intel_ringbuffer.c 74.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (INTEL_GEN(dev_priv) > 2) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (INTEL_GEN(dev_priv) > 2) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (I915_NEED_GFX_HWS(dev_priv))
563
		intel_ring_setup_status_page(engine);
564
	else
565
		ring_setup_phys_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
589
		     I915_READ_START(engine) == i915_ggtt_offset(ring->vma) &&
590
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08x]\n",
593 594 595 596 597
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
598
			  i915_ggtt_offset(ring->vma));
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
617
{
618
	struct intel_ring *ring = req->ring;
619 620
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
621

622
	if (w->count == 0)
623
		return 0;
624

625
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
626 627
	if (ret)
		return ret;
628

629
	ret = intel_ring_begin(req, (w->count * 2 + 2));
630 631 632
	if (ret)
		return ret;

633
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
634
	for (i = 0; i < w->count; i++) {
635 636
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
637
	}
638
	intel_ring_emit(ring, MI_NOOP);
639

640
	intel_ring_advance(ring);
641

642
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
643 644
	if (ret)
		return ret;
645

646
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
647

648
	return 0;
649 650
}

651
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
652 653 654
{
	int ret;

655
	ret = intel_ring_workarounds_emit(req);
656 657 658
	if (ret != 0)
		return ret;

659
	ret = i915_gem_render_state_init(req);
660
	if (ret)
661
		return ret;
662

663
	return 0;
664 665
}

666
static int wa_add(struct drm_i915_private *dev_priv,
667 668
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
669 670 671 672 673 674 675 676 677 678 679 680 681
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
682 683
}

684
#define WA_REG(addr, mask, val) do { \
685
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
686 687
		if (r) \
			return r; \
688
	} while (0)
689 690

#define WA_SET_BIT_MASKED(addr, mask) \
691
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
692 693

#define WA_CLR_BIT_MASKED(addr, mask) \
694
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
695

696
#define WA_SET_FIELD_MASKED(addr, mask, value) \
697
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
698

699 700
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
701

702
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
703

704 705
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
706
{
707
	struct drm_i915_private *dev_priv = engine->i915;
708
	struct i915_workarounds *wa = &dev_priv->workarounds;
709
	const uint32_t index = wa->hw_whitelist_count[engine->id];
710 711 712 713

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

714
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
715
		 i915_mmio_reg_offset(reg));
716
	wa->hw_whitelist_count[engine->id]++;
717 718 719 720

	return 0;
}

721
static int gen8_init_workarounds(struct intel_engine_cs *engine)
722
{
723
	struct drm_i915_private *dev_priv = engine->i915;
724 725

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
726

727 728 729
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

730 731 732 733
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

734 735 736 737 738
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
739
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
740
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
741
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
742 743
			  HDC_FORCE_NON_COHERENT);

744 745 746 747 748 749 750 751 752 753
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

754 755 756
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

757 758 759 760 761 762 763 764 765 766 767 768
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

769 770 771
	return 0;
}

772
static int bdw_init_workarounds(struct intel_engine_cs *engine)
773
{
774
	struct drm_i915_private *dev_priv = engine->i915;
775
	int ret;
776

777
	ret = gen8_init_workarounds(engine);
778 779 780
	if (ret)
		return ret;

781
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
782
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
783

784
	/* WaDisableDopClockGating:bdw */
785 786
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
787

788 789
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
790

791
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
792 793 794
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
795
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
796 797 798 799

	return 0;
}

800
static int chv_init_workarounds(struct intel_engine_cs *engine)
801
{
802
	struct drm_i915_private *dev_priv = engine->i915;
803
	int ret;
804

805
	ret = gen8_init_workarounds(engine);
806 807 808
	if (ret)
		return ret;

809
	/* WaDisableThreadStallDopClockGating:chv */
810
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
811

812 813 814
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

815 816 817
	return 0;
}

818
static int gen9_init_workarounds(struct intel_engine_cs *engine)
819
{
820
	struct drm_i915_private *dev_priv = engine->i915;
821
	int ret;
822

823 824 825
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

826
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
827 828 829
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

830
	/* WaDisableKillLogic:bxt,skl,kbl */
831 832 833
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

834 835
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
836
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
837
			  FLOW_CONTROL_ENABLE |
838 839
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

840
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
841 842 843
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

844
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
845 846
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
847 848
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
849

850
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
851 852
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
853 854
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
855 856 857 858 859
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
860 861
	}

862 863
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
864 865 866
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
867

868 869
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
870 871
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
872

873
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
874 875 876
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

877
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
878 879
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
880 881 882
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

883 884 885 886
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

909 910 911 912
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
913 914 915
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

916
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
917 918
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

919
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
920 921 922
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

923 924 925 926 927
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

928
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
929
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
930 931 932
	if (ret)
		return ret;

933
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
934
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
935 936 937
	if (ret)
		return ret;

938 939 940
	return 0;
}

941
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
942
{
943
	struct drm_i915_private *dev_priv = engine->i915;
944 945 946 947 948 949 950 951 952 953
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
954
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

982
static int skl_init_workarounds(struct intel_engine_cs *engine)
983
{
984
	struct drm_i915_private *dev_priv = engine->i915;
985
	int ret;
986

987
	ret = gen9_init_workarounds(engine);
988 989
	if (ret)
		return ret;
990

991 992 993 994 995
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
996
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
997 998 999 1000
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1001
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1002 1003 1004 1005 1006 1007 1008 1009
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1010
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1011 1012 1013 1014 1015
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1016
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1017 1018 1019 1020
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1021
	/* WaDisablePowerCompilerClockGating:skl */
1022
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1023 1024 1025
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1026
	/* WaBarrierPerformanceFixDisable:skl */
1027
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1028 1029 1030 1031
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1032
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1033
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1034 1035 1036 1037
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1038 1039 1040
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1041 1042 1043 1044 1045
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1046
	/* WaDisableLSQCROPERFforOCL:skl */
1047
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1048 1049 1050
	if (ret)
		return ret;

1051
	return skl_tune_iz_hashing(engine);
1052 1053
}

1054
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1055
{
1056
	struct drm_i915_private *dev_priv = engine->i915;
1057
	int ret;
1058

1059
	ret = gen9_init_workarounds(engine);
1060 1061
	if (ret)
		return ret;
1062

1063 1064
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1065
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1066 1067 1068
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1069
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1070 1071 1072 1073
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1074 1075 1076 1077
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1078 1079 1080 1081 1082 1083
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1084
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1085
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1086 1087 1088 1089 1090
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1091 1092 1093
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1094
	/* WaDisableLSQCROPERFforOCL:bxt */
1095
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1096
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1097 1098
		if (ret)
			return ret;
1099

1100
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1101 1102
		if (ret)
			return ret;
1103 1104
	}

1105
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1106
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1107 1108
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1109

1110 1111
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1112 1113 1114
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1115 1116 1117 1118 1119
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1120 1121 1122
	return 0;
}

1123 1124
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1125
	struct drm_i915_private *dev_priv = engine->i915;
1126 1127 1128 1129 1130 1131
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1132 1133 1134 1135
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1136 1137 1138 1139 1140
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1141 1142 1143 1144 1145
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1146 1147 1148 1149 1150 1151 1152 1153
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1154 1155
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1156 1157 1158
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1159 1160 1161
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1162 1163 1164 1165 1166
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1167 1168 1169 1170
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1171 1172 1173 1174 1175
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1176 1177 1178
	return 0;
}

1179
int init_workarounds_ring(struct intel_engine_cs *engine)
1180
{
1181
	struct drm_i915_private *dev_priv = engine->i915;
1182

1183
	WARN_ON(engine->id != RCS);
1184 1185

	dev_priv->workarounds.count = 0;
1186
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1187

1188
	if (IS_BROADWELL(dev_priv))
1189
		return bdw_init_workarounds(engine);
1190

1191
	if (IS_CHERRYVIEW(dev_priv))
1192
		return chv_init_workarounds(engine);
1193

1194
	if (IS_SKYLAKE(dev_priv))
1195
		return skl_init_workarounds(engine);
1196

1197
	if (IS_BROXTON(dev_priv))
1198
		return bxt_init_workarounds(engine);
1199

1200 1201 1202
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1203 1204 1205
	return 0;
}

1206
static int init_render_ring(struct intel_engine_cs *engine)
1207
{
1208
	struct drm_i915_private *dev_priv = engine->i915;
1209
	int ret = init_ring_common(engine);
1210 1211
	if (ret)
		return ret;
1212

1213
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1214
	if (IS_GEN(dev_priv, 4, 6))
1215
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1216 1217 1218 1219

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1220
	 *
1221
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1222
	 */
1223
	if (IS_GEN(dev_priv, 6, 7))
1224 1225
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1226
	/* Required for the hardware to program scanline values for waiting */
1227
	/* WaEnableFlushTlbInvalidationMode:snb */
1228
	if (IS_GEN6(dev_priv))
1229
		I915_WRITE(GFX_MODE,
1230
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1231

1232
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1233
	if (IS_GEN7(dev_priv))
1234
		I915_WRITE(GFX_MODE_GEN7,
1235
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1236
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1237

1238
	if (IS_GEN6(dev_priv)) {
1239 1240 1241 1242 1243 1244
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1245
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1246 1247
	}

1248
	if (IS_GEN(dev_priv, 6, 7))
1249
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1250

1251 1252
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1253

1254
	return init_workarounds_ring(engine);
1255 1256
}

1257
static void render_ring_cleanup(struct intel_engine_cs *engine)
1258
{
1259
	struct drm_i915_private *dev_priv = engine->i915;
1260

1261
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1262 1263
}

1264
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1265
{
1266 1267
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1268
	struct intel_engine_cs *waiter;
1269 1270
	enum intel_engine_id id;
	int ret, num_rings;
1271

1272
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1273
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1274 1275 1276
	if (ret)
		return ret;

1277
	for_each_engine_id(waiter, dev_priv, id) {
1278
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1279 1280 1281
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1282 1283
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1284 1285 1286
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1287 1288 1289 1290 1291
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1292 1293
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1294
		intel_ring_emit(ring, 0);
1295
	}
1296
	intel_ring_advance(ring);
1297 1298 1299 1300

	return 0;
}

1301
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1302
{
1303 1304
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1305
	struct intel_engine_cs *waiter;
1306 1307
	enum intel_engine_id id;
	int ret, num_rings;
1308

1309
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1310
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1311 1312 1313
	if (ret)
		return ret;

1314
	for_each_engine_id(waiter, dev_priv, id) {
1315
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1316 1317 1318
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1319
		intel_ring_emit(ring,
1320
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1321
		intel_ring_emit(ring,
1322 1323
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1324 1325 1326
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1327 1328
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1329
		intel_ring_emit(ring, 0);
1330
	}
1331
	intel_ring_advance(ring);
1332 1333 1334 1335

	return 0;
}

1336
static int gen6_signal(struct drm_i915_gem_request *req)
1337
{
1338 1339
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1340
	struct intel_engine_cs *useless;
1341 1342
	enum intel_engine_id id;
	int ret, num_rings;
1343

1344
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1345
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1346 1347 1348
	if (ret)
		return ret;

1349
	for_each_engine_id(useless, dev_priv, id) {
1350
		i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1351 1352

		if (i915_mmio_reg_valid(mbox_reg)) {
1353 1354 1355
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1356 1357
		}
	}
1358

1359 1360
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1361 1362
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1363

1364
	return 0;
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1376
{
1377
	struct intel_ring *ring = req->ring;
1378
	int ret;
1379

1380
	ret = intel_ring_begin(req, 4);
1381 1382 1383
	if (ret)
		return ret;

1384 1385 1386 1387
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1388 1389 1390
	intel_ring_advance(ring);

	req->tail = ring->tail;
1391 1392 1393 1394

	return 0;
}

1395
/**
1396
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1397 1398 1399 1400 1401 1402
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1403
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1404
{
1405
	int ret;
1406

1407 1408 1409
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1410 1411 1412 1413

	return i9xx_emit_request(req);
}

1414
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1415 1416
{
	struct intel_engine_cs *engine = req->engine;
1417
	struct intel_ring *ring = req->ring;
1418 1419
	int ret;

1420 1421 1422 1423 1424 1425 1426
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1427 1428 1429
	if (ret)
		return ret;

1430 1431 1432 1433 1434 1435 1436
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1437
	/* We're thrashing one dword of HWS. */
1438 1439 1440
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1441
	intel_ring_advance(ring);
1442 1443

	req->tail = ring->tail;
1444 1445 1446 1447

	return 0;
}

1448 1449 1450 1451 1452 1453 1454
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1455 1456

static int
1457 1458
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1459
{
1460 1461 1462
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1463
	struct i915_hw_ppgtt *ppgtt;
1464 1465
	int ret;

1466
	ret = intel_ring_begin(req, 4);
1467 1468 1469
	if (ret)
		return ret;

1470 1471 1472 1473 1474 1475 1476 1477
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1478 1479 1480 1481 1482 1483

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1484 1485 1486
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1487 1488 1489
	return 0;
}

1490
static int
1491 1492
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1493
{
1494
	struct intel_ring *ring = req->ring;
1495 1496 1497
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1498
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1499
	int ret;
1500

1501
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1502

1503
	ret = intel_ring_begin(req, 4);
1504 1505 1506
	if (ret)
		return ret;

1507
	intel_ring_emit(ring, dw1 | wait_mbox);
1508 1509 1510 1511
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1512 1513 1514 1515
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1516 1517 1518 1519

	return 0;
}

1520
static void
1521
gen5_seqno_barrier(struct intel_engine_cs *engine)
1522
{
1523 1524 1525
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1526
	 *
1527 1528 1529 1530 1531 1532 1533
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1534
	 */
1535
	usleep_range(125, 250);
1536 1537
}

1538 1539
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1540
{
1541
	struct drm_i915_private *dev_priv = engine->i915;
1542

1543 1544
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1545 1546 1547 1548 1549 1550 1551 1552 1553
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1554 1555 1556
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1557
	 */
1558
	spin_lock_irq(&dev_priv->uncore.lock);
1559
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1560
	spin_unlock_irq(&dev_priv->uncore.lock);
1561 1562
}

1563 1564
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1565
{
1566
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1567 1568 1569
}

static void
1570
gen5_irq_disable(struct intel_engine_cs *engine)
1571
{
1572
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1573 1574
}

1575 1576
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1577
{
1578
	struct drm_i915_private *dev_priv = engine->i915;
1579

1580 1581 1582
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1583 1584
}

1585
static void
1586
i9xx_irq_disable(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589

1590 1591
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1592 1593
}

1594 1595
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1596
{
1597
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1598

1599 1600 1601
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1602 1603 1604
}

static void
1605
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1606
{
1607
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1608

1609 1610
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1611 1612
}

1613
static int
1614
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1615
{
1616
	struct intel_ring *ring = req->ring;
1617 1618
	int ret;

1619
	ret = intel_ring_begin(req, 2);
1620 1621 1622
	if (ret)
		return ret;

1623 1624 1625
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1626
	return 0;
1627 1628
}

1629 1630
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1631
{
1632
	struct drm_i915_private *dev_priv = engine->i915;
1633

1634 1635 1636
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1637
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1638 1639 1640
}

static void
1641
gen6_irq_disable(struct intel_engine_cs *engine)
1642
{
1643
	struct drm_i915_private *dev_priv = engine->i915;
1644

1645
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1646
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1647 1648
}

1649 1650
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1651
{
1652
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1653

1654 1655
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1656 1657 1658
}

static void
1659
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1660
{
1661
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1662

1663 1664
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1665 1666
}

1667 1668
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1669
{
1670
	struct drm_i915_private *dev_priv = engine->i915;
1671

1672 1673 1674
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1675
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1676 1677 1678
}

static void
1679
gen8_irq_disable(struct intel_engine_cs *engine)
1680
{
1681
	struct drm_i915_private *dev_priv = engine->i915;
1682

1683
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1684 1685
}

1686
static int
1687 1688 1689
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1690
{
1691
	struct intel_ring *ring = req->ring;
1692
	int ret;
1693

1694
	ret = intel_ring_begin(req, 2);
1695 1696 1697
	if (ret)
		return ret;

1698
	intel_ring_emit(ring,
1699 1700
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1701 1702
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1703 1704
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1705

1706 1707 1708
	return 0;
}

1709 1710
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1711 1712
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1713
static int
1714 1715 1716
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1717
{
1718
	struct intel_ring *ring = req->ring;
1719
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1720
	int ret;
1721

1722
	ret = intel_ring_begin(req, 6);
1723 1724
	if (ret)
		return ret;
1725

1726
	/* Evict the invalid PTE TLBs */
1727 1728 1729 1730 1731 1732 1733
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1734

1735
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1736 1737 1738
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1739
		ret = intel_ring_begin(req, 6 + 2);
1740 1741
		if (ret)
			return ret;
1742 1743 1744 1745 1746

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1747 1748
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1749
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1750 1751 1752 1753
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1754

1755 1756 1757
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1758 1759

		/* ... and execute it. */
1760
		offset = cs_offset;
1761
	}
1762

1763
	ret = intel_ring_begin(req, 2);
1764 1765 1766
	if (ret)
		return ret;

1767 1768 1769 1770
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1771

1772 1773 1774 1775
	return 0;
}

static int
1776 1777 1778
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1779
{
1780
	struct intel_ring *ring = req->ring;
1781 1782
	int ret;

1783
	ret = intel_ring_begin(req, 2);
1784 1785 1786
	if (ret)
		return ret;

1787 1788 1789 1790
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1791 1792 1793 1794

	return 0;
}

1795
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1796
{
1797
	struct drm_i915_private *dev_priv = engine->i915;
1798 1799 1800 1801

	if (!dev_priv->status_page_dmah)
		return;

1802
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1803
	engine->status_page.page_addr = NULL;
1804 1805
}

1806
static void cleanup_status_page(struct intel_engine_cs *engine)
1807
{
1808
	struct i915_vma *vma;
1809

1810 1811
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1812 1813
		return;

1814 1815 1816
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1817 1818
}

1819
static int init_status_page(struct intel_engine_cs *engine)
1820
{
1821 1822 1823 1824
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1825

1826 1827 1828 1829 1830
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1831

1832 1833 1834
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1835

1836 1837 1838 1839
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1840
	}
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1858

1859
	engine->status_page.vma = vma;
1860
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1861 1862
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1863

1864 1865
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1866
	return 0;
1867 1868 1869 1870

err:
	i915_gem_object_put(obj);
	return ret;
1871 1872
}

1873
static int init_phys_status_page(struct intel_engine_cs *engine)
1874
{
1875
	struct drm_i915_private *dev_priv = engine->i915;
1876

1877 1878 1879 1880
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1881

1882 1883
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1884 1885 1886 1887

	return 0;
}

1888
int intel_ring_pin(struct intel_ring *ring)
1889
{
1890
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1891 1892
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
	struct i915_vma *vma = ring->vma;
1893
	void *addr;
1894 1895
	int ret;

1896
	GEM_BUG_ON(ring->vaddr);
1897

1898 1899
	if (ring->needs_iomap)
		flags |= PIN_MAPPABLE;
1900

1901 1902 1903 1904 1905 1906
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		if (flags & PIN_MAPPABLE)
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1907
			return ret;
1908
	}
1909

1910 1911 1912
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1913

1914 1915 1916 1917 1918 1919
	if (flags & PIN_MAPPABLE)
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
		addr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(addr))
		goto err;
1920

1921
	ring->vaddr = addr;
1922
	return 0;
1923

1924 1925 1926
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1927 1928
}

1929 1930 1931 1932 1933
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1934
	if (ring->needs_iomap)
1935
		i915_vma_unpin_iomap(ring->vma);
1936 1937
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1938 1939
	ring->vaddr = NULL;

1940
	i915_vma_unpin(ring->vma);
1941 1942
}

1943 1944
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1945
{
1946
	struct drm_i915_gem_object *obj;
1947
	struct i915_vma *vma;
1948

1949 1950 1951
	obj = ERR_PTR(-ENODEV);
	if (!HAS_LLC(dev_priv))
		obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1952
	if (IS_ERR(obj))
1953 1954 1955
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1956

1957 1958 1959
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1960 1961 1962 1963 1964
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1965

1966 1967 1968
err:
	i915_gem_object_put(obj);
	return vma;
1969 1970
}

1971 1972
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1973
{
1974
	struct intel_ring *ring;
1975
	struct i915_vma *vma;
1976

1977 1978
	GEM_BUG_ON(!is_power_of_2(size));

1979
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1980
	if (!ring)
1981 1982
		return ERR_PTR(-ENOMEM);

1983
	ring->engine = engine;
1984

1985 1986
	INIT_LIST_HEAD(&ring->request_list);

1987 1988 1989 1990 1991 1992
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1993
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1994 1995 1996 1997 1998
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1999 2000
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2001
		kfree(ring);
2002
		return ERR_CAST(vma);
2003
	}
2004 2005 2006
	ring->vma = vma;
	if (!HAS_LLC(engine->i915) || vma->obj->stolen)
		ring->needs_iomap = true;
2007

2008
	list_add(&ring->link, &engine->buffers);
2009 2010 2011 2012
	return ring;
}

void
2013
intel_ring_free(struct intel_ring *ring)
2014
{
2015
	i915_vma_put(ring->vma);
2016
	list_del(&ring->link);
2017 2018 2019
	kfree(ring);
}

2020 2021 2022 2023 2024 2025
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2026
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2027 2028 2029 2030 2031

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2032 2033 2034 2035
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2036 2037
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2038 2039 2040 2041
		if (ret)
			goto error;
	}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2052
	i915_gem_context_get(ctx);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2065
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2066 2067 2068 2069 2070

	if (--ce->pin_count)
		return;

	if (ce->state)
2071
		i915_vma_unpin(ce->state);
2072

2073
	i915_gem_context_put(ctx);
2074 2075
}

2076
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2077
{
2078
	struct drm_i915_private *dev_priv = engine->i915;
2079
	struct intel_ring *ring;
2080 2081
	int ret;

2082
	WARN_ON(engine->buffer);
2083

2084 2085
	intel_engine_setup_common(engine);

2086 2087
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2088

2089
	ret = intel_engine_init_common(engine);
2090 2091
	if (ret)
		goto error;
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2104 2105 2106
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2107 2108
		goto error;
	}
2109

2110
	if (I915_NEED_GFX_HWS(dev_priv)) {
2111
		ret = init_status_page(engine);
2112
		if (ret)
2113
			goto error;
2114
	} else {
2115 2116
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2117
		if (ret)
2118
			goto error;
2119 2120
	}

2121
	ret = intel_ring_pin(ring);
2122
	if (ret) {
2123
		intel_ring_free(ring);
2124
		goto error;
2125
	}
2126
	engine->buffer = ring;
2127

2128
	return 0;
2129

2130
error:
2131
	intel_engine_cleanup(engine);
2132
	return ret;
2133 2134
}

2135
void intel_engine_cleanup(struct intel_engine_cs *engine)
2136
{
2137
	struct drm_i915_private *dev_priv;
2138

2139
	if (!intel_engine_initialized(engine))
2140 2141
		return;

2142
	dev_priv = engine->i915;
2143

2144
	if (engine->buffer) {
2145 2146
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2147

2148
		intel_ring_unpin(engine->buffer);
2149
		intel_ring_free(engine->buffer);
2150
		engine->buffer = NULL;
2151
	}
2152

2153 2154
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2155

2156
	if (I915_NEED_GFX_HWS(dev_priv)) {
2157
		cleanup_status_page(engine);
2158
	} else {
2159 2160
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2161
	}
2162

2163
	intel_engine_cleanup_common(engine);
2164 2165 2166

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2167
	engine->i915 = NULL;
2168 2169
}

2170
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2171
{
2172 2173 2174 2175 2176 2177
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2178
	request->reserved_space += LEGACY_REQUEST_SIZE;
2179

2180
	request->ring = request->engine->buffer;
2181 2182 2183 2184 2185

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2186
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2187
	return 0;
2188 2189
}

2190 2191
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2192
	struct intel_ring *ring = req->ring;
2193
	struct drm_i915_gem_request *target;
2194
	int ret;
2195

2196 2197
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2209
	GEM_BUG_ON(!req->reserved_space);
2210

2211
	list_for_each_entry(target, &ring->request_list, ring_link) {
2212 2213 2214
		unsigned space;

		/* Would completion of this request free enough space? */
2215 2216
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2217 2218
		if (space >= bytes)
			break;
2219
	}
2220

2221
	if (WARN_ON(&target->ring_link == &ring->request_list))
2222 2223
		return -ENOSPC;

2224
	ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	if (ret)
		return ret;

	if (i915_reset_in_progress(&target->i915->gpu_error))
		return -EAGAIN;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2236 2237
}

2238
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2239
{
2240
	struct intel_ring *ring = req->ring;
2241 2242
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2243 2244
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2245
	bool need_wrap = false;
2246

2247
	total_bytes = bytes + req->reserved_space;
2248

2249 2250 2251 2252 2253 2254 2255
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2256 2257 2258 2259 2260 2261 2262
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2263
		wait_bytes = remain_actual + req->reserved_space;
2264
	} else {
2265 2266
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2267 2268
	}

2269
	if (wait_bytes > ring->space) {
2270
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2271 2272 2273 2274
		if (unlikely(ret))
			return ret;
	}

2275
	if (unlikely(need_wrap)) {
2276 2277
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2278

2279
		/* Fill the tail with MI_NOOP */
2280 2281 2282
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2283
	}
2284

2285 2286
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2287
	return 0;
2288
}
2289

2290
/* Align the ring tail to a cacheline boundary */
2291
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2292
{
2293
	struct intel_ring *ring = req->ring;
2294 2295
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2296 2297 2298 2299 2300
	int ret;

	if (num_dwords == 0)
		return 0;

2301
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2302
	ret = intel_ring_begin(req, num_dwords);
2303 2304 2305 2306
	if (ret)
		return ret;

	while (num_dwords--)
2307
		intel_ring_emit(ring, MI_NOOP);
2308

2309
	intel_ring_advance(ring);
2310 2311 2312 2313

	return 0;
}

2314
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2315
{
2316
	struct drm_i915_private *dev_priv = request->i915;
2317

2318 2319
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2320
       /* Every tail move must follow the sequence below */
2321 2322 2323 2324

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2325 2326
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2327 2328

	/* Clear the context id. Here be magic! */
2329
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2330

2331
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2332 2333 2334 2335 2336
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2337
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2338

2339
	/* Now that the ring is fully powered up, update the tail */
2340
	i9xx_submit_request(request);
2341 2342 2343 2344

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2345 2346 2347 2348
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2349 2350
}

2351
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2352
{
2353
	struct intel_ring *ring = req->ring;
2354
	uint32_t cmd;
2355 2356
	int ret;

2357
	ret = intel_ring_begin(req, 4);
2358 2359 2360
	if (ret)
		return ret;

2361
	cmd = MI_FLUSH_DW;
2362
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2363
		cmd += 1;
2364 2365 2366 2367 2368 2369 2370 2371

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2372 2373 2374 2375 2376 2377
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2378
	if (mode & EMIT_INVALIDATE)
2379 2380
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2381 2382
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2383
	if (INTEL_GEN(req->i915) >= 8) {
2384 2385
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2386
	} else  {
2387 2388
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2389
	}
2390
	intel_ring_advance(ring);
2391
	return 0;
2392 2393
}

2394
static int
2395 2396 2397
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2398
{
2399
	struct intel_ring *ring = req->ring;
2400
	bool ppgtt = USES_PPGTT(req->i915) &&
2401
			!(dispatch_flags & I915_DISPATCH_SECURE);
2402 2403
	int ret;

2404
	ret = intel_ring_begin(req, 4);
2405 2406 2407 2408
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2409
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2410 2411
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2412 2413 2414 2415
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2416 2417 2418 2419

	return 0;
}

2420
static int
2421 2422 2423
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2424
{
2425
	struct intel_ring *ring = req->ring;
2426 2427
	int ret;

2428
	ret = intel_ring_begin(req, 2);
2429 2430 2431
	if (ret)
		return ret;

2432
	intel_ring_emit(ring,
2433
			MI_BATCH_BUFFER_START |
2434
			(dispatch_flags & I915_DISPATCH_SECURE ?
2435 2436 2437
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2438
	/* bit0-7 is the length on GEN6+ */
2439 2440
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2441 2442 2443 2444

	return 0;
}

2445
static int
2446 2447 2448
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2449
{
2450
	struct intel_ring *ring = req->ring;
2451
	int ret;
2452

2453
	ret = intel_ring_begin(req, 2);
2454 2455
	if (ret)
		return ret;
2456

2457
	intel_ring_emit(ring,
2458
			MI_BATCH_BUFFER_START |
2459 2460
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2461
	/* bit0-7 is the length on GEN6+ */
2462 2463
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2464

2465
	return 0;
2466 2467
}

2468 2469
/* Blitter support (SandyBridge+) */

2470
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2471
{
2472
	struct intel_ring *ring = req->ring;
2473
	uint32_t cmd;
2474 2475
	int ret;

2476
	ret = intel_ring_begin(req, 4);
2477 2478 2479
	if (ret)
		return ret;

2480
	cmd = MI_FLUSH_DW;
2481
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2482
		cmd += 1;
2483 2484 2485 2486 2487 2488 2489 2490

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2491 2492 2493 2494 2495 2496
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2497
	if (mode & EMIT_INVALIDATE)
2498
		cmd |= MI_INVALIDATE_TLB;
2499 2500
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2501
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2502
	if (INTEL_GEN(req->i915) >= 8) {
2503 2504
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2505
	} else  {
2506 2507
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2508
	}
2509
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2510

2511
	return 0;
Z
Zou Nan hai 已提交
2512 2513
}

2514 2515 2516
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2517
	struct drm_i915_gem_object *obj;
2518
	int ret, i;
2519

2520
	if (!i915.semaphores)
2521 2522
		return;

2523 2524 2525
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2526
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2527 2528
		if (IS_ERR(obj))
			goto err;
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2544 2545

	if (INTEL_GEN(dev_priv) >= 8) {
2546
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2547

2548
		engine->semaphore.sync_to = gen8_ring_sync_to;
2549
		engine->semaphore.signal = gen8_xcs_signal;
2550 2551

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2552
			u32 ring_offset;
2553 2554 2555 2556 2557 2558 2559 2560

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2561
	} else if (INTEL_GEN(dev_priv) >= 6) {
2562
		engine->semaphore.sync_to = gen6_ring_sync_to;
2563
		engine->semaphore.signal = gen6_signal;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2612
	}
2613 2614 2615 2616 2617 2618 2619 2620

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2621 2622
}

2623 2624 2625
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2626 2627
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2628
	if (INTEL_GEN(dev_priv) >= 8) {
2629 2630
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2631 2632
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2633 2634
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2635 2636
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2637 2638
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2639
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2640
	} else if (INTEL_GEN(dev_priv) >= 3) {
2641 2642
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2643
	} else {
2644 2645
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2646 2647 2648
	}
}

2649 2650 2651
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2652 2653 2654
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2655
	engine->init_hw = init_ring_common;
2656

2657
	engine->emit_request = i9xx_emit_request;
2658 2659
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2660
	engine->submit_request = i9xx_submit_request;
2661 2662

	if (INTEL_GEN(dev_priv) >= 8)
2663
		engine->emit_bb_start = gen8_emit_bb_start;
2664
	else if (INTEL_GEN(dev_priv) >= 6)
2665
		engine->emit_bb_start = gen6_emit_bb_start;
2666
	else if (INTEL_GEN(dev_priv) >= 4)
2667
		engine->emit_bb_start = i965_emit_bb_start;
2668
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2669
		engine->emit_bb_start = i830_emit_bb_start;
2670
	else
2671
		engine->emit_bb_start = i915_emit_bb_start;
2672 2673
}

2674
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2675
{
2676
	struct drm_i915_private *dev_priv = engine->i915;
2677
	int ret;
2678

2679 2680
	intel_ring_default_vfuncs(dev_priv, engine);

2681 2682
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2683

2684
	if (INTEL_GEN(dev_priv) >= 8) {
2685
		engine->init_context = intel_rcs_ctx_init;
2686
		engine->emit_request = gen8_render_emit_request;
2687
		engine->emit_flush = gen8_render_ring_flush;
2688
		if (i915.semaphores)
2689
			engine->semaphore.signal = gen8_rcs_signal;
2690
	} else if (INTEL_GEN(dev_priv) >= 6) {
2691
		engine->init_context = intel_rcs_ctx_init;
2692
		engine->emit_flush = gen7_render_ring_flush;
2693
		if (IS_GEN6(dev_priv))
2694
			engine->emit_flush = gen6_render_ring_flush;
2695
	} else if (IS_GEN5(dev_priv)) {
2696
		engine->emit_flush = gen4_render_ring_flush;
2697
	} else {
2698
		if (INTEL_GEN(dev_priv) < 4)
2699
			engine->emit_flush = gen2_render_ring_flush;
2700
		else
2701
			engine->emit_flush = gen4_render_ring_flush;
2702
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2703
	}
B
Ben Widawsky 已提交
2704

2705
	if (IS_HASWELL(dev_priv))
2706
		engine->emit_bb_start = hsw_emit_bb_start;
2707

2708 2709
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2710

2711
	ret = intel_init_ring_buffer(engine);
2712 2713 2714
	if (ret)
		return ret;

2715
	if (INTEL_GEN(dev_priv) >= 6) {
2716
		ret = intel_engine_create_scratch(engine, 4096);
2717 2718 2719
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2720
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2721 2722 2723 2724 2725
		if (ret)
			return ret;
	}

	return 0;
2726 2727
}

2728
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2729
{
2730
	struct drm_i915_private *dev_priv = engine->i915;
2731

2732 2733
	intel_ring_default_vfuncs(dev_priv, engine);

2734
	if (INTEL_GEN(dev_priv) >= 6) {
2735
		/* gen6 bsd needs a special wa for tail updates */
2736
		if (IS_GEN6(dev_priv))
2737
			engine->submit_request = gen6_bsd_submit_request;
2738
		engine->emit_flush = gen6_bsd_ring_flush;
2739
		if (INTEL_GEN(dev_priv) < 8)
2740
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2741
	} else {
2742
		engine->mmio_base = BSD_RING_BASE;
2743
		engine->emit_flush = bsd_ring_flush;
2744
		if (IS_GEN5(dev_priv))
2745
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2746
		else
2747
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2748 2749
	}

2750
	return intel_init_ring_buffer(engine);
2751
}
2752

2753
/**
2754
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2755
 */
2756
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2757
{
2758
	struct drm_i915_private *dev_priv = engine->i915;
2759 2760 2761

	intel_ring_default_vfuncs(dev_priv, engine);

2762
	engine->emit_flush = gen6_bsd_ring_flush;
2763

2764
	return intel_init_ring_buffer(engine);
2765 2766
}

2767
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2768
{
2769
	struct drm_i915_private *dev_priv = engine->i915;
2770 2771 2772

	intel_ring_default_vfuncs(dev_priv, engine);

2773
	engine->emit_flush = gen6_ring_flush;
2774
	if (INTEL_GEN(dev_priv) < 8)
2775
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2776

2777
	return intel_init_ring_buffer(engine);
2778
}
2779

2780
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2781
{
2782
	struct drm_i915_private *dev_priv = engine->i915;
2783 2784 2785

	intel_ring_default_vfuncs(dev_priv, engine);

2786
	engine->emit_flush = gen6_ring_flush;
2787

2788
	if (INTEL_GEN(dev_priv) < 8) {
2789
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2790 2791
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2792
	}
B
Ben Widawsky 已提交
2793

2794
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2795
}