954 1955 1956
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1957
			goto err_unpin;
1958 1959
		}
	} else {
1960 1961
		ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE,
					       flags | PIN_MAPPABLE);
1962 1963
		if (ret)
			return ret;
1964

1965
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1966 1967
		if (ret)
			goto err_unpin;
1968

1969 1970 1971
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

1972 1973
		addr = (void __force *)
			i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
1974 1975
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
1976
			goto err_unpin;
1977
		}
1978 1979
	}

1980 1981
	ring->vaddr = addr;
	ring->vma = i915_gem_obj_to_ggtt(obj);
1982
	return 0;
1983 1984 1985 1986

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

	if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
		i915_gem_object_unpin_map(ring->obj);
	else
		i915_vma_unpin_iomap(ring->vma);
	ring->vaddr = NULL;

	i915_gem_object_ggtt_unpin(ring->obj);
	ring->vma = NULL;
}

2004
static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
2005
{
2006 2007
	i915_gem_object_put(ring->obj);
	ring->obj = NULL;
2008 2009
}

2010
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2011
				      struct intel_ring *ring)
2012
{
2013
	struct drm_i915_gem_object *obj;
2014

2015 2016
	obj = NULL;
	if (!HAS_LLC(dev))
2017
		obj = i915_gem_object_create_stolen(dev, ring->size);
2018
	if (obj == NULL)
2019
		obj = i915_gem_object_create(dev, ring->size);
2020 2021
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2022

2023 2024 2025
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2026
	ring->obj = obj;
2027

2028
	return 0;
2029 2030
}

2031 2032
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2033
{
2034
	struct intel_ring *ring;
2035 2036
	int ret;

2037 2038
	GEM_BUG_ON(!is_power_of_2(size));

2039
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2040 2041 2042
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2043
		return ERR_PTR(-ENOMEM);
2044
	}
2045

2046
	ring->engine = engine;
2047
	list_add(&ring->link, &engine->buffers);
2048

2049 2050
	INIT_LIST_HEAD(&ring->request_list);

2051 2052 2053 2054 2055 2056
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2057
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2058 2059 2060 2061 2062
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2063
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2064
	if (ret) {
2065 2066 2067
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2068 2069 2070 2071 2072 2073 2074 2075
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
2076
intel_ring_free(struct intel_ring *ring)
2077 2078
{
	intel_destroy_ringbuffer_obj(ring);
2079
	list_del(&ring->link);
2080 2081 2082
	kfree(ring);
}

2083 2084 2085 2086 2087 2088
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2089
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2090 2091 2092 2093 2094

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2095 2096
		ret = i915_gem_object_ggtt_pin(ce->state, NULL, 0,
					       ctx->ggtt_alignment, 0);
2097 2098 2099 2100
		if (ret)
			goto error;
	}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2111
	i915_gem_context_get(ctx);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2124
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2125 2126 2127 2128 2129 2130 2131

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

2132
	i915_gem_context_put(ctx);
2133 2134
}

2135
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2136
{
2137
	struct drm_i915_private *dev_priv = engine->i915;
2138
	struct intel_ring *ring;
2139 2140
	int ret;

2141
	WARN_ON(engine->buffer);
2142

2143 2144
	intel_engine_setup_common(engine);

2145 2146
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2147

2148
	ret = intel_engine_init_common(engine);
2149 2150
	if (ret)
		goto error;
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2163 2164 2165
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2166 2167
		goto error;
	}
2168
	engine->buffer = ring;
2169

2170
	if (I915_NEED_GFX_HWS(dev_priv)) {
2171
		ret = init_status_page(engine);
2172
		if (ret)
2173
			goto error;
2174
	} else {
2175 2176
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2177
		if (ret)
2178
			goto error;
2179 2180
	}

2181
	ret = intel_ring_pin(ring);
2182 2183
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2184
				engine->name, ret);
2185
		intel_destroy_ringbuffer_obj(ring);
2186
		goto error;
2187
	}
2188

2189
	return 0;
2190

2191
error:
2192
	intel_engine_cleanup(engine);
2193
	return ret;
2194 2195
}

2196
void intel_engine_cleanup(struct intel_engine_cs *engine)
2197
{
2198
	struct drm_i915_private *dev_priv;
2199

2200
	if (!intel_engine_initialized(engine))
2201 2202
		return;

2203
	dev_priv = engine->i915;
2204

2205
	if (engine->buffer) {
2206
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2207

2208
		intel_ring_unpin(engine->buffer);
2209
		intel_ring_free(engine->buffer);
2210
		engine->buffer = NULL;
2211
	}
2212

2213 2214
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2215

2216
	if (I915_NEED_GFX_HWS(dev_priv)) {
2217
		cleanup_status_page(engine);
2218
	} else {
2219 2220
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2221
	}
2222

2223
	intel_engine_cleanup_common(engine);
2224 2225 2226

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2227
	engine->i915 = NULL;
2228 2229
}

2230
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2231
{
2232 2233 2234 2235 2236 2237
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2238
	request->reserved_space += LEGACY_REQUEST_SIZE;
2239

2240
	request->ring = request->engine->buffer;
2241 2242 2243 2244 2245

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2246
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2247
	return 0;
2248 2249
}

2250 2251
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2252
	struct intel_ring *ring = req->ring;
2253
	struct drm_i915_gem_request *target;
2254
	int ret;
2255

2256 2257
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2269
	GEM_BUG_ON(!req->reserved_space);
2270

2271
	list_for_each_entry(target, &ring->request_list, ring_link) {
2272 2273 2274
		unsigned space;

		/* Would completion of this request free enough space? */
2275 2276
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2277 2278
		if (space >= bytes)
			break;
2279
	}
2280

2281
	if (WARN_ON(&target->ring_link == &ring->request_list))
2282 2283
		return -ENOSPC;

2284
	ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (ret)
		return ret;

	if (i915_reset_in_progress(&target->i915->gpu_error))
		return -EAGAIN;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2296 2297
}

2298
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2299
{
2300
	struct intel_ring *ring = req->ring;
2301 2302
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2303 2304
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2305
	bool need_wrap = false;
2306

2307
	total_bytes = bytes + req->reserved_space;
2308

2309 2310 2311 2312 2313 2314 2315
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2316 2317 2318 2319 2320 2321 2322
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2323
		wait_bytes = remain_actual + req->reserved_space;
2324
	} else {
2325 2326
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2327 2328
	}

2329
	if (wait_bytes > ring->space) {
2330
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2331 2332 2333 2334
		if (unlikely(ret))
			return ret;
	}

2335
	if (unlikely(need_wrap)) {
2336 2337
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2338

2339
		/* Fill the tail with MI_NOOP */
2340 2341 2342
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2343
	}
2344

2345 2346
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2347
	return 0;
2348
}
2349

2350
/* Align the ring tail to a cacheline boundary */
2351
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2352
{
2353
	struct intel_ring *ring = req->ring;
2354 2355
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2356 2357 2358 2359 2360
	int ret;

	if (num_dwords == 0)
		return 0;

2361
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2362
	ret = intel_ring_begin(req, num_dwords);
2363 2364 2365 2366
	if (ret)
		return ret;

	while (num_dwords--)
2367
		intel_ring_emit(ring, MI_NOOP);
2368

2369
	intel_ring_advance(ring);
2370 2371 2372 2373

	return 0;
}

2374
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2375
{
2376
	struct drm_i915_private *dev_priv = engine->i915;
2377

2378 2379 2380 2381 2382 2383 2384 2385
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2386
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2387 2388
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2389
		if (HAS_VEBOX(dev_priv))
2390
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2391
	}
2392 2393 2394 2395 2396 2397 2398 2399
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2400 2401
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2402

2403 2404 2405
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2406
	engine->last_submitted_seqno = seqno;
2407

2408
	engine->hangcheck.seqno = seqno;
2409 2410 2411 2412 2413 2414 2415

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2416
}
2417

2418
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2419
{
2420
	struct drm_i915_private *dev_priv = request->i915;
2421

2422 2423
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2424
       /* Every tail move must follow the sequence below */
2425 2426 2427 2428

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2429 2430
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2431 2432

	/* Clear the context id. Here be magic! */
2433
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2434

2435
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2436 2437 2438 2439 2440
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2441
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2442

2443
	/* Now that the ring is fully powered up, update the tail */
2444
	i9xx_submit_request(request);
2445 2446 2447 2448

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2449 2450 2451 2452
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2453 2454
}

2455
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2456
{
2457
	struct intel_ring *ring = req->ring;
2458
	uint32_t cmd;
2459 2460
	int ret;

2461
	ret = intel_ring_begin(req, 4);
2462 2463 2464
	if (ret)
		return ret;

2465
	cmd = MI_FLUSH_DW;
2466
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2467
		cmd += 1;
2468 2469 2470 2471 2472 2473 2474 2475

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2476 2477 2478 2479 2480 2481
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2482
	if (mode & EMIT_INVALIDATE)
2483 2484
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2485 2486
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2487
	if (INTEL_GEN(req->i915) >= 8) {
2488 2489
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2490
	} else  {
2491 2492
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2493
	}
2494
	intel_ring_advance(ring);
2495
	return 0;
2496 2497
}

2498
static int
2499 2500 2501
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2502
{
2503
	struct intel_ring *ring = req->ring;
2504
	bool ppgtt = USES_PPGTT(req->i915) &&
2505
			!(dispatch_flags & I915_DISPATCH_SECURE);
2506 2507
	int ret;

2508
	ret = intel_ring_begin(req, 4);
2509 2510 2511 2512
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2513
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2514 2515
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2516 2517 2518 2519
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2520 2521 2522 2523

	return 0;
}

2524
static int
2525 2526 2527
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2528
{
2529
	struct intel_ring *ring = req->ring;
2530 2531
	int ret;

2532
	ret = intel_ring_begin(req, 2);
2533 2534 2535
	if (ret)
		return ret;

2536
	intel_ring_emit(ring,
2537
			MI_BATCH_BUFFER_START |
2538
			(dispatch_flags & I915_DISPATCH_SECURE ?
2539 2540 2541
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2542
	/* bit0-7 is the length on GEN6+ */
2543 2544
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2545 2546 2547 2548

	return 0;
}

2549
static int
2550 2551 2552
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2553
{
2554
	struct intel_ring *ring = req->ring;
2555
	int ret;
2556

2557
	ret = intel_ring_begin(req, 2);
2558 2559
	if (ret)
		return ret;
2560

2561
	intel_ring_emit(ring,
2562
			MI_BATCH_BUFFER_START |
2563 2564
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2565
	/* bit0-7 is the length on GEN6+ */
2566 2567
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2568

2569
	return 0;
2570 2571
}

2572 2573
/* Blitter support (SandyBridge+) */

2574
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2575
{
2576
	struct intel_ring *ring = req->ring;
2577
	uint32_t cmd;
2578 2579
	int ret;

2580
	ret = intel_ring_begin(req, 4);
2581 2582 2583
	if (ret)
		return ret;

2584
	cmd = MI_FLUSH_DW;
2585
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2586
		cmd += 1;
2587 2588 2589 2590 2591 2592 2593 2594

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2595 2596 2597 2598 2599 2600
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2601
	if (mode & EMIT_INVALIDATE)
2602
		cmd |= MI_INVALIDATE_TLB;
2603 2604
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2605
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2606
	if (INTEL_GEN(req->i915) >= 8) {
2607 2608
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2609
	} else  {
2610 2611
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2612
	}
2613
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2614

2615
	return 0;
Z
Zou Nan hai 已提交
2616 2617
}

2618 2619 2620
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2621
	struct drm_i915_gem_object *obj;
2622
	int ret, i;
2623

2624
	if (!i915.semaphores)
2625 2626 2627
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2628
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2629 2630 2631 2632 2633
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2634
			ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
2635
			if (ret != 0) {
2636
				i915_gem_object_put(obj);
2637 2638 2639 2640 2641 2642 2643 2644
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2645
	if (!i915.semaphores)
2646 2647 2648
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2649 2650
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2651
		engine->semaphore.sync_to = gen8_ring_sync_to;
2652
		engine->semaphore.signal = gen8_xcs_signal;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2664
	} else if (INTEL_GEN(dev_priv) >= 6) {
2665
		engine->semaphore.sync_to = gen6_ring_sync_to;
2666
		engine->semaphore.signal = gen6_signal;
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2715 2716 2717
	}
}

2718 2719 2720
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2721 2722
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2723
	if (INTEL_GEN(dev_priv) >= 8) {
2724 2725
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2726 2727
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2728 2729
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2730 2731
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2732 2733
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2734
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2735
	} else if (INTEL_GEN(dev_priv) >= 3) {
2736 2737
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2738
	} else {
2739 2740
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2741 2742 2743
	}
}

2744 2745 2746
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2747 2748 2749
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2750
	engine->init_hw = init_ring_common;
2751

2752
	engine->emit_request = i9xx_emit_request;
2753 2754
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2755
	engine->submit_request = i9xx_submit_request;
2756 2757

	if (INTEL_GEN(dev_priv) >= 8)
2758
		engine->emit_bb_start = gen8_emit_bb_start;
2759
	else if (INTEL_GEN(dev_priv) >= 6)
2760
		engine->emit_bb_start = gen6_emit_bb_start;
2761
	else if (INTEL_GEN(dev_priv) >= 4)
2762
		engine->emit_bb_start = i965_emit_bb_start;
2763
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2764
		engine->emit_bb_start = i830_emit_bb_start;
2765
	else
2766
		engine->emit_bb_start = i915_emit_bb_start;
2767 2768
}

2769
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2770
{
2771
	struct drm_i915_private *dev_priv = engine->i915;
2772
	int ret;
2773

2774 2775
	intel_ring_default_vfuncs(dev_priv, engine);

2776 2777
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2778

2779
	if (INTEL_GEN(dev_priv) >= 8) {
2780
		engine->init_context = intel_rcs_ctx_init;
2781
		engine->emit_request = gen8_render_emit_request;
2782
		engine->emit_flush = gen8_render_ring_flush;
2783
		if (i915.semaphores)
2784
			engine->semaphore.signal = gen8_rcs_signal;
2785
	} else if (INTEL_GEN(dev_priv) >= 6) {
2786
		engine->init_context = intel_rcs_ctx_init;
2787
		engine->emit_flush = gen7_render_ring_flush;
2788
		if (IS_GEN6(dev_priv))
2789
			engine->emit_flush = gen6_render_ring_flush;
2790
	} else if (IS_GEN5(dev_priv)) {
2791
		engine->emit_flush = gen4_render_ring_flush;
2792
	} else {
2793
		if (INTEL_GEN(dev_priv) < 4)
2794
			engine->emit_flush = gen2_render_ring_flush;
2795
		else
2796
			engine->emit_flush = gen4_render_ring_flush;
2797
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2798
	}
B
Ben Widawsky 已提交
2799

2800
	if (IS_HASWELL(dev_priv))
2801
		engine->emit_bb_start = hsw_emit_bb_start;
2802

2803 2804
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2805

2806
	ret = intel_init_ring_buffer(engine);
2807 2808 2809
	if (ret)
		return ret;

2810
	if (INTEL_GEN(dev_priv) >= 6) {
2811 2812 2813 2814 2815
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2816 2817 2818 2819 2820
		if (ret)
			return ret;
	}

	return 0;
2821 2822
}

2823
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2824
{
2825
	struct drm_i915_private *dev_priv = engine->i915;
2826

2827 2828
	intel_ring_default_vfuncs(dev_priv, engine);

2829
	if (INTEL_GEN(dev_priv) >= 6) {
2830
		/* gen6 bsd needs a special wa for tail updates */
2831
		if (IS_GEN6(dev_priv))
2832
			engine->submit_request = gen6_bsd_submit_request;
2833
		engine->emit_flush = gen6_bsd_ring_flush;
2834
		if (INTEL_GEN(dev_priv) < 8)
2835
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2836
	} else {
2837
		engine->mmio_base = BSD_RING_BASE;
2838
		engine->emit_flush = bsd_ring_flush;
2839
		if (IS_GEN5(dev_priv))
2840
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2841
		else
2842
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2843 2844
	}

2845
	return intel_init_ring_buffer(engine);
2846
}
2847

2848
/**
2849
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2850
 */
2851
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2852
{
2853
	struct drm_i915_private *dev_priv = engine->i915;
2854 2855 2856

	intel_ring_default_vfuncs(dev_priv, engine);

2857
	engine->emit_flush = gen6_bsd_ring_flush;
2858

2859
	return intel_init_ring_buffer(engine);
2860 2861
}

2862
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2863
{
2864
	struct drm_i915_private *dev_priv = engine->i915;
2865 2866 2867

	intel_ring_default_vfuncs(dev_priv, engine);

2868
	engine->emit_flush = gen6_ring_flush;
2869
	if (INTEL_GEN(dev_priv) < 8)
2870
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2871

2872
	return intel_init_ring_buffer(engine);
2873
}
2874

2875
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2876
{
2877
	struct drm_i915_private *dev_priv = engine->i915;
2878 2879 2880

	intel_ring_default_vfuncs(dev_priv, engine);

2881
	engine->emit_flush = gen6_ring_flush;
2882

2883
	if (INTEL_GEN(dev_priv) < 8) {
2884
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2885 2886
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2887
	}
B
Ben Widawsky 已提交
2888

2889
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2890
}