intel_ringbuffer.c 89.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37
int __intel_ring_space(int head, int tail, int size)
38
{
39 40
	int space = head - tail;
	if (space <= 0)
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
43 44
}

45 46 47 48 49 50 51 52 53 54 55
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
58 59
	intel_ring_update_space(ringbuf);
	return ringbuf->space;
60 61
}

62
bool intel_engine_stopped(struct intel_engine_cs *engine)
63
{
64
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66
}
67

68
static void __intel_ring_advance(struct intel_engine_cs *engine)
69
{
70
	struct intel_ringbuffer *ringbuf = engine->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_engine_stopped(engine))
73
		return;
74
	engine->write_tail(engine, ringbuf->tail);
75 76
}

77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 80 81
		       u32	invalidate_domains,
		       u32	flush_domains)
{
82
	struct intel_engine_cs *engine = req->engine;
83 84 85 86
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 89 90 91 92
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

93
	ret = intel_ring_begin(req, 2);
94 95 96
	if (ret)
		return ret;

97 98 99
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
100 101 102 103 104

	return 0;
}

static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 107
		       u32	invalidate_domains,
		       u32	flush_domains)
108
{
109
	struct intel_engine_cs *engine = req->engine;
110
	struct drm_device *dev = engine->dev;
111
	u32 cmd;
112
	int ret;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 145 146
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
147

148 149 150
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
151

152
	ret = intel_ring_begin(req, 2);
153 154
	if (ret)
		return ret;
155

156 157 158
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
159 160

	return 0;
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
203
	struct intel_engine_cs *engine = req->engine;
204
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 206
	int ret;

207
	ret = intel_ring_begin(req, 6);
208 209 210
	if (ret)
		return ret;

211 212
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 215 216 217 218
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
219

220
	ret = intel_ring_begin(req, 6);
221 222 223
	if (ret)
		return ret;

224 225 226 227 228 229 230
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
231 232 233 234 235

	return 0;
}

static int
236 237
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
238
{
239
	struct intel_engine_cs *engine = req->engine;
240
	u32 flags = 0;
241
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 243
	int ret;

244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246 247 248
	if (ret)
		return ret;

249 250 251 252
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
253 254 255 256 257 258 259
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261 262 263 264 265 266 267 268 269 270 271
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
274

275
	ret = intel_ring_begin(req, 4);
276 277 278
	if (ret)
		return ret;

279 280 281 282 283
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
284 285 286 287

	return 0;
}

288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
291
	struct intel_engine_cs *engine = req->engine;
292 293
	int ret;

294
	ret = intel_ring_begin(req, 4);
295 296 297
	if (ret)
		return ret;

298 299
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 302 303
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
304 305 306 307

	return 0;
}

308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 311
		       u32 invalidate_domains, u32 flush_domains)
{
312
	struct intel_engine_cs *engine = req->engine;
313
	u32 flags = 0;
314
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 316
	int ret;

317 318 319 320 321 322 323 324 325 326
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

327 328 329 330 331 332 333
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 337 338 339 340 341 342 343
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 346 347 348
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350

351 352
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

353 354 355
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
357 358
	}

359
	ret = intel_ring_begin(req, 4);
360 361 362
	if (ret)
		return ret;

363 364 365 366 367
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
368 369 370 371

	return 0;
}

372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 375
		       u32 flags, u32 scratch_addr)
{
376
	struct intel_engine_cs *engine = req->engine;
377 378
	int ret;

379
	ret = intel_ring_begin(req, 6);
380 381 382
	if (ret)
		return ret;

383 384 385 386 387 388 389
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
390 391 392 393

	return 0;
}

B
Ben Widawsky 已提交
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
396 397 398
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
399
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
B
Ben Widawsky 已提交
401 402 403 404 405 406

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
409 410 411 412 413 414 415 416 417 418
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 420

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
422 423 424 425 426
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
427 428
	}

429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
430 431
}

432
static void ring_write_tail(struct intel_engine_cs *engine,
433
			    u32 value)
434
{
435 436
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
	I915_WRITE_TAIL(engine, value);
437 438
}

439
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440
{
441
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
442
	u64 acthd;
443

444 445 446 447 448
	if (INTEL_INFO(engine->dev)->gen >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_INFO(engine->dev)->gen >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 450 451 452
	else
		acthd = I915_READ(ACTHD);

	return acthd;
453 454
}

455
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456
{
457
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 459 460
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(engine->dev)->gen >= 4)
462 463 464 465
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

466
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467
{
468 469
	struct drm_device *dev = engine->dev;
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
470
	i915_reg_t mmio;
471 472 473 474 475

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
476
		switch (engine->id) {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
495 496
	} else if (IS_GEN6(engine->dev)) {
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 498
	} else {
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(engine->mmio_base);
500 501
	}

502
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 504 505 506 507 508 509 510 511 512
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514 515

		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517 518 519 520 521 522 523

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
			     1000))
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  engine->name);
525 526 527
	}
}

528
static bool stop_ring(struct intel_engine_cs *engine)
529
{
530
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
531

532 533 534 535 536
	if (!IS_GEN2(engine->dev)) {
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
537 538 539 540
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
541
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542
				return false;
543 544
		}
	}
545

546 547 548
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
549

550 551 552
	if (!IS_GEN2(engine->dev)) {
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553
	}
554

555
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556
}
557

558 559 560 561 562
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

563
static int init_ring_common(struct intel_engine_cs *engine)
564
{
565
	struct drm_device *dev = engine->dev;
566
	struct drm_i915_private *dev_priv = dev->dev_private;
567
	struct intel_ringbuffer *ringbuf = engine->buffer;
568
	struct drm_i915_gem_object *obj = ringbuf->obj;
569 570
	int ret = 0;

571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572

573
	if (!stop_ring(engine)) {
574
		/* G45 ring initialization often fails to reset head to zero */
575 576
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
577 578 579 580 581
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
582

583
		if (!stop_ring(engine)) {
584 585
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
586 587 588 589 590
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
591 592
			ret = -EIO;
			goto out;
593
		}
594 595
	}

596
	if (I915_NEED_GFX_HWS(dev))
597
		intel_ring_setup_status_page(engine);
598
	else
599
		ring_setup_phys_status_page(engine);
600

601
	/* Enforce ordering by reading HEAD register back */
602
	I915_READ_HEAD(engine);
603

604 605 606 607
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
608
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609 610

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
611
	if (I915_READ_HEAD(engine))
612
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 614 615
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
616

617
	I915_WRITE_CTL(engine,
618
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619
			| RING_VALID);
620 621

	/* If the head is still not zero, the ring is dead */
622 623 624
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625
		DRM_ERROR("%s initialization failed "
626
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 628 629 630 631 632
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 634
		ret = -EIO;
		goto out;
635 636
	}

637
	ringbuf->last_retired_head = -1;
638 639
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640
	intel_ring_update_space(ringbuf);
641

642
	intel_engine_init_hangcheck(engine);
643

644
out:
645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 647

	return ret;
648 649
}

650
void
651
intel_fini_pipe_control(struct intel_engine_cs *engine)
652
{
653
	struct drm_device *dev = engine->dev;
654

655
	if (engine->scratch.obj == NULL)
656 657 658
		return;

	if (INTEL_INFO(dev)->gen >= 5) {
659 660
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 662
	}

663 664
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
665 666 667
}

int
668
intel_init_pipe_control(struct intel_engine_cs *engine)
669 670 671
{
	int ret;

672
	WARN_ON(engine->scratch.obj);
673

674 675
	engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
	if (engine->scratch.obj == NULL) {
676 677 678 679
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	int ret, i;
712
	struct intel_engine_cs *engine = req->engine;
713
	struct drm_device *dev = engine->dev;
714
	struct drm_i915_private *dev_priv = dev->dev_private;
715
	struct i915_workarounds *w = &dev_priv->workarounds;
716

717
	if (w->count == 0)
718
		return 0;
719

720
	engine->gpu_caches_dirty = true;
721
	ret = intel_ring_flush_all_caches(req);
722 723
	if (ret)
		return ret;
724

725
	ret = intel_ring_begin(req, (w->count * 2 + 2));
726 727 728
	if (ret)
		return ret;

729
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730
	for (i = 0; i < w->count; i++) {
731 732
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
733
	}
734
	intel_ring_emit(engine, MI_NOOP);
735

736
	intel_ring_advance(engine);
737

738
	engine->gpu_caches_dirty = true;
739
	ret = intel_ring_flush_all_caches(req);
740 741
	if (ret)
		return ret;
742

743
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744

745
	return 0;
746 747
}

748
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 750 751
{
	int ret;

752
	ret = intel_ring_workarounds_emit(req);
753 754 755
	if (ret != 0)
		return ret;

756
	ret = i915_gem_render_state_init(req);
757
	if (ret)
758
		return ret;
759

760
	return 0;
761 762
}

763
static int wa_add(struct drm_i915_private *dev_priv,
764 765
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
779 780
}

781
#define WA_REG(addr, mask, val) do { \
782
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 784
		if (r) \
			return r; \
785
	} while (0)
786 787

#define WA_SET_BIT_MASKED(addr, mask) \
788
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789 790

#define WA_CLR_BIT_MASKED(addr, mask) \
791
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792

793
#define WA_SET_FIELD_MASKED(addr, mask, value) \
794
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795

796 797
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798

799
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800

801 802
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
803
{
804
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
805
	struct i915_workarounds *wa = &dev_priv->workarounds;
806
	const uint32_t index = wa->hw_whitelist_count[engine->id];
807 808 809 810

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

811
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812
		 i915_mmio_reg_offset(reg));
813
	wa->hw_whitelist_count[engine->id]++;
814 815 816 817

	return 0;
}

818
static int gen8_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_device *dev = engine->dev;
821 822 823
	struct drm_i915_private *dev_priv = dev->dev_private;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824

825 826 827
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

828 829 830 831
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832 833 834 835 836
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
837
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
838
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
839
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 841
			  HDC_FORCE_NON_COHERENT);

842 843 844 845 846 847 848 849 850 851
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

852 853 854
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

867 868 869
	return 0;
}

870
static int bdw_init_workarounds(struct intel_engine_cs *engine)
871
{
872
	int ret;
873
	struct drm_device *dev = engine->dev;
874
	struct drm_i915_private *dev_priv = dev->dev_private;
875

876
	ret = gen8_init_workarounds(engine);
877 878 879
	if (ret)
		return ret;

880
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882

883
	/* WaDisableDopClockGating:bdw */
884 885
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
886

887 888
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
889

890
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 892 893
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895 896 897 898

	return 0;
}

899
static int chv_init_workarounds(struct intel_engine_cs *engine)
900
{
901
	int ret;
902
	struct drm_device *dev = engine->dev;
903 904
	struct drm_i915_private *dev_priv = dev->dev_private;

905
	ret = gen8_init_workarounds(engine);
906 907 908
	if (ret)
		return ret;

909
	/* WaDisableThreadStallDopClockGating:chv */
910
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911

912 913 914
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

915 916 917
	return 0;
}

918
static int gen9_init_workarounds(struct intel_engine_cs *engine)
919
{
920
	struct drm_device *dev = engine->dev;
921
	struct drm_i915_private *dev_priv = dev->dev_private;
922
	uint32_t tmp;
923
	int ret;
924

925 926 927 928 929 930 931 932
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

933
	/* WaClearFlowControlGpgpuContextSave:skl,bxt */
934
	/* WaDisablePartialInstShootdown:skl,bxt */
935
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936
			  FLOW_CONTROL_ENABLE |
937 938
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

939
	/* Syncing dependencies between camera and graphics:skl,bxt */
940 941 942
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

943 944 945
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 947
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
948

949 950 951
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 953
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
954 955 956 957 958
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
959 960
	}

961 962
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
963 964 965
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
				  GEN9_ENABLE_YV12_BUGFIX);

966
	/* Wa4x4STCOptimizationDisable:skl,bxt */
967
	/* WaDisablePartialResolveInVc:skl,bxt */
968 969
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
970

971
	/* WaCcsTlbPrefetchDisable:skl,bxt */
972 973 974
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

975
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
976 977
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
978 979 980
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

981 982
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983 984
	if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
985 986 987
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);

988
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
989
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
990 991 992
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

993 994 995
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

996 997 998 999
	/* WaOCLCoherentLineFlush:skl,bxt */
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1000
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1001
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1002 1003 1004
	if (ret)
		return ret;

1005
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1006
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1007 1008 1009
	if (ret)
		return ret;

1010 1011 1012
	return 0;
}

1013
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1014
{
1015
	struct drm_device *dev = engine->dev;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1027
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1055
static int skl_init_workarounds(struct intel_engine_cs *engine)
1056
{
1057
	int ret;
1058
	struct drm_device *dev = engine->dev;
1059 1060
	struct drm_i915_private *dev_priv = dev->dev_private;

1061
	ret = gen9_init_workarounds(engine);
1062 1063
	if (ret)
		return ret;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1075
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1076 1077 1078 1079 1080 1081 1082 1083
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1084
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1085 1086 1087 1088 1089
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1090
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1091 1092 1093 1094
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1095
	/* WaDisablePowerCompilerClockGating:skl */
1096
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1097 1098 1099
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1100
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1101 1102 1103 1104 1105 1106 1107 1108
		/*
		 *Use Force Non-Coherent whenever executing a 3D context. This
		 * is a workaround for a possible hang in the unlikely event
		 * a TLB invalidation occurs during a PSD flush.
		 */
		/* WaForceEnableNonCoherent:skl */
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FORCE_NON_COHERENT);
1109 1110 1111 1112

		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);
1113 1114
	}

1115 1116
	/* WaBarrierPerformanceFixDisable:skl */
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1117 1118 1119 1120
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1121
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1122
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1123 1124 1125 1126
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1127
	/* WaDisableLSQCROPERFforOCL:skl */
1128
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1129 1130 1131
	if (ret)
		return ret;

1132
	return skl_tune_iz_hashing(engine);
1133 1134
}

1135
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1136
{
1137
	int ret;
1138
	struct drm_device *dev = engine->dev;
1139 1140
	struct drm_i915_private *dev_priv = dev->dev_private;

1141
	ret = gen9_init_workarounds(engine);
1142 1143
	if (ret)
		return ret;
1144

1145 1146
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
T
Tim Gore 已提交
1147
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1148 1149 1150
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
T
Tim Gore 已提交
1151
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1152 1153 1154 1155
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1156 1157 1158 1159
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1160
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1161
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1162 1163 1164 1165 1166
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1167 1168 1169
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1170
	/* WaDisableLSQCROPERFforOCL:bxt */
1171
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1172
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1173 1174
		if (ret)
			return ret;
1175

1176
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1177 1178
		if (ret)
			return ret;
1179 1180
	}

1181 1182 1183
	return 0;
}

1184
int init_workarounds_ring(struct intel_engine_cs *engine)
1185
{
1186
	struct drm_device *dev = engine->dev;
1187 1188
	struct drm_i915_private *dev_priv = dev->dev_private;

1189
	WARN_ON(engine->id != RCS);
1190 1191

	dev_priv->workarounds.count = 0;
1192
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1193 1194

	if (IS_BROADWELL(dev))
1195
		return bdw_init_workarounds(engine);
1196 1197

	if (IS_CHERRYVIEW(dev))
1198
		return chv_init_workarounds(engine);
1199

1200
	if (IS_SKYLAKE(dev))
1201
		return skl_init_workarounds(engine);
1202 1203

	if (IS_BROXTON(dev))
1204
		return bxt_init_workarounds(engine);
1205

1206 1207 1208
	return 0;
}

1209
static int init_render_ring(struct intel_engine_cs *engine)
1210
{
1211
	struct drm_device *dev = engine->dev;
1212
	struct drm_i915_private *dev_priv = dev->dev_private;
1213
	int ret = init_ring_common(engine);
1214 1215
	if (ret)
		return ret;
1216

1217 1218
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1219
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1220 1221 1222 1223

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1224
	 *
1225
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1226
	 */
1227
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1228 1229
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1230
	/* Required for the hardware to program scanline values for waiting */
1231
	/* WaEnableFlushTlbInvalidationMode:snb */
1232 1233
	if (INTEL_INFO(dev)->gen == 6)
		I915_WRITE(GFX_MODE,
1234
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1235

1236
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1237 1238
	if (IS_GEN7(dev))
		I915_WRITE(GFX_MODE_GEN7,
1239
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1240
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1241

1242
	if (IS_GEN6(dev)) {
1243 1244 1245 1246 1247 1248
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1249
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1250 1251
	}

1252
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1253
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1254

1255
	if (HAS_L3_DPF(dev))
1256
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1257

1258
	return init_workarounds_ring(engine);
1259 1260
}

1261
static void render_ring_cleanup(struct intel_engine_cs *engine)
1262
{
1263
	struct drm_device *dev = engine->dev;
1264 1265 1266 1267 1268 1269 1270
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1271

1272
	intel_fini_pipe_control(engine);
1273 1274
}

1275
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1276 1277 1278
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1279
	struct intel_engine_cs *signaller = signaller_req->engine;
1280 1281 1282
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1283 1284
	enum intel_engine_id id;
	int ret, num_rings;
1285 1286 1287 1288 1289

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1290
	ret = intel_ring_begin(signaller_req, num_dwords);
1291 1292 1293
	if (ret)
		return ret;

1294
	for_each_engine_id(waiter, dev_priv, id) {
1295
		u32 seqno;
1296
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1297 1298 1299
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1300
		seqno = i915_gem_request_get_seqno(signaller_req);
1301 1302 1303 1304 1305 1306
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
					   PIPE_CONTROL_FLUSH_ENABLE);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1307
		intel_ring_emit(signaller, seqno);
1308 1309 1310 1311 1312 1313 1314 1315 1316
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1317
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1318 1319 1320
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1321
	struct intel_engine_cs *signaller = signaller_req->engine;
1322 1323 1324
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *waiter;
1325 1326
	enum intel_engine_id id;
	int ret, num_rings;
1327 1328 1329 1330 1331

	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1332
	ret = intel_ring_begin(signaller_req, num_dwords);
1333 1334 1335
	if (ret)
		return ret;

1336
	for_each_engine_id(waiter, dev_priv, id) {
1337
		u32 seqno;
1338
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1339 1340 1341
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1342
		seqno = i915_gem_request_get_seqno(signaller_req);
1343 1344 1345 1346 1347
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1348
		intel_ring_emit(signaller, seqno);
1349 1350 1351 1352 1353 1354 1355 1356
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
					   MI_SEMAPHORE_TARGET(waiter->id));
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1357
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1358
		       unsigned int num_dwords)
1359
{
1360
	struct intel_engine_cs *signaller = signaller_req->engine;
1361 1362
	struct drm_device *dev = signaller->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1363
	struct intel_engine_cs *useless;
1364 1365
	enum intel_engine_id id;
	int ret, num_rings;
1366

1367 1368 1369 1370
#define MBOX_UPDATE_DWORDS 3
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1371

1372
	ret = intel_ring_begin(signaller_req, num_dwords);
1373 1374 1375
	if (ret)
		return ret;

1376 1377
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1378 1379

		if (i915_mmio_reg_valid(mbox_reg)) {
1380
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1381

1382
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1383
			intel_ring_emit_reg(signaller, mbox_reg);
1384
			intel_ring_emit(signaller, seqno);
1385 1386
		}
	}
1387

1388 1389 1390 1391
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1392
	return 0;
1393 1394
}

1395 1396
/**
 * gen6_add_request - Update the semaphore mailbox registers
1397 1398
 *
 * @request - request to write to the ring
1399 1400 1401 1402
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1403
static int
1404
gen6_add_request(struct drm_i915_gem_request *req)
1405
{
1406
	struct intel_engine_cs *engine = req->engine;
1407
	int ret;
1408

1409 1410
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1411
	else
1412
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1413

1414 1415 1416
	if (ret)
		return ret;

1417 1418 1419 1420 1421 1422
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1423 1424 1425 1426

	return 0;
}

1427 1428 1429 1430 1431 1432 1433
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
					      u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return dev_priv->last_seqno < seqno;
}

1434 1435 1436 1437 1438 1439 1440
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1441 1442

static int
1443
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1444 1445 1446
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1447
	struct intel_engine_cs *waiter = waiter_req->engine;
1448 1449 1450
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
	int ret;

1451
	ret = intel_ring_begin(waiter_req, 4);
1452 1453 1454 1455 1456
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
B
Ben Widawsky 已提交
1457
				MI_SEMAPHORE_POLL |
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter,
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_emit(waiter,
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
	intel_ring_advance(waiter);
	return 0;
}

1468
static int
1469
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1470
	       struct intel_engine_cs *signaller,
1471
	       u32 seqno)
1472
{
1473
	struct intel_engine_cs *waiter = waiter_req->engine;
1474 1475 1476
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1477 1478
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1479

1480 1481 1482 1483 1484 1485
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1486
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1487

1488
	ret = intel_ring_begin(waiter_req, 4);
1489 1490 1491
	if (ret)
		return ret;

1492 1493
	/* If seqno wrap happened, omit the wait with no-ops */
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1494
		intel_ring_emit(waiter, dw1 | wait_mbox);
1495 1496 1497 1498 1499 1500 1501 1502 1503
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1504
	intel_ring_advance(waiter);
1505 1506 1507 1508

	return 0;
}

1509 1510
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1511 1512
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1513 1514 1515 1516 1517 1518
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1519
pc_render_add_request(struct drm_i915_gem_request *req)
1520
{
1521
	struct intel_engine_cs *engine = req->engine;
1522
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1533
	ret = intel_ring_begin(req, 32);
1534 1535 1536
	if (ret)
		return ret;

1537 1538
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1539 1540
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1541 1542 1543 1544 1545
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1546
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1547
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548
	scratch_addr += 2 * CACHELINE_BYTES;
1549
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550
	scratch_addr += 2 * CACHELINE_BYTES;
1551
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552
	scratch_addr += 2 * CACHELINE_BYTES;
1553
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554
	scratch_addr += 2 * CACHELINE_BYTES;
1555
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556

1557 1558
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1559 1560
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1561
			PIPE_CONTROL_NOTIFY);
1562 1563 1564 1565 1566
	intel_ring_emit(engine,
			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1567 1568 1569 1570

	return 0;
}

1571
static u32
1572
gen6_ring_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1573 1574 1575
{
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
	 */
1586
	if (!lazy_coherency) {
1587
		struct drm_i915_private *dev_priv = engine->dev->dev_private;
1588
		POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1589 1590
	}

1591
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1592 1593
}

1594
static u32
1595
ring_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1596
{
1597
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1598 1599
}

M
Mika Kuoppala 已提交
1600
static void
1601
ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1602
{
1603
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
M
Mika Kuoppala 已提交
1604 1605
}

1606
static u32
1607
pc_render_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1608
{
1609
	return engine->scratch.cpu_page[0];
1610 1611
}

M
Mika Kuoppala 已提交
1612
static void
1613
pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
M
Mika Kuoppala 已提交
1614
{
1615
	engine->scratch.cpu_page[0] = seqno;
M
Mika Kuoppala 已提交
1616 1617
}

1618
static bool
1619
gen5_ring_get_irq(struct intel_engine_cs *engine)
1620
{
1621
	struct drm_device *dev = engine->dev;
1622
	struct drm_i915_private *dev_priv = dev->dev_private;
1623
	unsigned long flags;
1624

1625
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 1627
		return false;

1628
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1629 1630
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1631
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632 1633 1634 1635 1636

	return true;
}

static void
1637
gen5_ring_put_irq(struct intel_engine_cs *engine)
1638
{
1639
	struct drm_device *dev = engine->dev;
1640
	struct drm_i915_private *dev_priv = dev->dev_private;
1641
	unsigned long flags;
1642

1643
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1644 1645
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1646
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1647 1648
}

1649
static bool
1650
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1651
{
1652
	struct drm_device *dev = engine->dev;
1653
	struct drm_i915_private *dev_priv = dev->dev_private;
1654
	unsigned long flags;
1655

1656
	if (!intel_irqs_enabled(dev_priv))
1657 1658
		return false;

1659
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1660 1661
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1662 1663 1664
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1665
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1666 1667

	return true;
1668 1669
}

1670
static void
1671
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1672
{
1673
	struct drm_device *dev = engine->dev;
1674
	struct drm_i915_private *dev_priv = dev->dev_private;
1675
	unsigned long flags;
1676

1677
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1678 1679
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1680 1681 1682
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1683
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1684 1685
}

C
Chris Wilson 已提交
1686
static bool
1687
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1688
{
1689
	struct drm_device *dev = engine->dev;
1690
	struct drm_i915_private *dev_priv = dev->dev_private;
1691
	unsigned long flags;
C
Chris Wilson 已提交
1692

1693
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1694 1695
		return false;

1696
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1697 1698
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1699 1700 1701
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1702
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1703 1704 1705 1706 1707

	return true;
}

static void
1708
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1709
{
1710
	struct drm_device *dev = engine->dev;
1711
	struct drm_i915_private *dev_priv = dev->dev_private;
1712
	unsigned long flags;
C
Chris Wilson 已提交
1713

1714
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1715 1716
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1717 1718 1719
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1720
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1721 1722
}

1723
static int
1724
bsd_ring_flush(struct drm_i915_gem_request *req,
1725 1726
	       u32     invalidate_domains,
	       u32     flush_domains)
1727
{
1728
	struct intel_engine_cs *engine = req->engine;
1729 1730
	int ret;

1731
	ret = intel_ring_begin(req, 2);
1732 1733 1734
	if (ret)
		return ret;

1735 1736 1737
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1738
	return 0;
1739 1740
}

1741
static int
1742
i9xx_add_request(struct drm_i915_gem_request *req)
1743
{
1744
	struct intel_engine_cs *engine = req->engine;
1745 1746
	int ret;

1747
	ret = intel_ring_begin(req, 4);
1748 1749
	if (ret)
		return ret;
1750

1751 1752 1753 1754 1755 1756
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1757

1758
	return 0;
1759 1760
}

1761
static bool
1762
gen6_ring_get_irq(struct intel_engine_cs *engine)
1763
{
1764
	struct drm_device *dev = engine->dev;
1765
	struct drm_i915_private *dev_priv = dev->dev_private;
1766
	unsigned long flags;
1767

1768 1769
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1770

1771
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1772 1773 1774 1775
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1776
					 GT_PARITY_ERROR(dev)));
1777
		else
1778 1779
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1780
	}
1781
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1782 1783 1784 1785 1786

	return true;
}

static void
1787
gen6_ring_put_irq(struct intel_engine_cs *engine)
1788
{
1789
	struct drm_device *dev = engine->dev;
1790
	struct drm_i915_private *dev_priv = dev->dev_private;
1791
	unsigned long flags;
1792

1793
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1794 1795 1796
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1797
		else
1798 1799
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1800
	}
1801
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1802 1803
}

B
Ben Widawsky 已提交
1804
static bool
1805
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1806
{
1807
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1808 1809 1810
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1811
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1812 1813
		return false;

1814
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1815 1816 1817
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1818
	}
1819
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1820 1821 1822 1823 1824

	return true;
}

static void
1825
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1826
{
1827
	struct drm_device *dev = engine->dev;
B
Ben Widawsky 已提交
1828 1829 1830
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1831
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1832 1833 1834
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1835
	}
1836
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1837 1838
}

1839
static bool
1840
gen8_ring_get_irq(struct intel_engine_cs *engine)
1841
{
1842
	struct drm_device *dev = engine->dev;
1843 1844 1845
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1846
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1847 1848 1849
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1850 1851 1852 1853
	if (engine->irq_refcount++ == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1854 1855
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1856
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1857
		}
1858
		POSTING_READ(RING_IMR(engine->mmio_base));
1859 1860 1861 1862 1863 1864 1865
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1866
gen8_ring_put_irq(struct intel_engine_cs *engine)
1867
{
1868
	struct drm_device *dev = engine->dev;
1869 1870 1871 1872
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1873 1874 1875
	if (--engine->irq_refcount == 0) {
		if (HAS_L3_DPF(dev) && engine->id == RCS) {
			I915_WRITE_IMR(engine,
1876 1877
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1878
			I915_WRITE_IMR(engine, ~0);
1879
		}
1880
		POSTING_READ(RING_IMR(engine->mmio_base));
1881 1882 1883 1884
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1885
static int
1886
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1887
			 u64 offset, u32 length,
1888
			 unsigned dispatch_flags)
1889
{
1890
	struct intel_engine_cs *engine = req->engine;
1891
	int ret;
1892

1893
	ret = intel_ring_begin(req, 2);
1894 1895 1896
	if (ret)
		return ret;

1897
	intel_ring_emit(engine,
1898 1899
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1900 1901
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1902 1903
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1904

1905 1906 1907
	return 0;
}

1908 1909
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1910 1911
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1912
static int
1913
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1914 1915
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1916
{
1917
	struct intel_engine_cs *engine = req->engine;
1918
	u32 cs_offset = engine->scratch.gtt_offset;
1919
	int ret;
1920

1921
	ret = intel_ring_begin(req, 6);
1922 1923
	if (ret)
		return ret;
1924

1925
	/* Evict the invalid PTE TLBs */
1926 1927 1928 1929 1930 1931 1932
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1933

1934
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1935 1936 1937
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1938
		ret = intel_ring_begin(req, 6 + 2);
1939 1940
		if (ret)
			return ret;
1941 1942 1943 1944 1945

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1957 1958

		/* ... and execute it. */
1959
		offset = cs_offset;
1960
	}
1961

1962
	ret = intel_ring_begin(req, 2);
1963 1964 1965
	if (ret)
		return ret;

1966 1967 1968 1969
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1970

1971 1972 1973 1974
	return 0;
}

static int
1975
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1976
			 u64 offset, u32 len,
1977
			 unsigned dispatch_flags)
1978
{
1979
	struct intel_engine_cs *engine = req->engine;
1980 1981
	int ret;

1982
	ret = intel_ring_begin(req, 2);
1983 1984 1985
	if (ret)
		return ret;

1986 1987 1988 1989
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1990 1991 1992 1993

	return 0;
}

1994
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1995
{
1996
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
1997 1998 1999 2000

	if (!dev_priv->status_page_dmah)
		return;

2001 2002
	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
2003 2004
}

2005
static void cleanup_status_page(struct intel_engine_cs *engine)
2006
{
2007
	struct drm_i915_gem_object *obj;
2008

2009
	obj = engine->status_page.obj;
2010
	if (obj == NULL)
2011 2012
		return;

2013
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2014
	i915_gem_object_ggtt_unpin(obj);
2015
	drm_gem_object_unreference(&obj->base);
2016
	engine->status_page.obj = NULL;
2017 2018
}

2019
static int init_status_page(struct intel_engine_cs *engine)
2020
{
2021
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2022

2023
	if (obj == NULL) {
2024
		unsigned flags;
2025
		int ret;
2026

2027
		obj = i915_gem_alloc_object(engine->dev, 4096);
2028 2029 2030 2031
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate status page\n");
			return -ENOMEM;
		}
2032

2033 2034 2035 2036
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2037
		flags = 0;
2038
		if (!HAS_LLC(engine->dev))
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2051 2052 2053 2054 2055 2056
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2057
		engine->status_page.obj = obj;
2058
	}
2059

2060 2061 2062
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2063

2064
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2065
			engine->name, engine->status_page.gfx_addr);
2066 2067 2068 2069

	return 0;
}

2070
static int init_phys_status_page(struct intel_engine_cs *engine)
2071
{
2072
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2073 2074 2075

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2076
			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2077 2078 2079 2080
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2081 2082
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2083 2084 2085 2086

	return 0;
}

2087
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2088
{
2089 2090 2091 2092
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
		vunmap(ringbuf->virtual_start);
	else
		iounmap(ringbuf->virtual_start);
2093
	ringbuf->virtual_start = NULL;
2094
	ringbuf->vma = NULL;
2095
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static u32 *vmap_obj(struct drm_i915_gem_object *obj)
{
	struct sg_page_iter sg_iter;
	struct page **pages;
	void *addr;
	int i;

	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
	if (pages == NULL)
		return NULL;

	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
		pages[i++] = sg_page_iter_page(&sg_iter);

	addr = vmap(pages, i, 0, PAGE_KERNEL);
	drm_free_large(pages);

	return addr;
}

2119 2120 2121 2122
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
2123
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2124 2125 2126
	struct drm_i915_gem_object *obj = ringbuf->obj;
	int ret;

2127 2128 2129 2130
	if (HAS_LLC(dev_priv) && !obj->stolen) {
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
		if (ret)
			return ret;
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret) {
			i915_gem_object_ggtt_unpin(obj);
			return ret;
		}

		ringbuf->virtual_start = vmap_obj(obj);
		if (ringbuf->virtual_start == NULL) {
			i915_gem_object_ggtt_unpin(obj);
			return -ENOMEM;
		}
	} else {
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
		if (ret)
			return ret;
2147

2148 2149 2150 2151 2152 2153
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret) {
			i915_gem_object_ggtt_unpin(obj);
			return ret;
		}

2154 2155 2156
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2157
		ringbuf->virtual_start = ioremap_wc(ggtt->mappable_base +
2158 2159 2160 2161 2162
						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
		if (ringbuf->virtual_start == NULL) {
			i915_gem_object_ggtt_unpin(obj);
			return -EINVAL;
		}
2163 2164
	}

2165 2166
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);

2167 2168 2169
	return 0;
}

2170
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2171
{
2172 2173 2174 2175
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2176 2177
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2178
{
2179
	struct drm_i915_gem_object *obj;
2180

2181 2182
	obj = NULL;
	if (!HAS_LLC(dev))
2183
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2184
	if (obj == NULL)
2185
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2186 2187
	if (obj == NULL)
		return -ENOMEM;
2188

2189 2190 2191
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2192
	ringbuf->obj = obj;
2193

2194
	return 0;
2195 2196
}

2197 2198 2199 2200 2201 2202 2203
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2204 2205 2206
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2207
		return ERR_PTR(-ENOMEM);
2208
	}
2209

2210
	ring->engine = engine;
2211
	list_add(&ring->link, &engine->buffers);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
	if (ret) {
2227 2228 2229
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2241
	list_del(&ring->link);
2242 2243 2244
	kfree(ring);
}

2245
static int intel_init_ring_buffer(struct drm_device *dev,
2246
				  struct intel_engine_cs *engine)
2247
{
2248
	struct intel_ringbuffer *ringbuf;
2249 2250
	int ret;

2251
	WARN_ON(engine->buffer);
2252

2253 2254 2255 2256 2257 2258 2259 2260
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2261

2262
	init_waitqueue_head(&engine->irq_queue);
2263

2264
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2265 2266 2267 2268
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2269
	engine->buffer = ringbuf;
2270

2271
	if (I915_NEED_GFX_HWS(dev)) {
2272
		ret = init_status_page(engine);
2273
		if (ret)
2274
			goto error;
2275
	} else {
2276 2277
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2278
		if (ret)
2279
			goto error;
2280 2281
	}

2282 2283 2284
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2285
				engine->name, ret);
2286 2287
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2288
	}
2289

2290
	ret = i915_cmd_parser_init_ring(engine);
2291
	if (ret)
2292 2293 2294
		goto error;

	return 0;
2295

2296
error:
2297
	intel_cleanup_engine(engine);
2298
	return ret;
2299 2300
}

2301
void intel_cleanup_engine(struct intel_engine_cs *engine)
2302
{
2303
	struct drm_i915_private *dev_priv;
2304

2305
	if (!intel_engine_initialized(engine))
2306 2307
		return;

2308
	dev_priv = to_i915(engine->dev);
2309

2310
	if (engine->buffer) {
2311
		intel_stop_engine(engine);
2312
		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2313

2314 2315 2316
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2317
	}
2318

2319 2320
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2321

2322 2323
	if (I915_NEED_GFX_HWS(engine->dev)) {
		cleanup_status_page(engine);
2324
	} else {
2325 2326
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2327
	}
2328

2329 2330 2331
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
	engine->dev = NULL;
2332 2333
}

2334
static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2335
{
2336
	struct intel_ringbuffer *ringbuf = engine->buffer;
2337
	struct drm_i915_gem_request *request;
2338 2339
	unsigned space;
	int ret;
2340

2341 2342
	if (intel_ring_space(ringbuf) >= n)
		return 0;
2343

2344 2345 2346
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

2347
	list_for_each_entry(request, &engine->request_list, list) {
2348 2349 2350
		space = __intel_ring_space(request->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= n)
2351 2352 2353
			break;
	}

2354
	if (WARN_ON(&request->list == &engine->request_list))
2355 2356
		return -ENOSPC;

2357
	ret = i915_wait_request(request);
2358 2359 2360
	if (ret)
		return ret;

2361
	ringbuf->space = space;
2362 2363 2364
	return 0;
}

2365
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2366 2367
{
	uint32_t __iomem *virt;
2368
	int rem = ringbuf->size - ringbuf->tail;
2369

2370
	virt = ringbuf->virtual_start + ringbuf->tail;
2371 2372 2373 2374
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

2375
	ringbuf->tail = 0;
2376
	intel_ring_update_space(ringbuf);
2377 2378
}

2379
int intel_engine_idle(struct intel_engine_cs *engine)
2380
{
2381
	struct drm_i915_gem_request *req;
2382 2383

	/* Wait upon the last request to be completed */
2384
	if (list_empty(&engine->request_list))
2385 2386
		return 0;

2387 2388 2389
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2390 2391 2392

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2393 2394
				   atomic_read(&to_i915(engine->dev)->gpu_error.reset_counter),
				   to_i915(engine->dev)->mm.interruptible,
2395
				   NULL, NULL);
2396 2397
}

2398
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2399
{
2400
	request->ringbuf = request->engine->buffer;
2401
	return 0;
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_ring_begin(request, 0);
}

2419 2420
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
{
2421
	WARN_ON(ringbuf->reserved_size);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size = size;
}

void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(ringbuf->reserved_in_use);

	ringbuf->reserved_in_use = true;
	ringbuf->reserved_tail   = ringbuf->tail;
}

void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
{
	WARN_ON(!ringbuf->reserved_in_use);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	if (ringbuf->tail > ringbuf->reserved_tail) {
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
		     "request reserved size too small: %d vs %d!\n",
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
	} else {
		/*
		 * The ring was wrapped while the reserved space was in use.
		 * That means that some unknown amount of the ring tail was
		 * no-op filled and skipped. Thus simply adding the ring size
		 * to the tail and doing the above space check will not work.
		 * Rather than attempt to track how much tail was skipped,
		 * it is much simpler to say that also skipping the sanity
		 * check every once in a while is not a big issue.
		 */
	}
2461 2462 2463 2464 2465

	ringbuf->reserved_size   = 0;
	ringbuf->reserved_in_use = false;
}

2466
static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
M
Mika Kuoppala 已提交
2467
{
2468
	struct intel_ringbuffer *ringbuf = engine->buffer;
2469 2470 2471 2472
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
2473

2474 2475 2476 2477
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
2490 2491 2492
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
2493 2494 2495 2496 2497
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
2498
		}
M
Mika Kuoppala 已提交
2499 2500
	}

2501
	if (wait_bytes) {
2502
		ret = ring_wait_for_space(engine, wait_bytes);
M
Mika Kuoppala 已提交
2503 2504
		if (unlikely(ret))
			return ret;
2505 2506 2507

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
M
Mika Kuoppala 已提交
2508 2509 2510 2511 2512
	}

	return 0;
}

2513
int intel_ring_begin(struct drm_i915_gem_request *req,
2514
		     int num_dwords)
2515
{
2516
	struct intel_engine_cs *engine;
2517
	struct drm_i915_private *dev_priv;
2518
	int ret;
2519

2520
	WARN_ON(req == NULL);
2521
	engine = req->engine;
2522
	dev_priv = req->i915;
2523

2524 2525
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
2526 2527
	if (ret)
		return ret;
2528

2529
	ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2530 2531 2532
	if (ret)
		return ret;

2533
	engine->buffer->space -= num_dwords * sizeof(uint32_t);
2534
	return 0;
2535
}
2536

2537
/* Align the ring tail to a cacheline boundary */
2538
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2539
{
2540
	struct intel_engine_cs *engine = req->engine;
2541
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2542 2543 2544 2545 2546
	int ret;

	if (num_dwords == 0)
		return 0;

2547
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2548
	ret = intel_ring_begin(req, num_dwords);
2549 2550 2551 2552
	if (ret)
		return ret;

	while (num_dwords--)
2553
		intel_ring_emit(engine, MI_NOOP);
2554

2555
	intel_ring_advance(engine);
2556 2557 2558 2559

	return 0;
}

2560
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2561
{
2562
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2563

2564 2565 2566 2567 2568 2569 2570 2571
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2572
	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2573 2574
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2575
		if (HAS_VEBOX(dev_priv))
2576
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2577
	}
2578 2579 2580 2581 2582 2583 2584 2585
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2586 2587
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2588

2589
	engine->set_seqno(engine, seqno);
2590
	engine->last_submitted_seqno = seqno;
2591

2592
	engine->hangcheck.seqno = seqno;
2593
}
2594

2595
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2596
				     u32 value)
2597
{
2598
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2599 2600

       /* Every tail move must follow the sequence below */
2601 2602 2603 2604

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2605
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2606 2607 2608 2609
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	/* Clear the context id. Here be magic! */
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2610

2611
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2612
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2613 2614 2615
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
		     50))
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2616

2617
	/* Now that the ring is fully powered up, update the tail */
2618 2619
	I915_WRITE_TAIL(engine, value);
	POSTING_READ(RING_TAIL(engine->mmio_base));
2620 2621 2622 2623

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2624
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2625
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2626 2627
}

2628
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2629
			       u32 invalidate, u32 flush)
2630
{
2631
	struct intel_engine_cs *engine = req->engine;
2632
	uint32_t cmd;
2633 2634
	int ret;

2635
	ret = intel_ring_begin(req, 4);
2636 2637 2638
	if (ret)
		return ret;

2639
	cmd = MI_FLUSH_DW;
2640
	if (INTEL_INFO(engine->dev)->gen >= 8)
B
Ben Widawsky 已提交
2641
		cmd += 1;
2642 2643 2644 2645 2646 2647 2648 2649

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2650 2651 2652 2653 2654 2655
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2656
	if (invalidate & I915_GEM_GPU_DOMAINS)
2657 2658
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2659 2660 2661 2662 2663 2664
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
	if (INTEL_INFO(engine->dev)->gen >= 8) {
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2665
	} else  {
2666 2667
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2668
	}
2669
	intel_ring_advance(engine);
2670
	return 0;
2671 2672
}

2673
static int
2674
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2675
			      u64 offset, u32 len,
2676
			      unsigned dispatch_flags)
2677
{
2678
	struct intel_engine_cs *engine = req->engine;
2679
	bool ppgtt = USES_PPGTT(engine->dev) &&
2680
			!(dispatch_flags & I915_DISPATCH_SECURE);
2681 2682
	int ret;

2683
	ret = intel_ring_begin(req, 4);
2684 2685 2686 2687
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2688
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2689 2690
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2691 2692 2693 2694
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2695 2696 2697 2698

	return 0;
}

2699
static int
2700
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2701 2702
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2703
{
2704
	struct intel_engine_cs *engine = req->engine;
2705 2706
	int ret;

2707
	ret = intel_ring_begin(req, 2);
2708 2709 2710
	if (ret)
		return ret;

2711
	intel_ring_emit(engine,
2712
			MI_BATCH_BUFFER_START |
2713
			(dispatch_flags & I915_DISPATCH_SECURE ?
2714 2715 2716
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2717
	/* bit0-7 is the length on GEN6+ */
2718 2719
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2720 2721 2722 2723

	return 0;
}

2724
static int
2725
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2726
			      u64 offset, u32 len,
2727
			      unsigned dispatch_flags)
2728
{
2729
	struct intel_engine_cs *engine = req->engine;
2730
	int ret;
2731

2732
	ret = intel_ring_begin(req, 2);
2733 2734
	if (ret)
		return ret;
2735

2736
	intel_ring_emit(engine,
2737
			MI_BATCH_BUFFER_START |
2738 2739
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2740
	/* bit0-7 is the length on GEN6+ */
2741 2742
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2743

2744
	return 0;
2745 2746
}

2747 2748
/* Blitter support (SandyBridge+) */

2749
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2750
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2751
{
2752
	struct intel_engine_cs *engine = req->engine;
2753
	struct drm_device *dev = engine->dev;
2754
	uint32_t cmd;
2755 2756
	int ret;

2757
	ret = intel_ring_begin(req, 4);
2758 2759 2760
	if (ret)
		return ret;

2761
	cmd = MI_FLUSH_DW;
2762
	if (INTEL_INFO(dev)->gen >= 8)
B
Ben Widawsky 已提交
2763
		cmd += 1;
2764 2765 2766 2767 2768 2769 2770 2771

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2772 2773 2774 2775 2776 2777
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2778
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2779
		cmd |= MI_INVALIDATE_TLB;
2780 2781 2782
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2783
	if (INTEL_INFO(dev)->gen >= 8) {
2784 2785
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2786
	} else  {
2787 2788
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2789
	}
2790
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2791

2792
	return 0;
Z
Zou Nan hai 已提交
2793 2794
}

2795 2796
int intel_init_render_ring_buffer(struct drm_device *dev)
{
2797
	struct drm_i915_private *dev_priv = dev->dev_private;
2798
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2799 2800
	struct drm_i915_gem_object *obj;
	int ret;
2801

2802 2803 2804 2805
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->mmio_base = RENDER_RING_BASE;
2806

B
Ben Widawsky 已提交
2807
	if (INTEL_INFO(dev)->gen >= 8) {
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		if (i915_semaphore_is_enabled(dev)) {
			obj = i915_gem_alloc_object(dev, 4096);
			if (obj == NULL) {
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
				if (ret != 0) {
					drm_gem_object_unreference(&obj->base);
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
					i915.semaphores = 0;
				} else
					dev_priv->semaphore_obj = obj;
			}
		}
2824

2825 2826 2827 2828 2829 2830 2831 2832
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen8_render_ring_flush;
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
		engine->get_seqno = gen6_ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2833
		if (i915_semaphore_is_enabled(dev)) {
2834
			WARN_ON(!dev_priv->semaphore_obj);
2835 2836 2837
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_rcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2838 2839
		}
	} else if (INTEL_INFO(dev)->gen >= 6) {
2840 2841 2842
		engine->init_context = intel_rcs_ctx_init;
		engine->add_request = gen6_add_request;
		engine->flush = gen7_render_ring_flush;
2843
		if (INTEL_INFO(dev)->gen == 6)
2844 2845 2846 2847 2848 2849
			engine->flush = gen6_render_ring_flush;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
		engine->get_seqno = gen6_ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
B
Ben Widawsky 已提交
2850
		if (i915_semaphore_is_enabled(dev)) {
2851 2852
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
B
Ben Widawsky 已提交
2853 2854 2855 2856 2857 2858 2859
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between RCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between VCS2 and RCS later.
			 */
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2870
		}
2871
	} else if (IS_GEN5(dev)) {
2872 2873 2874 2875 2876 2877 2878
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->get_seqno = pc_render_get_seqno;
		engine->set_seqno = pc_render_set_seqno;
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2879
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2880
	} else {
2881
		engine->add_request = i9xx_add_request;
2882
		if (INTEL_INFO(dev)->gen < 4)
2883
			engine->flush = gen2_render_ring_flush;
2884
		else
2885 2886 2887
			engine->flush = gen4_render_ring_flush;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
C
Chris Wilson 已提交
2888
		if (IS_GEN2(dev)) {
2889 2890
			engine->irq_get = i8xx_ring_get_irq;
			engine->irq_put = i8xx_ring_put_irq;
C
Chris Wilson 已提交
2891
		} else {
2892 2893
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
C
Chris Wilson 已提交
2894
		}
2895
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2896
	}
2897
	engine->write_tail = ring_write_tail;
B
Ben Widawsky 已提交
2898

2899
	if (IS_HASWELL(dev))
2900
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2901
	else if (IS_GEN8(dev))
2902
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2903
	else if (INTEL_INFO(dev)->gen >= 6)
2904
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2905
	else if (INTEL_INFO(dev)->gen >= 4)
2906
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2907
	else if (IS_I830(dev) || IS_845G(dev))
2908
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2909
	else
2910 2911 2912
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2913

2914 2915
	/* Workaround batchbuffer to combat CS tlb bug. */
	if (HAS_BROKEN_CS_TLB(dev)) {
2916
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2917 2918 2919 2920 2921
		if (obj == NULL) {
			DRM_ERROR("Failed to allocate batch bo\n");
			return -ENOMEM;
		}

2922
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2923 2924 2925 2926 2927 2928
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

2929 2930
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2931 2932
	}

2933
	ret = intel_init_ring_buffer(dev, engine);
2934 2935 2936 2937
	if (ret)
		return ret;

	if (INTEL_INFO(dev)->gen >= 5) {
2938
		ret = intel_init_pipe_control(engine);
2939 2940 2941 2942 2943
		if (ret)
			return ret;
	}

	return 0;
2944 2945 2946 2947
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
2948
	struct drm_i915_private *dev_priv = dev->dev_private;
2949
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2950

2951 2952 2953
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
2954

2955
	engine->write_tail = ring_write_tail;
2956
	if (INTEL_INFO(dev)->gen >= 6) {
2957
		engine->mmio_base = GEN6_BSD_RING_BASE;
2958 2959
		/* gen6 bsd needs a special wa for tail updates */
		if (IS_GEN6(dev))
2960 2961 2962 2963 2964
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
		engine->add_request = gen6_add_request;
		engine->get_seqno = gen6_ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
2965
		if (INTEL_INFO(dev)->gen >= 8) {
2966
			engine->irq_enable_mask =
2967
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2968 2969 2970
			engine->irq_get = gen8_ring_get_irq;
			engine->irq_put = gen8_ring_put_irq;
			engine->dispatch_execbuffer =
2971
				gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2972
			if (i915_semaphore_is_enabled(dev)) {
2973 2974 2975
				engine->semaphore.sync_to = gen8_ring_sync;
				engine->semaphore.signal = gen8_xcs_signal;
				GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
2976
			}
2977
		} else {
2978 2979 2980 2981
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
			engine->irq_get = gen6_ring_get_irq;
			engine->irq_put = gen6_ring_put_irq;
			engine->dispatch_execbuffer =
2982
				gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
2983
			if (i915_semaphore_is_enabled(dev)) {
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
				engine->semaphore.sync_to = gen6_ring_sync;
				engine->semaphore.signal = gen6_signal;
				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
2996
			}
2997
		}
2998
	} else {
2999 3000 3001 3002 3003
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
		engine->add_request = i9xx_add_request;
		engine->get_seqno = ring_get_seqno;
		engine->set_seqno = ring_set_seqno;
3004
		if (IS_GEN5(dev)) {
3005 3006 3007
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
			engine->irq_get = gen5_ring_get_irq;
			engine->irq_put = gen5_ring_put_irq;
3008
		} else {
3009 3010 3011
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
			engine->irq_get = i9xx_ring_get_irq;
			engine->irq_put = i9xx_ring_put_irq;
3012
		}
3013
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3014
	}
3015
	engine->init_hw = init_ring_common;
3016

3017
	return intel_init_ring_buffer(dev, engine);
3018
}
3019

3020
/**
3021
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3022 3023 3024 3025
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3026
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;

	engine->write_tail = ring_write_tail;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
	engine->flush = gen6_bsd_ring_flush;
	engine->add_request = gen6_add_request;
	engine->get_seqno = gen6_ring_get_seqno;
	engine->set_seqno = ring_set_seqno;
	engine->irq_enable_mask =
3039
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3040 3041 3042
	engine->irq_get = gen8_ring_get_irq;
	engine->irq_put = gen8_ring_put_irq;
	engine->dispatch_execbuffer =
3043
			gen8_ring_dispatch_execbuffer;
3044
	if (i915_semaphore_is_enabled(dev)) {
3045 3046 3047
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
		GEN8_RING_SEMAPHORE_INIT(engine);
3048
	}
3049
	engine->init_hw = init_ring_common;
3050

3051
	return intel_init_ring_buffer(dev, engine);
3052 3053
}

3054 3055
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3056
	struct drm_i915_private *dev_priv = dev->dev_private;
3057
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;

	engine->mmio_base = BLT_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
	engine->get_seqno = gen6_ring_get_seqno;
	engine->set_seqno = ring_set_seqno;
3069
	if (INTEL_INFO(dev)->gen >= 8) {
3070
		engine->irq_enable_mask =
3071
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3072 3073 3074
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3075
		if (i915_semaphore_is_enabled(dev)) {
3076 3077 3078
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3079
		}
3080
	} else {
3081 3082 3083 3084
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3085
		if (i915_semaphore_is_enabled(dev)) {
3086 3087
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.sync_to = gen6_ring_sync;
B
Ben Widawsky 已提交
3088 3089 3090 3091 3092 3093 3094
			/*
			 * The current semaphore is only applied on pre-gen8
			 * platform.  And there is no VCS2 ring on the pre-gen8
			 * platform. So the semaphore between BCS and VCS2 is
			 * initialized as INVALID.  Gen8 will initialize the
			 * sema between BCS and VCS2 later.
			 */
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3105
		}
3106
	}
3107
	engine->init_hw = init_ring_common;
3108

3109
	return intel_init_ring_buffer(dev, engine);
3110
}
3111

B
Ben Widawsky 已提交
3112 3113
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3114
	struct drm_i915_private *dev_priv = dev->dev_private;
3115
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3116

3117 3118 3119
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
B
Ben Widawsky 已提交
3120

3121 3122 3123 3124 3125 3126
	engine->mmio_base = VEBOX_RING_BASE;
	engine->write_tail = ring_write_tail;
	engine->flush = gen6_ring_flush;
	engine->add_request = gen6_add_request;
	engine->get_seqno = gen6_ring_get_seqno;
	engine->set_seqno = ring_set_seqno;
3127 3128

	if (INTEL_INFO(dev)->gen >= 8) {
3129
		engine->irq_enable_mask =
3130
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3131 3132 3133
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3134
		if (i915_semaphore_is_enabled(dev)) {
3135 3136 3137
			engine->semaphore.sync_to = gen8_ring_sync;
			engine->semaphore.signal = gen8_xcs_signal;
			GEN8_RING_SEMAPHORE_INIT(engine);
B
Ben Widawsky 已提交
3138
		}
3139
	} else {
3140 3141 3142 3143
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
B
Ben Widawsky 已提交
3144
		if (i915_semaphore_is_enabled(dev)) {
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
			engine->semaphore.sync_to = gen6_ring_sync;
			engine->semaphore.signal = gen6_signal;
			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
B
Ben Widawsky 已提交
3157
		}
3158
	}
3159
	engine->init_hw = init_ring_common;
B
Ben Widawsky 已提交
3160

3161
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3162 3163
}

3164
int
3165
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3166
{
3167
	struct intel_engine_cs *engine = req->engine;
3168 3169
	int ret;

3170
	if (!engine->gpu_caches_dirty)
3171 3172
		return 0;

3173
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3174 3175 3176
	if (ret)
		return ret;

3177
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3178

3179
	engine->gpu_caches_dirty = false;
3180 3181 3182 3183
	return 0;
}

int
3184
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3185
{
3186
	struct intel_engine_cs *engine = req->engine;
3187 3188 3189 3190
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3191
	if (engine->gpu_caches_dirty)
3192 3193
		flush_domains = I915_GEM_GPU_DOMAINS;

3194
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3195 3196 3197
	if (ret)
		return ret;

3198
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3199

3200
	engine->gpu_caches_dirty = false;
3201 3202
	return 0;
}
3203 3204

void
3205
intel_stop_engine(struct intel_engine_cs *engine)
3206 3207 3208
{
	int ret;

3209
	if (!intel_engine_initialized(engine))
3210 3211
		return;

3212
	ret = intel_engine_idle(engine);
3213
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
3214
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3215
			  engine->name, ret);
3216

3217
	stop_ring(engine);
3218
}