intel_ringbuffer.c 77.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178 179
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214 215
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288 289
	u32 scratch_addr =
		req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374
	u32 flags = 0;
375
	int ret;
B
Ben Widawsky 已提交
376 377 378

	flags |= PIPE_CONTROL_CS_STALL;

379
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
380 381
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
384
	}
385
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
386 387 388 389 390 391 392 393
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394 395

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396
		ret = gen8_emit_pipe_control(req,
397 398 399 400 401
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
402 403
	}

404
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
405 406
}

407
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408
{
409
	struct drm_i915_private *dev_priv = engine->i915;
410
	u64 acthd;
411

412
	if (INTEL_GEN(dev_priv) >= 8)
413 414
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
415
	else if (INTEL_GEN(dev_priv) >= 4)
416
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417 418 419 420
	else
		acthd = I915_READ(ACTHD);

	return acthd;
421 422
}

423
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426 427 428
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
429
	if (INTEL_GEN(dev_priv) >= 4)
430 431 432 433
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

434
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_private *dev_priv = engine->i915;
437
	i915_reg_t mmio;
438 439 440 441

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
442
	if (IS_GEN7(dev_priv)) {
443
		switch (engine->id) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
462
	} else if (IS_GEN6(dev_priv)) {
463
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464 465
	} else {
		/* XXX: gen8 returns to sanity */
466
		mmio = RING_HWS_PGA(engine->mmio_base);
467 468
	}

469
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
470 471 472 473 474 475 476 477 478
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
479
	if (IS_GEN(dev_priv, 6, 7)) {
480
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481 482

		/* ring should be idle before issuing a sync flush*/
483
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484 485 486 487

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
488 489 490
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
491
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492
				  engine->name);
493 494 495
	}
}

496
static bool stop_ring(struct intel_engine_cs *engine)
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499

500
	if (!IS_GEN2(dev_priv)) {
501
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502 503 504 505 506
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
507 508
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
509 510 511 512
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
513
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514
				return false;
515 516
		}
	}
517

518 519
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
520
	I915_WRITE_TAIL(engine, 0);
521

522
	if (!IS_GEN2(dev_priv)) {
523 524
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525
	}
526

527
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528
}
529

530
static int init_ring_common(struct intel_engine_cs *engine)
531
{
532
	struct drm_i915_private *dev_priv = engine->i915;
533
	struct intel_ring *ring = engine->buffer;
534 535
	int ret = 0;

536
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
537

538
	if (!stop_ring(engine)) {
539
		/* G45 ring initialization often fails to reset head to zero */
540 541
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
542 543 544 545 546
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
547

548
		if (!stop_ring(engine)) {
549 550
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
551 552 553 554 555
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
556 557
			ret = -EIO;
			goto out;
558
		}
559 560
	}

561
	if (I915_NEED_GFX_HWS(dev_priv))
562
		intel_ring_setup_status_page(engine);
563
	else
564
		ring_setup_phys_status_page(engine);
565

566
	/* Enforce ordering by reading HEAD register back */
567
	I915_READ_HEAD(engine);
568

569 570 571 572
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
573
	I915_WRITE_START(engine, ring->vma->node.start);
574 575

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
576
	if (I915_READ_HEAD(engine))
577
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
578 579 580
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
581

582
	I915_WRITE_CTL(engine,
583
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
584
			| RING_VALID);
585 586

	/* If the head is still not zero, the ring is dead */
587
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
588
		     I915_READ_START(engine) == ring->vma->node.start &&
589
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
590
		DRM_ERROR("%s initialization failed "
591
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08llx]\n",
592 593 594 595 596
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
597
			  ring->vma->node.start);
598 599
		ret = -EIO;
		goto out;
600 601
	}

602 603 604 605
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
606

607
	intel_engine_init_hangcheck(engine);
608

609
out:
610
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
611 612

	return ret;
613 614
}

615
void intel_fini_pipe_control(struct intel_engine_cs *engine)
616
{
617
	if (engine->scratch.obj == NULL)
618 619
		return;

620
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
621
	i915_gem_object_put(engine->scratch.obj);
622
	engine->scratch.obj = NULL;
623 624
}

625
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
626
{
627
	struct drm_i915_gem_object *obj;
628 629
	int ret;

630
	WARN_ON(engine->scratch.obj);
631

632
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
633
	if (!obj)
634
		obj = i915_gem_object_create(&engine->i915->drm, size);
635 636 637
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
638 639
		goto err;
	}
640

641
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, PIN_HIGH);
642 643
	if (ret)
		goto err_unref;
644

645 646
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
647
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
648
			 engine->name, engine->scratch.gtt_offset);
649 650 651
	return 0;

err_unref:
652
	i915_gem_object_put(engine->scratch.obj);
653 654 655 656
err:
	return ret;
}

657
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
658
{
659
	struct intel_ring *ring = req->ring;
660 661
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
662

663
	if (w->count == 0)
664
		return 0;
665

666
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
667 668
	if (ret)
		return ret;
669

670
	ret = intel_ring_begin(req, (w->count * 2 + 2));
671 672 673
	if (ret)
		return ret;

674
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
675
	for (i = 0; i < w->count; i++) {
676 677
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
678
	}
679
	intel_ring_emit(ring, MI_NOOP);
680

681
	intel_ring_advance(ring);
682

683
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
684 685
	if (ret)
		return ret;
686

687
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
688

689
	return 0;
690 691
}

692
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
693 694 695
{
	int ret;

696
	ret = intel_ring_workarounds_emit(req);
697 698 699
	if (ret != 0)
		return ret;

700
	ret = i915_gem_render_state_init(req);
701
	if (ret)
702
		return ret;
703

704
	return 0;
705 706
}

707
static int wa_add(struct drm_i915_private *dev_priv,
708 709
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
710 711 712 713 714 715 716 717 718 719 720 721 722
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
723 724
}

725
#define WA_REG(addr, mask, val) do { \
726
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
727 728
		if (r) \
			return r; \
729
	} while (0)
730 731

#define WA_SET_BIT_MASKED(addr, mask) \
732
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
733 734

#define WA_CLR_BIT_MASKED(addr, mask) \
735
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
736

737
#define WA_SET_FIELD_MASKED(addr, mask, value) \
738
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
739

740 741
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
742

743
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
744

745 746
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
747
{
748
	struct drm_i915_private *dev_priv = engine->i915;
749
	struct i915_workarounds *wa = &dev_priv->workarounds;
750
	const uint32_t index = wa->hw_whitelist_count[engine->id];
751 752 753 754

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

755
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
756
		 i915_mmio_reg_offset(reg));
757
	wa->hw_whitelist_count[engine->id]++;
758 759 760 761

	return 0;
}

762
static int gen8_init_workarounds(struct intel_engine_cs *engine)
763
{
764
	struct drm_i915_private *dev_priv = engine->i915;
765 766

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
767

768 769 770
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

771 772 773 774
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

775 776 777 778 779
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
780
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
781
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
782
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
783 784
			  HDC_FORCE_NON_COHERENT);

785 786 787 788 789 790 791 792 793 794
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

795 796 797
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

798 799 800 801 802 803 804 805 806 807 808 809
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

810 811 812
	return 0;
}

813
static int bdw_init_workarounds(struct intel_engine_cs *engine)
814
{
815
	struct drm_i915_private *dev_priv = engine->i915;
816
	int ret;
817

818
	ret = gen8_init_workarounds(engine);
819 820 821
	if (ret)
		return ret;

822
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
823
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
824

825
	/* WaDisableDopClockGating:bdw */
826 827
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
828

829 830
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
831

832
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 834 835
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
836
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
837 838 839 840

	return 0;
}

841
static int chv_init_workarounds(struct intel_engine_cs *engine)
842
{
843
	struct drm_i915_private *dev_priv = engine->i915;
844
	int ret;
845

846
	ret = gen8_init_workarounds(engine);
847 848 849
	if (ret)
		return ret;

850
	/* WaDisableThreadStallDopClockGating:chv */
851
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
852

853 854 855
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

856 857 858
	return 0;
}

859
static int gen9_init_workarounds(struct intel_engine_cs *engine)
860
{
861
	struct drm_i915_private *dev_priv = engine->i915;
862
	int ret;
863

864 865 866
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

867
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
868 869 870
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

871
	/* WaDisableKillLogic:bxt,skl,kbl */
872 873 874
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

875 876
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
877
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
878
			  FLOW_CONTROL_ENABLE |
879 880
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

881
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
882 883 884
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

885
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
886 887
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
888 889
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
890

891
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
892 893
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
894 895
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
896 897 898 899 900
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
901 902
	}

903 904
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
905 906 907
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
908

909 910
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
911 912
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
913

914
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
915 916 917
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

918
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
919 920
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
921 922 923
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

924 925 926 927
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

950 951 952 953
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
954 955 956
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

957
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
958 959
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

960
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
961 962 963
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

964 965 966 967 968
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

969
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
970
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
971 972 973
	if (ret)
		return ret;

974
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
975
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
976 977 978
	if (ret)
		return ret;

979 980 981
	return 0;
}

982
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
983
{
984
	struct drm_i915_private *dev_priv = engine->i915;
985 986 987 988 989 990 991 992 993 994
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
995
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1023
static int skl_init_workarounds(struct intel_engine_cs *engine)
1024
{
1025
	struct drm_i915_private *dev_priv = engine->i915;
1026
	int ret;
1027

1028
	ret = gen9_init_workarounds(engine);
1029 1030
	if (ret)
		return ret;
1031

1032 1033 1034 1035 1036
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1037
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1038 1039 1040 1041
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1042
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1043 1044 1045 1046 1047 1048 1049 1050
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1051
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1052 1053 1054 1055 1056
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1057
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1058 1059 1060 1061
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1062
	/* WaDisablePowerCompilerClockGating:skl */
1063
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1064 1065 1066
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1067
	/* WaBarrierPerformanceFixDisable:skl */
1068
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1069 1070 1071 1072
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1073
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1074
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1075 1076 1077 1078
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1079 1080 1081
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1082 1083 1084 1085 1086
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1087
	/* WaDisableLSQCROPERFforOCL:skl */
1088
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1089 1090 1091
	if (ret)
		return ret;

1092
	return skl_tune_iz_hashing(engine);
1093 1094
}

1095
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1096
{
1097
	struct drm_i915_private *dev_priv = engine->i915;
1098
	int ret;
1099

1100
	ret = gen9_init_workarounds(engine);
1101 1102
	if (ret)
		return ret;
1103

1104 1105
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1106
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1107 1108 1109
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1110
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1111 1112 1113 1114
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1115 1116 1117 1118
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1119 1120 1121 1122 1123 1124
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1125
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1126
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1127 1128 1129 1130 1131
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1132 1133 1134
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1135
	/* WaDisableLSQCROPERFforOCL:bxt */
1136
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1137
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1138 1139
		if (ret)
			return ret;
1140

1141
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1142 1143
		if (ret)
			return ret;
1144 1145
	}

1146
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1147
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1148 1149
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1150

1151 1152
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1153 1154 1155
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1156 1157 1158 1159 1160
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1161 1162 1163
	return 0;
}

1164 1165
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1166
	struct drm_i915_private *dev_priv = engine->i915;
1167 1168 1169 1170 1171 1172
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1173 1174 1175 1176
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1177 1178 1179 1180 1181
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1182 1183 1184 1185 1186
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1187 1188 1189 1190 1191 1192 1193 1194
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1195 1196
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1197 1198 1199
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1200 1201 1202
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1203 1204 1205 1206 1207
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1208 1209 1210 1211
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1212 1213 1214 1215 1216
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1217 1218 1219
	return 0;
}

1220
int init_workarounds_ring(struct intel_engine_cs *engine)
1221
{
1222
	struct drm_i915_private *dev_priv = engine->i915;
1223

1224
	WARN_ON(engine->id != RCS);
1225 1226

	dev_priv->workarounds.count = 0;
1227
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1228

1229
	if (IS_BROADWELL(dev_priv))
1230
		return bdw_init_workarounds(engine);
1231

1232
	if (IS_CHERRYVIEW(dev_priv))
1233
		return chv_init_workarounds(engine);
1234

1235
	if (IS_SKYLAKE(dev_priv))
1236
		return skl_init_workarounds(engine);
1237

1238
	if (IS_BROXTON(dev_priv))
1239
		return bxt_init_workarounds(engine);
1240

1241 1242 1243
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1244 1245 1246
	return 0;
}

1247
static int init_render_ring(struct intel_engine_cs *engine)
1248
{
1249
	struct drm_i915_private *dev_priv = engine->i915;
1250
	int ret = init_ring_common(engine);
1251 1252
	if (ret)
		return ret;
1253

1254
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1255
	if (IS_GEN(dev_priv, 4, 6))
1256
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1257 1258 1259 1260

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1261
	 *
1262
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1263
	 */
1264
	if (IS_GEN(dev_priv, 6, 7))
1265 1266
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1267
	/* Required for the hardware to program scanline values for waiting */
1268
	/* WaEnableFlushTlbInvalidationMode:snb */
1269
	if (IS_GEN6(dev_priv))
1270
		I915_WRITE(GFX_MODE,
1271
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1272

1273
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1274
	if (IS_GEN7(dev_priv))
1275
		I915_WRITE(GFX_MODE_GEN7,
1276
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1277
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1278

1279
	if (IS_GEN6(dev_priv)) {
1280 1281 1282 1283 1284 1285
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1286
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1287 1288
	}

1289
	if (IS_GEN(dev_priv, 6, 7))
1290
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1291

1292 1293
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1294

1295
	return init_workarounds_ring(engine);
1296 1297
}

1298
static void render_ring_cleanup(struct intel_engine_cs *engine)
1299
{
1300
	struct drm_i915_private *dev_priv = engine->i915;
1301 1302 1303

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1304
		i915_gem_object_put(dev_priv->semaphore_obj);
1305 1306
		dev_priv->semaphore_obj = NULL;
	}
1307

1308
	intel_fini_pipe_control(engine);
1309 1310
}

1311
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1312
{
1313 1314
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1315
	struct intel_engine_cs *waiter;
1316 1317
	enum intel_engine_id id;
	int ret, num_rings;
1318

1319
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1320
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1321 1322 1323
	if (ret)
		return ret;

1324
	for_each_engine_id(waiter, dev_priv, id) {
1325
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1326 1327 1328
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1329 1330
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1331 1332 1333
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1334 1335 1336 1337 1338
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1339 1340
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1341
		intel_ring_emit(ring, 0);
1342
	}
1343
	intel_ring_advance(ring);
1344 1345 1346 1347

	return 0;
}

1348
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1349
{
1350 1351
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1352
	struct intel_engine_cs *waiter;
1353 1354
	enum intel_engine_id id;
	int ret, num_rings;
1355

1356
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1357
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1358 1359 1360
	if (ret)
		return ret;

1361
	for_each_engine_id(waiter, dev_priv, id) {
1362
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1363 1364 1365
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1366
		intel_ring_emit(ring,
1367
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1368
		intel_ring_emit(ring,
1369 1370
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1371 1372 1373
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1374 1375
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1376
		intel_ring_emit(ring, 0);
1377
	}
1378
	intel_ring_advance(ring);
1379 1380 1381 1382

	return 0;
}

1383
static int gen6_signal(struct drm_i915_gem_request *req)
1384
{
1385 1386
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1387
	struct intel_engine_cs *useless;
1388 1389
	enum intel_engine_id id;
	int ret, num_rings;
1390

1391
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1392
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1393 1394 1395
	if (ret)
		return ret;

1396
	for_each_engine_id(useless, dev_priv, id) {
1397
		i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1398 1399

		if (i915_mmio_reg_valid(mbox_reg)) {
1400 1401 1402
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1403 1404
		}
	}
1405

1406 1407
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1408 1409
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1410

1411
	return 0;
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1423
{
1424
	struct intel_ring *ring = req->ring;
1425
	int ret;
1426

1427
	ret = intel_ring_begin(req, 4);
1428 1429 1430
	if (ret)
		return ret;

1431 1432 1433 1434
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1435 1436 1437
	intel_ring_advance(ring);

	req->tail = ring->tail;
1438 1439 1440 1441

	return 0;
}

1442
/**
1443
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1444 1445 1446 1447 1448 1449
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1450
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1451
{
1452
	int ret;
1453

1454 1455 1456
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1457 1458 1459 1460

	return i9xx_emit_request(req);
}

1461
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1462 1463
{
	struct intel_engine_cs *engine = req->engine;
1464
	struct intel_ring *ring = req->ring;
1465 1466
	int ret;

1467 1468 1469 1470 1471 1472 1473
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1474 1475 1476
	if (ret)
		return ret;

1477 1478 1479 1480 1481 1482 1483
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484
	/* We're thrashing one dword of HWS. */
1485 1486 1487
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1488
	intel_ring_advance(ring);
1489 1490

	req->tail = ring->tail;
1491 1492 1493 1494

	return 0;
}

1495 1496 1497 1498 1499 1500 1501
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1502 1503

static int
1504 1505
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1506
{
1507 1508 1509
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1510
	struct i915_hw_ppgtt *ppgtt;
1511 1512
	int ret;

1513
	ret = intel_ring_begin(req, 4);
1514 1515 1516
	if (ret)
		return ret;

1517 1518 1519 1520 1521 1522 1523 1524
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1525 1526 1527 1528 1529 1530

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1531 1532 1533
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1534 1535 1536
	return 0;
}

1537
static int
1538 1539
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1540
{
1541
	struct intel_ring *ring = req->ring;
1542 1543 1544
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1545
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1546
	int ret;
1547

1548
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1549

1550
	ret = intel_ring_begin(req, 4);
1551 1552 1553
	if (ret)
		return ret;

1554
	intel_ring_emit(ring, dw1 | wait_mbox);
1555 1556 1557 1558
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1559 1560 1561 1562
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1563 1564 1565 1566

	return 0;
}

1567
static void
1568
gen5_seqno_barrier(struct intel_engine_cs *engine)
1569
{
1570 1571 1572
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1573
	 *
1574 1575 1576 1577 1578 1579 1580
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1581
	 */
1582
	usleep_range(125, 250);
1583 1584
}

1585 1586
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589

1590 1591
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1592 1593 1594 1595 1596 1597 1598 1599 1600
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1601 1602 1603
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1604
	 */
1605
	spin_lock_irq(&dev_priv->uncore.lock);
1606
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1607
	spin_unlock_irq(&dev_priv->uncore.lock);
1608 1609
}

1610 1611
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1612
{
1613
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1614 1615 1616
}

static void
1617
gen5_irq_disable(struct intel_engine_cs *engine)
1618
{
1619
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1620 1621
}

1622 1623
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1624
{
1625
	struct drm_i915_private *dev_priv = engine->i915;
1626

1627 1628 1629
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1630 1631
}

1632
static void
1633
i9xx_irq_disable(struct intel_engine_cs *engine)
1634
{
1635
	struct drm_i915_private *dev_priv = engine->i915;
1636

1637 1638
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1639 1640
}

1641 1642
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1643
{
1644
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1645

1646 1647 1648
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1649 1650 1651
}

static void
1652
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1653
{
1654
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1655

1656 1657
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1658 1659
}

1660
static int
1661
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1662
{
1663
	struct intel_ring *ring = req->ring;
1664 1665
	int ret;

1666
	ret = intel_ring_begin(req, 2);
1667 1668 1669
	if (ret)
		return ret;

1670 1671 1672
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1673
	return 0;
1674 1675
}

1676 1677
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1678
{
1679
	struct drm_i915_private *dev_priv = engine->i915;
1680

1681 1682 1683
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1684
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1685 1686 1687
}

static void
1688
gen6_irq_disable(struct intel_engine_cs *engine)
1689
{
1690
	struct drm_i915_private *dev_priv = engine->i915;
1691

1692
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1693
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1694 1695
}

1696 1697
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1698
{
1699
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1700

1701 1702
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1703 1704 1705
}

static void
1706
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1707
{
1708
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1709

1710 1711
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1712 1713
}

1714 1715
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1716
{
1717
	struct drm_i915_private *dev_priv = engine->i915;
1718

1719 1720 1721
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1722
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1723 1724 1725
}

static void
1726
gen8_irq_disable(struct intel_engine_cs *engine)
1727
{
1728
	struct drm_i915_private *dev_priv = engine->i915;
1729

1730
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1731 1732
}

1733
static int
1734 1735 1736
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1737
{
1738
	struct intel_ring *ring = req->ring;
1739
	int ret;
1740

1741
	ret = intel_ring_begin(req, 2);
1742 1743 1744
	if (ret)
		return ret;

1745
	intel_ring_emit(ring,
1746 1747
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1748 1749
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1750 1751
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1752

1753 1754 1755
	return 0;
}

1756 1757
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1758 1759
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1760
static int
1761 1762 1763
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1764
{
1765
	struct intel_ring *ring = req->ring;
1766
	u32 cs_offset = req->engine->scratch.gtt_offset;
1767
	int ret;
1768

1769
	ret = intel_ring_begin(req, 6);
1770 1771
	if (ret)
		return ret;
1772

1773
	/* Evict the invalid PTE TLBs */
1774 1775 1776 1777 1778 1779 1780
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1781

1782
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1783 1784 1785
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1786
		ret = intel_ring_begin(req, 6 + 2);
1787 1788
		if (ret)
			return ret;
1789 1790 1791 1792 1793

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1794 1795
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1796
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1797 1798 1799 1800
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1801

1802 1803 1804
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1805 1806

		/* ... and execute it. */
1807
		offset = cs_offset;
1808
	}
1809

1810
	ret = intel_ring_begin(req, 2);
1811 1812 1813
	if (ret)
		return ret;

1814 1815 1816 1817
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1818

1819 1820 1821 1822
	return 0;
}

static int
1823 1824 1825
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1826
{
1827
	struct intel_ring *ring = req->ring;
1828 1829
	int ret;

1830
	ret = intel_ring_begin(req, 2);
1831 1832 1833
	if (ret)
		return ret;

1834 1835 1836 1837
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1838 1839 1840 1841

	return 0;
}

1842
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1843
{
1844
	struct drm_i915_private *dev_priv = engine->i915;
1845 1846 1847 1848

	if (!dev_priv->status_page_dmah)
		return;

1849
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1850
	engine->status_page.page_addr = NULL;
1851 1852
}

1853
static void cleanup_status_page(struct intel_engine_cs *engine)
1854
{
1855
	struct i915_vma *vma;
1856

1857 1858
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1859 1860
		return;

1861 1862 1863
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1864 1865
}

1866
static int init_status_page(struct intel_engine_cs *engine)
1867
{
1868 1869 1870 1871
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1872

1873 1874 1875 1876 1877
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1878

1879 1880 1881
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1882

1883 1884 1885 1886
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1887
	}
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1905

1906 1907 1908 1909
	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = vma->node.start;
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1910

1911 1912
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08llx\n",
			 engine->name, vma->node.start);
1913
	return 0;
1914 1915 1916 1917

err:
	i915_gem_object_put(obj);
	return ret;
1918 1919
}

1920
static int init_phys_status_page(struct intel_engine_cs *engine)
1921
{
1922
	struct drm_i915_private *dev_priv = engine->i915;
1923

1924 1925 1926 1927
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1928

1929 1930
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1931 1932 1933 1934

	return 0;
}

1935
int intel_ring_pin(struct intel_ring *ring)
1936
{
1937
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1938 1939
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
	struct i915_vma *vma = ring->vma;
1940
	void *addr;
1941 1942
	int ret;

1943
	GEM_BUG_ON(ring->vaddr);
1944

1945 1946
	if (ring->needs_iomap)
		flags |= PIN_MAPPABLE;
1947

1948 1949 1950 1951 1952 1953
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		if (flags & PIN_MAPPABLE)
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1954
			return ret;
1955
	}
1956

1957 1958 1959
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1960

1961 1962 1963 1964 1965 1966
	if (flags & PIN_MAPPABLE)
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
		addr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(addr))
		goto err;
1967

1968
	ring->vaddr = addr;
1969
	return 0;
1970

1971 1972 1973
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1974 1975
}

1976 1977 1978 1979 1980
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1981
	if (ring->needs_iomap)
1982
		i915_vma_unpin_iomap(ring->vma);
1983 1984
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1985 1986
	ring->vaddr = NULL;

1987
	i915_vma_unpin(ring->vma);
1988 1989
}

1990 1991
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1992
{
1993
	struct drm_i915_gem_object *obj;
1994
	struct i915_vma *vma;
1995

1996 1997 1998
	obj = ERR_PTR(-ENODEV);
	if (!HAS_LLC(dev_priv))
		obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1999
	if (IS_ERR(obj))
2000 2001 2002
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
2003

2004 2005 2006
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2007 2008 2009 2010 2011
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
2012

2013 2014 2015
err:
	i915_gem_object_put(obj);
	return vma;
2016 2017
}

2018 2019
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2020
{
2021
	struct intel_ring *ring;
2022
	struct i915_vma *vma;
2023

2024 2025
	GEM_BUG_ON(!is_power_of_2(size));

2026
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2027
	if (!ring)
2028 2029
		return ERR_PTR(-ENOMEM);

2030
	ring->engine = engine;
2031

2032 2033
	INIT_LIST_HEAD(&ring->request_list);

2034 2035 2036 2037 2038 2039
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2040
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2041 2042 2043 2044 2045
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2046 2047
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2048
		kfree(ring);
2049
		return ERR_CAST(vma);
2050
	}
2051 2052 2053
	ring->vma = vma;
	if (!HAS_LLC(engine->i915) || vma->obj->stolen)
		ring->needs_iomap = true;
2054

2055
	list_add(&ring->link, &engine->buffers);
2056 2057 2058 2059
	return ring;
}

void
2060
intel_ring_free(struct intel_ring *ring)
2061
{
2062
	i915_vma_put(ring->vma);
2063
	list_del(&ring->link);
2064 2065 2066
	kfree(ring);
}

2067 2068 2069 2070 2071 2072
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2073
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2074 2075 2076 2077 2078

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2079 2080 2081 2082
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2083 2084
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2085 2086 2087 2088
		if (ret)
			goto error;
	}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2099
	i915_gem_context_get(ctx);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2112
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2113 2114 2115 2116 2117

	if (--ce->pin_count)
		return;

	if (ce->state)
2118
		i915_vma_unpin(ce->state);
2119

2120
	i915_gem_context_put(ctx);
2121 2122
}

2123
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2124
{
2125
	struct drm_i915_private *dev_priv = engine->i915;
2126
	struct intel_ring *ring;
2127 2128
	int ret;

2129
	WARN_ON(engine->buffer);
2130

2131 2132
	intel_engine_setup_common(engine);

2133 2134
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2135

2136
	ret = intel_engine_init_common(engine);
2137 2138
	if (ret)
		goto error;
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2151 2152 2153
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2154 2155
		goto error;
	}
2156

2157
	if (I915_NEED_GFX_HWS(dev_priv)) {
2158
		ret = init_status_page(engine);
2159
		if (ret)
2160
			goto error;
2161
	} else {
2162 2163
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2164
		if (ret)
2165
			goto error;
2166 2167
	}

2168
	ret = intel_ring_pin(ring);
2169
	if (ret) {
2170
		intel_ring_free(ring);
2171
		goto error;
2172
	}
2173
	engine->buffer = ring;
2174

2175
	return 0;
2176

2177
error:
2178
	intel_engine_cleanup(engine);
2179
	return ret;
2180 2181
}

2182
void intel_engine_cleanup(struct intel_engine_cs *engine)
2183
{
2184
	struct drm_i915_private *dev_priv;
2185

2186
	if (!intel_engine_initialized(engine))
2187 2188
		return;

2189
	dev_priv = engine->i915;
2190

2191
	if (engine->buffer) {
2192
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2193

2194
		intel_ring_unpin(engine->buffer);
2195
		intel_ring_free(engine->buffer);
2196
		engine->buffer = NULL;
2197
	}
2198

2199 2200
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2201

2202
	if (I915_NEED_GFX_HWS(dev_priv)) {
2203
		cleanup_status_page(engine);
2204
	} else {
2205 2206
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2207
	}
2208

2209
	intel_engine_cleanup_common(engine);
2210 2211 2212

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2213
	engine->i915 = NULL;
2214 2215
}

2216
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2217
{
2218 2219 2220 2221 2222 2223
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2224
	request->reserved_space += LEGACY_REQUEST_SIZE;
2225

2226
	request->ring = request->engine->buffer;
2227 2228 2229 2230 2231

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2232
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2233
	return 0;
2234 2235
}

2236 2237
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2238
	struct intel_ring *ring = req->ring;
2239
	struct drm_i915_gem_request *target;
2240
	int ret;
2241

2242 2243
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2255
	GEM_BUG_ON(!req->reserved_space);
2256

2257
	list_for_each_entry(target, &ring->request_list, ring_link) {
2258 2259 2260
		unsigned space;

		/* Would completion of this request free enough space? */
2261 2262
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2263 2264
		if (space >= bytes)
			break;
2265
	}
2266

2267
	if (WARN_ON(&target->ring_link == &ring->request_list))
2268 2269
		return -ENOSPC;

2270
	ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	if (ret)
		return ret;

	if (i915_reset_in_progress(&target->i915->gpu_error))
		return -EAGAIN;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2282 2283
}

2284
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2285
{
2286
	struct intel_ring *ring = req->ring;
2287 2288
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2289 2290
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2291
	bool need_wrap = false;
2292

2293
	total_bytes = bytes + req->reserved_space;
2294

2295 2296 2297 2298 2299 2300 2301
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2302 2303 2304 2305 2306 2307 2308
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2309
		wait_bytes = remain_actual + req->reserved_space;
2310
	} else {
2311 2312
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2313 2314
	}

2315
	if (wait_bytes > ring->space) {
2316
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2317 2318 2319 2320
		if (unlikely(ret))
			return ret;
	}

2321
	if (unlikely(need_wrap)) {
2322 2323
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2324

2325
		/* Fill the tail with MI_NOOP */
2326 2327 2328
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2329
	}
2330

2331 2332
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2333
	return 0;
2334
}
2335

2336
/* Align the ring tail to a cacheline boundary */
2337
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2338
{
2339
	struct intel_ring *ring = req->ring;
2340 2341
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2342 2343 2344 2345 2346
	int ret;

	if (num_dwords == 0)
		return 0;

2347
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2348
	ret = intel_ring_begin(req, num_dwords);
2349 2350 2351 2352
	if (ret)
		return ret;

	while (num_dwords--)
2353
		intel_ring_emit(ring, MI_NOOP);
2354

2355
	intel_ring_advance(ring);
2356 2357 2358 2359

	return 0;
}

2360
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2361
{
2362
	struct drm_i915_private *dev_priv = engine->i915;
2363

2364 2365 2366 2367 2368 2369 2370 2371
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2372
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2373 2374
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2375
		if (HAS_VEBOX(dev_priv))
2376
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2377
	}
2378 2379 2380 2381 2382 2383 2384 2385
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2386 2387
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2388

2389 2390 2391
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2392
	engine->last_submitted_seqno = seqno;
2393

2394
	engine->hangcheck.seqno = seqno;
2395 2396 2397 2398 2399

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
2400
}
2401

2402
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2403
{
2404
	struct drm_i915_private *dev_priv = request->i915;
2405

2406 2407
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2408
       /* Every tail move must follow the sequence below */
2409 2410 2411 2412

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2413 2414
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2415 2416

	/* Clear the context id. Here be magic! */
2417
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2418

2419
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2420 2421 2422 2423 2424
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2425
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2426

2427
	/* Now that the ring is fully powered up, update the tail */
2428
	i9xx_submit_request(request);
2429 2430 2431 2432

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2433 2434 2435 2436
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2437 2438
}

2439
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2440
{
2441
	struct intel_ring *ring = req->ring;
2442
	uint32_t cmd;
2443 2444
	int ret;

2445
	ret = intel_ring_begin(req, 4);
2446 2447 2448
	if (ret)
		return ret;

2449
	cmd = MI_FLUSH_DW;
2450
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2451
		cmd += 1;
2452 2453 2454 2455 2456 2457 2458 2459

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2460 2461 2462 2463 2464 2465
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2466
	if (mode & EMIT_INVALIDATE)
2467 2468
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2469 2470
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2471
	if (INTEL_GEN(req->i915) >= 8) {
2472 2473
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2474
	} else  {
2475 2476
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2477
	}
2478
	intel_ring_advance(ring);
2479
	return 0;
2480 2481
}

2482
static int
2483 2484 2485
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2486
{
2487
	struct intel_ring *ring = req->ring;
2488
	bool ppgtt = USES_PPGTT(req->i915) &&
2489
			!(dispatch_flags & I915_DISPATCH_SECURE);
2490 2491
	int ret;

2492
	ret = intel_ring_begin(req, 4);
2493 2494 2495 2496
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2497
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2498 2499
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2500 2501 2502 2503
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2504 2505 2506 2507

	return 0;
}

2508
static int
2509 2510 2511
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2512
{
2513
	struct intel_ring *ring = req->ring;
2514 2515
	int ret;

2516
	ret = intel_ring_begin(req, 2);
2517 2518 2519
	if (ret)
		return ret;

2520
	intel_ring_emit(ring,
2521
			MI_BATCH_BUFFER_START |
2522
			(dispatch_flags & I915_DISPATCH_SECURE ?
2523 2524 2525
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2526
	/* bit0-7 is the length on GEN6+ */
2527 2528
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2529 2530 2531 2532

	return 0;
}

2533
static int
2534 2535 2536
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2537
{
2538
	struct intel_ring *ring = req->ring;
2539
	int ret;
2540

2541
	ret = intel_ring_begin(req, 2);
2542 2543
	if (ret)
		return ret;
2544

2545
	intel_ring_emit(ring,
2546
			MI_BATCH_BUFFER_START |
2547 2548
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2549
	/* bit0-7 is the length on GEN6+ */
2550 2551
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2552

2553
	return 0;
2554 2555
}

2556 2557
/* Blitter support (SandyBridge+) */

2558
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2559
{
2560
	struct intel_ring *ring = req->ring;
2561
	uint32_t cmd;
2562 2563
	int ret;

2564
	ret = intel_ring_begin(req, 4);
2565 2566 2567
	if (ret)
		return ret;

2568
	cmd = MI_FLUSH_DW;
2569
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2570
		cmd += 1;
2571 2572 2573 2574 2575 2576 2577 2578

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2579 2580 2581 2582 2583 2584
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2585
	if (mode & EMIT_INVALIDATE)
2586
		cmd |= MI_INVALIDATE_TLB;
2587 2588
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2589
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2590
	if (INTEL_GEN(req->i915) >= 8) {
2591 2592
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2593
	} else  {
2594 2595
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2596
	}
2597
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2598

2599
	return 0;
Z
Zou Nan hai 已提交
2600 2601
}

2602 2603 2604
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2605
	struct drm_i915_gem_object *obj;
2606
	int ret, i;
2607

2608
	if (!i915.semaphores)
2609 2610 2611
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2612
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2613 2614 2615 2616 2617
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2618 2619
			ret = i915_gem_object_ggtt_pin(obj, NULL,
						       0, 0, PIN_HIGH);
2620
			if (ret != 0) {
2621
				i915_gem_object_put(obj);
2622 2623 2624 2625 2626 2627 2628 2629
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2630
	if (!i915.semaphores)
2631 2632 2633
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2634 2635
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2636
		engine->semaphore.sync_to = gen8_ring_sync_to;
2637
		engine->semaphore.signal = gen8_xcs_signal;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2649
	} else if (INTEL_GEN(dev_priv) >= 6) {
2650
		engine->semaphore.sync_to = gen6_ring_sync_to;
2651
		engine->semaphore.signal = gen6_signal;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2700 2701 2702
	}
}

2703 2704 2705
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2706 2707
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2708
	if (INTEL_GEN(dev_priv) >= 8) {
2709 2710
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2711 2712
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2713 2714
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2715 2716
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2717 2718
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2719
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2720
	} else if (INTEL_GEN(dev_priv) >= 3) {
2721 2722
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2723
	} else {
2724 2725
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2726 2727 2728
	}
}

2729 2730 2731
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2732 2733 2734
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2735
	engine->init_hw = init_ring_common;
2736

2737
	engine->emit_request = i9xx_emit_request;
2738 2739
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2740
	engine->submit_request = i9xx_submit_request;
2741 2742

	if (INTEL_GEN(dev_priv) >= 8)
2743
		engine->emit_bb_start = gen8_emit_bb_start;
2744
	else if (INTEL_GEN(dev_priv) >= 6)
2745
		engine->emit_bb_start = gen6_emit_bb_start;
2746
	else if (INTEL_GEN(dev_priv) >= 4)
2747
		engine->emit_bb_start = i965_emit_bb_start;
2748
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2749
		engine->emit_bb_start = i830_emit_bb_start;
2750
	else
2751
		engine->emit_bb_start = i915_emit_bb_start;
2752 2753
}

2754
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2755
{
2756
	struct drm_i915_private *dev_priv = engine->i915;
2757
	int ret;
2758

2759 2760
	intel_ring_default_vfuncs(dev_priv, engine);

2761 2762
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2763

2764
	if (INTEL_GEN(dev_priv) >= 8) {
2765
		engine->init_context = intel_rcs_ctx_init;
2766
		engine->emit_request = gen8_render_emit_request;
2767
		engine->emit_flush = gen8_render_ring_flush;
2768
		if (i915.semaphores)
2769
			engine->semaphore.signal = gen8_rcs_signal;
2770
	} else if (INTEL_GEN(dev_priv) >= 6) {
2771
		engine->init_context = intel_rcs_ctx_init;
2772
		engine->emit_flush = gen7_render_ring_flush;
2773
		if (IS_GEN6(dev_priv))
2774
			engine->emit_flush = gen6_render_ring_flush;
2775
	} else if (IS_GEN5(dev_priv)) {
2776
		engine->emit_flush = gen4_render_ring_flush;
2777
	} else {
2778
		if (INTEL_GEN(dev_priv) < 4)
2779
			engine->emit_flush = gen2_render_ring_flush;
2780
		else
2781
			engine->emit_flush = gen4_render_ring_flush;
2782
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2783
	}
B
Ben Widawsky 已提交
2784

2785
	if (IS_HASWELL(dev_priv))
2786
		engine->emit_bb_start = hsw_emit_bb_start;
2787

2788 2789
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2790

2791
	ret = intel_init_ring_buffer(engine);
2792 2793 2794
	if (ret)
		return ret;

2795
	if (INTEL_GEN(dev_priv) >= 6) {
2796 2797 2798 2799 2800
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2801 2802 2803 2804 2805
		if (ret)
			return ret;
	}

	return 0;
2806 2807
}

2808
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2809
{
2810
	struct drm_i915_private *dev_priv = engine->i915;
2811

2812 2813
	intel_ring_default_vfuncs(dev_priv, engine);

2814
	if (INTEL_GEN(dev_priv) >= 6) {
2815
		/* gen6 bsd needs a special wa for tail updates */
2816
		if (IS_GEN6(dev_priv))
2817
			engine->submit_request = gen6_bsd_submit_request;
2818
		engine->emit_flush = gen6_bsd_ring_flush;
2819
		if (INTEL_GEN(dev_priv) < 8)
2820
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2821
	} else {
2822
		engine->mmio_base = BSD_RING_BASE;
2823
		engine->emit_flush = bsd_ring_flush;
2824
		if (IS_GEN5(dev_priv))
2825
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2826
		else
2827
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2828 2829
	}

2830
	return intel_init_ring_buffer(engine);
2831
}
2832

2833
/**
2834
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2835
 */
2836
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2837
{
2838
	struct drm_i915_private *dev_priv = engine->i915;
2839 2840 2841

	intel_ring_default_vfuncs(dev_priv, engine);

2842
	engine->emit_flush = gen6_bsd_ring_flush;
2843

2844
	return intel_init_ring_buffer(engine);
2845 2846
}

2847
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2848
{
2849
	struct drm_i915_private *dev_priv = engine->i915;
2850 2851 2852

	intel_ring_default_vfuncs(dev_priv, engine);

2853
	engine->emit_flush = gen6_ring_flush;
2854
	if (INTEL_GEN(dev_priv) < 8)
2855
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2856

2857
	return intel_init_ring_buffer(engine);
2858
}
2859

2860
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2861
{
2862
	struct drm_i915_private *dev_priv = engine->i915;
2863 2864 2865

	intel_ring_default_vfuncs(dev_priv, engine);

2866
	engine->emit_flush = gen6_ring_flush;
2867

2868
	if (INTEL_GEN(dev_priv) < 8) {
2869
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2870 2871
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2872
	}
B
Ben Widawsky 已提交
2873

2874
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2875
}