slab.c 116.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411

412
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
413 414
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
415

416
/* 6) statistics */
L
Linus Torvalds 已提交
417
#if STATS
P
Pekka Enberg 已提交
418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
427
	unsigned long node_overflow;
P
Pekka Enberg 已提交
428 429 430 431
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
432 433
#endif
#if DEBUG
434 435 436 437 438 439 440 441
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
442
#endif
E
Eric Dumazet 已提交
443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
454 455 456 457 458 459
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
460 461 462
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
463
 *
A
Adrian Bunk 已提交
464
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472 473 474
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
475
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
481 482
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
485 486 487 488 489
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
499
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
500 501 502
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503
#define	STATS_INC_NODEFREES(x)	do { } while (0)
504
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
505
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
514 515
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
516
 * 0		: objp
517
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
518 519
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
520
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
521
 * 		redzone word.
522 523
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
524 525
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
526
 */
527
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
528
{
529
	return cachep->obj_offset;
L
Linus Torvalds 已提交
530 531
}

532
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
533
{
534
	return cachep->obj_size;
L
Linus Torvalds 已提交
535 536
}

537
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 541
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
542 543
}

544
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
545 546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
548 549 550 551 552
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
565 566
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
567 568 569 570 571
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
572 573
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
593 594 595 596
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
597
 */
598 599 600 601 602 603 604
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
605
	page = compound_head(page);
606
	BUG_ON(!PageSlab(page));
607 608 609 610 611 612 613 614 615 616
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
617
	BUG_ON(!PageSlab(page));
618 619
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
620

621 622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
623
	struct page *page = virt_to_head_page(obj);
624 625 626 627 628
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
629
	struct page *page = virt_to_head_page(obj);
630 631 632
	return page_get_slab(page);
}

633 634 635 636 637 638
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

639 640 641 642 643 644 645 646
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
647
{
648 649
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
650 651
}

A
Andrew Morton 已提交
652 653 654
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
672
	{NULL,}
L
Linus Torvalds 已提交
673 674 675 676
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
677
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
678
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
679
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
680 681

/* internal cache of cache description objs */
682
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
683 684 685
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
686
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
687
	.name = "kmem_cache",
L
Linus Torvalds 已提交
688 689
};

690 691
#define BAD_ALIEN_MAGIC 0x01020304ul

692 693 694 695 696 697 698 699
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
700 701 702 703
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
704
 */
705 706 707 708
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
709 710 711

{
	int q;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
739 740 741
	}
}
#else
742
static inline void init_lock_keys(void)
743 744 745 746
{
}
#endif

747 748 749 750
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
751
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
760 761
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
762 763 764
	FULL
} g_cpucache_up;

765 766 767 768 769 770 771 772
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

773
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
774

775
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
776 777 778 779
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
780 781
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
782 783 784 785 786
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
787 788 789
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
790
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
791
#endif
792
	WARN_ON_ONCE(size == 0);
L
Linus Torvalds 已提交
793 794 795 796
	while (size > csizep->cs_size)
		csizep++;

	/*
797
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
798 799 800
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
801
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
802 803
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
804
#endif
L
Linus Torvalds 已提交
805 806 807
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
808
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
809 810 811 812
{
	return __find_general_cachep(size, gfpflags);
}

813
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
814
{
815 816
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
817

A
Andrew Morton 已提交
818 819 820
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
821 822 823 824 825 826 827
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
877 878 879 880
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
881 882
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
883 884
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
885
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
886 887 888
	dump_stack();
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
920
		node = first_node(node_online_map);
921

922
	per_cpu(reap_node, cpu) = node;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
940 941 942 943 944 945 946 947 948
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
949
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
950 951 952 953 954 955

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
956
	if (keventd_up() && reap_work->work.func == NULL) {
957
		init_reap_node(cpu);
958
		INIT_DELAYED_WORK(reap_work, cache_reap);
959 960
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
961 962 963
	}
}

964
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
965
					    int batchcount)
L
Linus Torvalds 已提交
966
{
P
Pekka Enberg 已提交
967
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
968 969
	struct array_cache *nc = NULL;

970
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
971 972 973 974 975
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
976
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
977 978 979 980
	}
	return nc;
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1030
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1031 1032 1033 1034 1035 1036 1037
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1038
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1039
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1040

P
Pekka Enberg 已提交
1041
static struct array_cache **alloc_alien_cache(int node, int limit)
1042 1043
{
	struct array_cache **ac_ptr;
1044
	int memsize = sizeof(void *) * nr_node_ids;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1058
				for (i--; i <= 0; i--)
1059 1060 1061 1062 1063 1064 1065 1066 1067
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1068
static void free_alien_cache(struct array_cache **ac_ptr)
1069 1070 1071 1072 1073 1074
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1075
	    kfree(ac_ptr[i]);
1076 1077 1078
	kfree(ac_ptr);
}

1079
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1080
				struct array_cache *ac, int node)
1081 1082 1083 1084 1085
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1086 1087 1088 1089 1090
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1091 1092
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1093

1094
		free_block(cachep, ac->entry, ac->avail, node);
1095 1096 1097 1098 1099
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1109 1110

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1111 1112 1113 1114 1115 1116
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1117 1118
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1119
{
P
Pekka Enberg 已提交
1120
	int i = 0;
1121 1122 1123 1124
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1125
		ac = alien[i];
1126 1127 1128 1129 1130 1131 1132
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1133

1134
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1135 1136 1137 1138 1139
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1140 1141 1142
	int node;

	node = numa_node_id();
1143 1144 1145 1146 1147

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1148
	if (likely(slabp->nodeid == node))
1149 1150
		return 0;

P
Pekka Enberg 已提交
1151
	l3 = cachep->nodelists[node];
1152 1153 1154
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1155
		spin_lock(&alien->lock);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1169 1170
#endif

1171
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1172
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1173 1174
{
	long cpu = (long)hcpu;
1175
	struct kmem_cache *cachep;
1176 1177 1178
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1179 1180

	switch (action) {
1181
	case CPU_LOCK_ACQUIRE:
I
Ingo Molnar 已提交
1182
		mutex_lock(&cache_chain_mutex);
1183 1184
		break;
	case CPU_UP_PREPARE:
1185
	case CPU_UP_PREPARE_FROZEN:
A
Andrew Morton 已提交
1186 1187
		/*
		 * We need to do this right in the beginning since
1188 1189 1190 1191 1192
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1193
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1194 1195
			/*
			 * Set up the size64 kmemlist for cpu before we can
1196 1197 1198 1199
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1200 1201
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1202 1203 1204
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1205
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1206

1207 1208 1209 1210 1211
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1212 1213
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1214

1215 1216
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1217 1218
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1219 1220 1221
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1222 1223 1224 1225
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1226
		list_for_each_entry(cachep, &cache_chain, next) {
1227
			struct array_cache *nc;
1228
			struct array_cache *shared = NULL;
1229
			struct array_cache **alien = NULL;
1230

1231
			nc = alloc_arraycache(node, cachep->limit,
1232
						cachep->batchcount);
L
Linus Torvalds 已提交
1233 1234
			if (!nc)
				goto bad;
1235 1236
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1237 1238
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1239 1240 1241
				if (!shared)
					goto bad;
			}
1242 1243 1244 1245 1246
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1247
			cachep->array[cpu] = nc;
1248 1249 1250
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1251 1252 1253 1254 1255 1256 1257 1258
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1259
			}
1260 1261 1262 1263 1264 1265 1266 1267 1268
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1269 1270 1271
		}
		break;
	case CPU_ONLINE:
1272
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1273 1274 1275
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1276
  	case CPU_DOWN_PREPARE:
1277
  	case CPU_DOWN_PREPARE_FROZEN:
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1289
  	case CPU_DOWN_FAILED_FROZEN:
1290 1291
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1292
	case CPU_DEAD:
1293
	case CPU_DEAD_FROZEN:
1294 1295 1296 1297 1298 1299 1300 1301
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1302
		/* fall thru */
1303
#endif
L
Linus Torvalds 已提交
1304
	case CPU_UP_CANCELED:
1305
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
1306 1307
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1308 1309
			struct array_cache *shared;
			struct array_cache **alien;
1310
			cpumask_t mask;
L
Linus Torvalds 已提交
1311

1312
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1313 1314 1315
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1316 1317 1318
			l3 = cachep->nodelists[node];

			if (!l3)
1319
				goto free_array_cache;
1320

1321
			spin_lock_irq(&l3->list_lock);
1322 1323 1324 1325

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1326
				free_block(cachep, nc->entry, nc->avail, node);
1327 1328

			if (!cpus_empty(mask)) {
1329
				spin_unlock_irq(&l3->list_lock);
1330
				goto free_array_cache;
P
Pekka Enberg 已提交
1331
			}
1332

1333 1334
			shared = l3->shared;
			if (shared) {
1335 1336
				free_block(cachep, shared->entry,
					   shared->avail, node);
1337 1338 1339
				l3->shared = NULL;
			}

1340 1341 1342 1343 1344 1345 1346 1347 1348
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1349
			}
1350
free_array_cache:
L
Linus Torvalds 已提交
1351 1352
			kfree(nc);
		}
1353 1354 1355 1356 1357 1358 1359 1360 1361
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1362
			drain_freelist(cachep, l3, l3->free_objects);
1363
		}
1364 1365
		break;
	case CPU_LOCK_RELEASE:
I
Ingo Molnar 已提交
1366
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1367 1368 1369
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1370
bad:
L
Linus Torvalds 已提交
1371 1372 1373
	return NOTIFY_BAD;
}

1374 1375 1376
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1377

1378 1379 1380
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1381 1382
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1383 1384 1385 1386 1387 1388 1389 1390
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1391 1392 1393 1394 1395
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1396 1397 1398 1399 1400
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1401 1402 1403
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1410
	int i;
1411
	int order;
P
Pekka Enberg 已提交
1412
	int node;
1413

1414 1415 1416
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1417 1418 1419 1420 1421
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1432 1433 1434
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1435 1436 1437
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1438
	 * 2) Create the first kmalloc cache.
1439
	 *    The struct kmem_cache for the new cache is allocated normally.
1440 1441 1442
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1443 1444
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1445 1446 1447
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1448 1449
	 */

P
Pekka Enberg 已提交
1450 1451
	node = numa_node_id();

L
Linus Torvalds 已提交
1452 1453 1454 1455 1456
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1457
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1458

E
Eric Dumazet 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1468 1469
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1470 1471
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1472

1473 1474 1475 1476 1477 1478
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1479
	BUG_ON(!cache_cache.num);
1480
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1481 1482 1483
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1489 1490 1491 1492
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1493 1494 1495
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1496 1497 1498 1499
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1500

A
Andrew Morton 已提交
1501
	if (INDEX_AC != INDEX_L3) {
1502
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1503 1504 1505 1506 1507 1508
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1509

1510 1511
	slab_early_init = 0;

L
Linus Torvalds 已提交
1512
	while (sizes->cs_size != ULONG_MAX) {
1513 1514
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1515 1516 1517
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1518 1519
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1520
		if (!sizes->cs_cachep) {
1521
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1522 1523 1524 1525 1526
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1527 1528 1529
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1530 1531 1532 1533 1534
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1535
#endif
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1541
		struct array_cache *ptr;
1542

L
Linus Torvalds 已提交
1543
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1544

L
Linus Torvalds 已提交
1545
		local_irq_disable();
1546 1547
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1548
		       sizeof(struct arraycache_init));
1549 1550 1551 1552 1553
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1554 1555
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1556

L
Linus Torvalds 已提交
1557
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1558

L
Linus Torvalds 已提交
1559
		local_irq_disable();
1560
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1561
		       != &initarray_generic.cache);
1562
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1563
		       sizeof(struct arraycache_init));
1564 1565 1566 1567 1568
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1569
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1570
		    ptr;
L
Linus Torvalds 已提交
1571 1572
		local_irq_enable();
	}
1573 1574
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1575 1576
		int nid;

1577
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1578
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1579

P
Pekka Enberg 已提交
1580
		for_each_online_node(nid) {
1581
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1582
				  &initkmem_list3[SIZE_AC + nid], nid);
1583 1584 1585

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1586
					  &initkmem_list3[SIZE_L3 + nid], nid);
1587 1588 1589
			}
		}
	}
L
Linus Torvalds 已提交
1590

1591
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1592
	{
1593
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1594
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1595
		list_for_each_entry(cachep, &cache_chain, next)
1596 1597
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1598
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1599 1600
	}

1601 1602 1603 1604
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1605 1606 1607
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1608 1609 1610
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1611 1612 1613
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1614 1615 1616
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1624 1625
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1626
	 */
1627
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1628
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1640
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1641 1642
{
	struct page *page;
1643
	int nr_pages;
L
Linus Torvalds 已提交
1644 1645
	int i;

1646
#ifndef CONFIG_MMU
1647 1648 1649
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1650
	 */
1651
	flags |= __GFP_COMP;
1652
#endif
1653

1654
	flags |= cachep->gfpflags;
1655 1656

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1657 1658 1659
	if (!page)
		return NULL;

1660
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1661
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1662 1663 1664 1665 1666
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1667 1668 1669
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674
}

/*
 * Interface to system's page release.
 */
1675
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1676
{
P
Pekka Enberg 已提交
1677
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1678 1679 1680
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1681 1682 1683 1684 1685 1686
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1687
	while (i--) {
N
Nick Piggin 已提交
1688 1689
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1699
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1700
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1710
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1711
			    unsigned long caller)
L
Linus Torvalds 已提交
1712
{
1713
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1714

1715
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1716

P
Pekka Enberg 已提交
1717
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1718 1719
		return;

P
Pekka Enberg 已提交
1720 1721 1722 1723
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1731
				*addr++ = svalue;
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1739
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1740 1741 1742
}
#endif

1743
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1744
{
1745 1746
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1747 1748

	memset(addr, val, size);
P
Pekka Enberg 已提交
1749
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1755 1756 1757
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1758
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1759 1760 1761 1762 1763
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1764
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1765
	}
L
Linus Torvalds 已提交
1766
	printk("\n");
D
Dave Jones 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785
}
#endif

#if DEBUG

1786
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1792
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1793 1794
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1795 1796 1797 1798
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1799
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1800
		print_symbol("(%s)",
A
Andrew Morton 已提交
1801
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1802 1803
		printk("\n");
	}
1804 1805
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1806
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1807 1808
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1809 1810
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1811 1812 1813 1814
		dump_line(realobj, i, limit);
	}
}

1815
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820
{
	char *realobj;
	int size, i;
	int lines = 0;

1821 1822
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1823

P
Pekka Enberg 已提交
1824
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1825
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1826
		if (i == size - 1)
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831 1832
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1833
				printk(KERN_ERR
1834 1835
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1836 1837 1838
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1839
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1840
			limit = 16;
P
Pekka Enberg 已提交
1841 1842
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1855
		struct slab *slabp = virt_to_slab(objp);
1856
		unsigned int objnr;
L
Linus Torvalds 已提交
1857

1858
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1859
		if (objnr) {
1860
			objp = index_to_obj(cachep, slabp, objnr - 1);
1861
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1862
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1863
			       realobj, size);
L
Linus Torvalds 已提交
1864 1865
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1866
		if (objnr + 1 < cachep->num) {
1867
			objp = index_to_obj(cachep, slabp, objnr + 1);
1868
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1869
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1870
			       realobj, size);
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1877 1878
#if DEBUG
/**
1879 1880 1881 1882 1883 1884
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1885
 */
1886
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1887 1888 1889
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1890
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1891 1892 1893

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1894 1895
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1896
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1897
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1907
					   "was overwritten");
L
Linus Torvalds 已提交
1908 1909
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1910
					   "was overwritten");
L
Linus Torvalds 已提交
1911 1912
		}
	}
1913
}
L
Linus Torvalds 已提交
1914
#else
1915
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1916 1917
{
}
L
Linus Torvalds 已提交
1918 1919
#endif

1920 1921 1922 1923 1924
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1925
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1926 1927
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1928
 */
1929
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1930 1931 1932 1933
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1934 1935 1936
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1937
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1943 1944
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1945 1946 1947
	}
}

A
Andrew Morton 已提交
1948 1949 1950 1951
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1952
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1953 1954 1955 1956
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1957
		cachep->nodelists[node] = &initkmem_list3[index + node];
1958
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1959 1960
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1961 1962 1963
	}
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1985
/**
1986 1987 1988 1989 1990 1991 1992
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1993 1994 1995 1996 1997
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1998
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1999
			size_t size, size_t align, unsigned long flags)
2000
{
2001
	unsigned long offslab_limit;
2002
	size_t left_over = 0;
2003
	int gfporder;
2004

A
Andrew Morton 已提交
2005
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2006 2007 2008
		unsigned int num;
		size_t remainder;

2009
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 2011
		if (!num)
			continue;
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2025

2026
		/* Found something acceptable - save it away */
2027
		cachep->num = num;
2028
		cachep->gfporder = gfporder;
2029 2030
		left_over = remainder;

2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2039 2040 2041 2042
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2043
		if (gfporder >= slab_break_gfp_order)
2044 2045
			break;

2046 2047 2048
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2049
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 2051 2052 2053 2054
			break;
	}
	return left_over;
}

2055
static int setup_cpu_cache(struct kmem_cache *cachep)
2056
{
2057 2058 2059
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2106
	return 0;
2107 2108
}

L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
2116
 * @dtor: A destructor for the objects (not implemented anymore).
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2124 2125
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2138
struct kmem_cache *
L
Linus Torvalds 已提交
2139
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2140 2141
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2142
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2143 2144
{
	size_t left_over, slab_size, ralign;
2145
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2146 2147 2148 2149

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2150
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2151
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
A
Andrew Morton 已提交
2152 2153
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2154 2155
		BUG();
	}
L
Linus Torvalds 已提交
2156

2157
	/*
2158 2159
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2160
	 */
I
Ingo Molnar 已提交
2161
	mutex_lock(&cache_chain_mutex);
2162

2163
	list_for_each_entry(pc, &cache_chain, next) {
2164 2165 2166 2167 2168 2169 2170 2171
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2172
		res = probe_kernel_address(pc->name, tmp);
2173
		if (res) {
2174 2175
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2176
			       pc->buffer_size);
2177 2178 2179
			continue;
		}

P
Pekka Enberg 已提交
2180
		if (!strcmp(pc->name, name)) {
2181 2182
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2183 2184 2185 2186 2187
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2197
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2198
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2206 2207
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2208
	 */
2209
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2210

A
Andrew Morton 已提交
2211 2212
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2213 2214 2215
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2216 2217 2218
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2219 2220
	}

A
Andrew Morton 已提交
2221 2222
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2223 2224
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2225 2226 2227 2228
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2229 2230
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2231
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2232 2233 2234 2235
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2236 2237 2238 2239 2240 2241 2242

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2243
		ralign = __alignof__(unsigned long long);
2244

2245
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2246 2247 2248
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2249
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2250 2251 2252
	if (ralign < align) {
		ralign = align;
	}
2253
	/* disable debug if necessary */
2254
	if (ralign > __alignof__(unsigned long long))
2255
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2256
	/*
2257
	 * 4) Store it.
L
Linus Torvalds 已提交
2258 2259 2260 2261
	 */
	align = ralign;

	/* Get cache's description obj. */
2262
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2263
	if (!cachep)
2264
		goto oops;
L
Linus Torvalds 已提交
2265 2266

#if DEBUG
2267
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2268

2269 2270 2271 2272
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2273 2274
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2275 2276
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2277 2278
	}
	if (flags & SLAB_STORE_USER) {
2279 2280
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2281 2282 2283 2284
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2285
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2286 2287
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292
		size = PAGE_SIZE;
	}
#endif
#endif

2293 2294 2295 2296 2297 2298
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303 2304 2305 2306
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2307
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2308 2309

	if (!cachep->num) {
2310 2311
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2312 2313
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2314
		goto oops;
L
Linus Torvalds 已提交
2315
	}
P
Pekka Enberg 已提交
2316 2317
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2330 2331
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336 2337
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2338
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2339 2340 2341
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2342
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2343
		cachep->gfpflags |= GFP_DMA;
2344
	cachep->buffer_size = size;
2345
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2346

2347
	if (flags & CFLGS_OFF_SLAB) {
2348
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2349 2350 2351 2352 2353 2354 2355 2356 2357
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2358 2359 2360
	cachep->ctor = ctor;
	cachep->name = name;

2361 2362 2363 2364 2365
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2366 2367 2368

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2369
oops:
L
Linus Torvalds 已提交
2370 2371
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2372
		      name);
I
Ingo Molnar 已提交
2373
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2389
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2390 2391 2392
{
#ifdef CONFIG_SMP
	check_irq_off();
2393
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2394 2395
#endif
}
2396

2397
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2398 2399 2400 2401 2402 2403 2404
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2405 2406 2407 2408
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2409
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2410 2411
#endif

2412 2413 2414 2415
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2416 2417
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2418
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2419
	struct array_cache *ac;
2420
	int node = numa_node_id();
L
Linus Torvalds 已提交
2421 2422

	check_irq_off();
2423
	ac = cpu_cache_get(cachep);
2424 2425 2426
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2427 2428 2429
	ac->avail = 0;
}

2430
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2431
{
2432 2433 2434
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2435
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2436
	check_irq_on();
P
Pekka Enberg 已提交
2437
	for_each_online_node(node) {
2438
		l3 = cachep->nodelists[node];
2439 2440 2441 2442 2443 2444 2445
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2446
			drain_array(cachep, l3, l3->shared, 1, node);
2447
	}
L
Linus Torvalds 已提交
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2458
{
2459 2460
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2461 2462
	struct slab *slabp;

2463 2464
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2465

2466
		spin_lock_irq(&l3->list_lock);
2467
		p = l3->slabs_free.prev;
2468 2469 2470 2471
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2472

2473
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2474
#if DEBUG
2475
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2476 2477
#endif
		list_del(&slabp->list);
2478 2479 2480 2481 2482
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2483
		spin_unlock_irq(&l3->list_lock);
2484 2485
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2486
	}
2487 2488
out:
	return nr_freed;
L
Linus Torvalds 已提交
2489 2490
}

2491
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2492
static int __cache_shrink(struct kmem_cache *cachep)
2493 2494 2495 2496 2497 2498 2499 2500 2501
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2502 2503 2504 2505 2506 2507 2508
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2509 2510 2511 2512
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2520
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2521
{
2522
	int ret;
2523
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2524

2525 2526 2527 2528
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534 2535
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2536
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2548
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2549
{
2550
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2551 2552

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2553
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2560
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2561
		mutex_unlock(&cache_chain_mutex);
2562
		return;
L
Linus Torvalds 已提交
2563 2564 2565
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2566
		synchronize_rcu();
L
Linus Torvalds 已提交
2567

2568
	__kmem_cache_destroy(cachep);
2569
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2570 2571 2572
}
EXPORT_SYMBOL(kmem_cache_destroy);

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2584
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2585 2586
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2587 2588
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2589

L
Linus Torvalds 已提交
2590 2591
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2592
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2593
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2594 2595 2596
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2597
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2598 2599 2600 2601
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2602
	slabp->s_mem = objp + colour_off;
2603
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2609
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2610 2611
}

2612
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2613
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2614 2615 2616 2617
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2618
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2631 2632 2633
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2634 2635
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2636
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2637
				     ctor_flags);
L
Linus Torvalds 已提交
2638 2639 2640 2641

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2642
					   " end of an object");
L
Linus Torvalds 已提交
2643 2644
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2645
					   " start of an object");
L
Linus Torvalds 已提交
2646
		}
A
Andrew Morton 已提交
2647 2648
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2649
			kernel_map_pages(virt_to_page(objp),
2650
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2651 2652 2653 2654
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2655
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2656
	}
P
Pekka Enberg 已提交
2657
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2658 2659 2660
	slabp->free = 0;
}

2661
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2662
{
2663 2664 2665 2666 2667 2668
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2669 2670
}

A
Andrew Morton 已提交
2671 2672
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2673
{
2674
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2688 2689
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2690
{
2691
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2692 2693 2694 2695 2696

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2697
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2698
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2699
				"'%s', objp %p\n", cachep->name, objp);
2700 2701 2702 2703 2704 2705 2706 2707
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2708 2709 2710 2711 2712 2713 2714
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2715
{
2716
	int nr_pages;
L
Linus Torvalds 已提交
2717 2718
	struct page *page;

2719
	page = virt_to_page(addr);
2720

2721
	nr_pages = 1;
2722
	if (likely(!PageCompound(page)))
2723 2724
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2725
	do {
2726 2727
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2728
		page++;
2729
	} while (--nr_pages);
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2736 2737
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2738
{
P
Pekka Enberg 已提交
2739 2740 2741 2742
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2743
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2744

A
Andrew Morton 已提交
2745 2746 2747
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2748
	 */
2749
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2750 2751

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2752
	local_flags = (flags & GFP_LEVEL_MASK);
2753
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2754
	check_irq_off();
2755 2756
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2757 2758

	/* Get colour for the slab, and cal the next value. */
2759 2760 2761 2762 2763
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2764

2765
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2778 2779 2780
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2781
	 */
2782 2783
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2784
	if (!objp)
L
Linus Torvalds 已提交
2785 2786 2787
		goto failed;

	/* Get slab management. */
2788 2789
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2790
	if (!slabp)
L
Linus Torvalds 已提交
2791 2792
		goto opps1;

2793
	slabp->nodeid = nodeid;
2794
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2801
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2802 2803

	/* Make slab active. */
2804
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2805
	STATS_INC_GROWN(cachep);
2806 2807
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2808
	return 1;
A
Andrew Morton 已提交
2809
opps1:
L
Linus Torvalds 已提交
2810
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2811
failed:
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2828 2829
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2830 2831 2832
	}
}

2833 2834
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2835
	unsigned long long redzone1, redzone2;
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2851
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2852 2853 2854
			obj, redzone1, redzone2);
}

2855
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2856
				   void *caller)
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2862
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2863
	kfree_debugcheck(objp);
2864
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2865

2866
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2867 2868

	if (cachep->flags & SLAB_RED_ZONE) {
2869
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2876
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2877 2878

	BUG_ON(objnr >= cachep->num);
2879
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2880

2881 2882 2883
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2884 2885
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2886
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2887
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2888
			kernel_map_pages(virt_to_page(objp),
2889
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2900
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2901 2902 2903
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2904

L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2912 2913 2914 2915
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2916
		for (i = 0;
2917
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2918
		     i++) {
A
Andrew Morton 已提交
2919
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2920
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2921
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2933
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2934 2935 2936 2937
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2938 2939 2940
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2941 2942

	check_irq_off();
2943
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2944
retry:
L
Linus Torvalds 已提交
2945 2946
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2947 2948 2949 2950
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2951 2952 2953
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2954
	l3 = cachep->nodelists[node];
2955 2956 2957

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2958

2959 2960 2961 2962
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2978 2979 2980 2981 2982 2983 2984 2985

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
2986 2987 2988 2989 2990
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2991
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2992
							    node);
L
Linus Torvalds 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3004
must_grow:
L
Linus Torvalds 已提交
3005
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3006
alloc_done:
3007
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3008 3009 3010

	if (unlikely(!ac->avail)) {
		int x;
3011
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3012

A
Andrew Morton 已提交
3013
		/* cache_grow can reenable interrupts, then ac could change. */
3014
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3015
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3016 3017
			return NULL;

A
Andrew Morton 已提交
3018
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3019 3020 3021
			goto retry;
	}
	ac->touched = 1;
3022
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3023 3024
}

A
Andrew Morton 已提交
3025 3026
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032 3033 3034
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3035 3036
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3037
{
P
Pekka Enberg 已提交
3038
	if (!objp)
L
Linus Torvalds 已提交
3039
		return objp;
P
Pekka Enberg 已提交
3040
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3041
#ifdef CONFIG_DEBUG_PAGEALLOC
3042
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3043
			kernel_map_pages(virt_to_page(objp),
3044
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3056 3057 3058 3059
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3060
			printk(KERN_ERR
3061
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3062 3063
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3064 3065 3066 3067
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3068 3069 3070 3071 3072
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3073
		slabp = page_get_slab(virt_to_head_page(objp));
3074 3075 3076 3077
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3078
	objp += obj_offset(cachep);
3079 3080
	if (cachep->ctor && cachep->flags & SLAB_POISON)
		cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3081 3082 3083 3084 3085 3086
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3106
	.ignore_gfp_wait = 1,
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3135
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3166
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3167
{
P
Pekka Enberg 已提交
3168
	void *objp;
L
Linus Torvalds 已提交
3169 3170
	struct array_cache *ac;

3171
	check_irq_off();
3172

3173
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3174 3175 3176
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3177
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3178 3179 3180 3181
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3182 3183 3184
	return objp;
}

3185
#ifdef CONFIG_NUMA
3186
/*
3187
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3188 3189 3190 3191 3192 3193 3194 3195
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3196
	if (in_interrupt() || (flags & __GFP_THISNODE))
3197 3198 3199 3200 3201 3202 3203
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3204
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3205 3206 3207
	return NULL;
}

3208 3209
/*
 * Fallback function if there was no memory available and no objects on a
3210 3211 3212 3213 3214
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3215
 */
3216
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3217
{
3218 3219
	struct zonelist *zonelist;
	gfp_t local_flags;
3220 3221
	struct zone **z;
	void *obj = NULL;
3222
	int nid;
3223 3224 3225 3226 3227 3228 3229

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3230

3231 3232 3233 3234 3235
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3236
	for (z = zonelist->zones; *z && !obj; z++) {
3237
		nid = zone_to_nid(*z);
3238

3239
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3240 3241 3242 3243 3244 3245
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3246
	if (!obj) {
3247 3248 3249 3250 3251 3252
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3253 3254 3255
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3256
		obj = kmem_getpages(cache, flags, -1);
3257 3258
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3275
				/* cache_grow already freed obj */
3276 3277 3278
				obj = NULL;
			}
		}
3279
	}
3280 3281 3282
	return obj;
}

3283 3284
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3285
 */
3286
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3287
				int nodeid)
3288 3289
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3290 3291 3292 3293 3294 3295 3296 3297
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3298
retry:
3299
	check_irq_off();
P
Pekka Enberg 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3319
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3320 3321 3322 3323 3324
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3325
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3326
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3327
	else
P
Pekka Enberg 已提交
3328
		list_add(&slabp->list, &l3->slabs_partial);
3329

P
Pekka Enberg 已提交
3330 3331
	spin_unlock(&l3->list_lock);
	goto done;
3332

A
Andrew Morton 已提交
3333
must_grow:
P
Pekka Enberg 已提交
3334
	spin_unlock(&l3->list_lock);
3335
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3336 3337
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3338

3339
	return fallback_alloc(cachep, flags);
3340

A
Andrew Morton 已提交
3341
done:
P
Pekka Enberg 已提交
3342
	return obj;
3343
}
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3364 3365 3366
	if (should_failslab(cachep, flags))
		return NULL;

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3437 3438 3439
	if (should_failslab(cachep, flags))
		return NULL;

3440 3441 3442 3443 3444 3445 3446 3447 3448
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3449 3450 3451 3452

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3453
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3454
		       int node)
L
Linus Torvalds 已提交
3455 3456
{
	int i;
3457
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3463
		slabp = virt_to_slab(objp);
3464
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3465
		list_del(&slabp->list);
3466
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3467
		check_slabp(cachep, slabp);
3468
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3469
		STATS_DEC_ACTIVE(cachep);
3470
		l3->free_objects++;
L
Linus Torvalds 已提交
3471 3472 3473 3474
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3475 3476
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3477 3478 3479 3480 3481 3482
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3483 3484
				slab_destroy(cachep, slabp);
			} else {
3485
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3492
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3493 3494 3495 3496
		}
	}
}

3497
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3498 3499
{
	int batchcount;
3500
	struct kmem_list3 *l3;
3501
	int node = numa_node_id();
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506 3507

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3508
	l3 = cachep->nodelists[node];
3509
	spin_lock(&l3->list_lock);
3510 3511
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3512
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3513 3514 3515
		if (max) {
			if (batchcount > max)
				batchcount = max;
3516
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3517
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3523
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3524
free_done:
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529
#if STATS
	{
		int i = 0;
		struct list_head *p;

3530 3531
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3543
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3544
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3545
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3546 3547 3548
}

/*
A
Andrew Morton 已提交
3549 3550
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3551
 */
3552
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3553
{
3554
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3555 3556 3557 3558

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3559
	if (use_alien_caches && cache_free_alien(cachep, objp))
3560 3561
		return;

L
Linus Torvalds 已提交
3562 3563
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3564
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3565 3566 3567 3568
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3569
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3581
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3582
{
3583
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3584 3585 3586
}
EXPORT_SYMBOL(kmem_cache_alloc);

3587
/**
3588
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3618
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3619
{
P
Pekka Enberg 已提交
3620
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3621
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3622
	unsigned long align_mask = BYTES_PER_WORD - 1;
3623
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3639
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3640 3641
		goto out;
	return 1;
A
Andrew Morton 已提交
3642
out:
L
Linus Torvalds 已提交
3643 3644 3645 3646
	return 0;
}

#ifdef CONFIG_NUMA
3647 3648 3649 3650 3651
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3652 3653
EXPORT_SYMBOL(kmem_cache_alloc_node);

3654 3655
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3656
{
3657
	struct kmem_cache *cachep;
3658 3659 3660 3661 3662 3663

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3664 3665 3666 3667 3668 3669 3670

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3671
EXPORT_SYMBOL(__kmalloc_node);
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3687 3688

/**
3689
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3690
 * @size: how many bytes of memory are required.
3691
 * @flags: the type of memory to allocate (see kmalloc).
3692
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3693
 */
3694 3695
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3696
{
3697
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3698

3699 3700 3701 3702 3703 3704
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3705 3706
	if (unlikely(cachep == NULL))
		return NULL;
3707 3708 3709 3710
	return __cache_alloc(cachep, flags, caller);
}


3711
#ifdef CONFIG_DEBUG_SLAB
3712 3713
void *__kmalloc(size_t size, gfp_t flags)
{
3714
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3715 3716 3717
}
EXPORT_SYMBOL(__kmalloc);

3718 3719 3720 3721 3722
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3723 3724 3725 3726 3727 3728 3729

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3730 3731
#endif

P
Pekka Enberg 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783 3784 3785
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3786
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3787 3788 3789
{
	unsigned long flags;

3790 3791
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3792
	local_irq_save(flags);
3793
	debug_check_no_locks_freed(objp, obj_size(cachep));
3794
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3795 3796 3797 3798 3799 3800 3801 3802
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3803 3804
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3805 3806 3807 3808 3809
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3810
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3811 3812 3813 3814 3815 3816
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3817
	c = virt_to_cache(objp);
3818
	debug_check_no_locks_freed(objp, obj_size(c));
3819
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3820 3821 3822 3823
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3824
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3825
{
3826
	return obj_size(cachep);
L
Linus Torvalds 已提交
3827 3828 3829
}
EXPORT_SYMBOL(kmem_cache_size);

3830
const char *kmem_cache_name(struct kmem_cache *cachep)
3831 3832 3833 3834 3835
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3836
/*
3837
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3838
 */
3839
static int alloc_kmemlist(struct kmem_cache *cachep)
3840 3841 3842
{
	int node;
	struct kmem_list3 *l3;
3843
	struct array_cache *new_shared;
3844
	struct array_cache **new_alien = NULL;
3845 3846

	for_each_online_node(node) {
3847

3848 3849 3850 3851 3852
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3853

3854 3855 3856
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3857
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3858
					0xbaadf00d);
3859 3860 3861 3862
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3863
		}
3864

A
Andrew Morton 已提交
3865 3866
		l3 = cachep->nodelists[node];
		if (l3) {
3867 3868
			struct array_cache *shared = l3->shared;

3869 3870
			spin_lock_irq(&l3->list_lock);

3871
			if (shared)
3872 3873
				free_block(cachep, shared->entry,
						shared->avail, node);
3874

3875 3876
			l3->shared = new_shared;
			if (!l3->alien) {
3877 3878 3879
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3880
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3881
					cachep->batchcount + cachep->num;
3882
			spin_unlock_irq(&l3->list_lock);
3883
			kfree(shared);
3884 3885 3886
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3887
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3888 3889 3890
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3891
			goto fail;
3892
		}
3893 3894 3895

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3896
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3897
		l3->shared = new_shared;
3898
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3899
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3900
					cachep->batchcount + cachep->num;
3901 3902
		cachep->nodelists[node] = l3;
	}
3903
	return 0;
3904

A
Andrew Morton 已提交
3905
fail:
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3921
	return -ENOMEM;
3922 3923
}

L
Linus Torvalds 已提交
3924
struct ccupdate_struct {
3925
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3931
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3932 3933 3934
	struct array_cache *old;

	check_irq_off();
3935
	old = cpu_cache_get(new->cachep);
3936

L
Linus Torvalds 已提交
3937 3938 3939 3940
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3941
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3942 3943
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3944
{
3945
	struct ccupdate_struct *new;
3946
	int i;
L
Linus Torvalds 已提交
3947

3948 3949 3950 3951
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3952
	for_each_online_cpu(i) {
3953
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3954
						batchcount);
3955
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3956
			for (i--; i >= 0; i--)
3957 3958
				kfree(new->new[i]);
			kfree(new);
3959
			return -ENOMEM;
L
Linus Torvalds 已提交
3960 3961
		}
	}
3962
	new->cachep = cachep;
L
Linus Torvalds 已提交
3963

3964
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3965

L
Linus Torvalds 已提交
3966 3967 3968
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3969
	cachep->shared = shared;
L
Linus Torvalds 已提交
3970

3971
	for_each_online_cpu(i) {
3972
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3973 3974
		if (!ccold)
			continue;
3975
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3976
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3977
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3978 3979
		kfree(ccold);
	}
3980
	kfree(new);
3981
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3982 3983
}

3984
/* Called with cache_chain_mutex held always */
3985
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3986 3987 3988 3989
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3990 3991
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3992 3993
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3994
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3995 3996 3997 3998
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3999
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4000
		limit = 1;
4001
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4002
		limit = 8;
4003
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4004
		limit = 24;
4005
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4006 4007 4008 4009
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4010 4011
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4020
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4021 4022 4023
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4024 4025 4026
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4027 4028 4029 4030
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4031
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4032 4033
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4034
		       cachep->name, -err);
4035
	return err;
L
Linus Torvalds 已提交
4036 4037
}

4038 4039
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4040 4041
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4042 4043 4044
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4045 4046 4047
{
	int tofree;

4048 4049
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4050 4051
	if (ac->touched && !force) {
		ac->touched = 0;
4052
	} else {
4053
		spin_lock_irq(&l3->list_lock);
4054 4055 4056 4057 4058 4059 4060 4061 4062
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4063
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4069
 * @w: work descriptor
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4076 4077
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4078
 */
4079
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4080
{
4081
	struct kmem_cache *searchp;
4082
	struct kmem_list3 *l3;
4083
	int node = numa_node_id();
4084 4085
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4086

4087
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4088
		/* Give up. Setup the next iteration. */
4089
		goto out;
L
Linus Torvalds 已提交
4090

4091
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4092 4093
		check_irq_on();

4094 4095 4096 4097 4098
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4099
		l3 = searchp->nodelists[node];
4100

4101
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4102

4103
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4104

4105 4106 4107 4108
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4109
		if (time_after(l3->next_reap, jiffies))
4110
			goto next;
L
Linus Torvalds 已提交
4111

4112
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4113

4114
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4115

4116
		if (l3->free_touched)
4117
			l3->free_touched = 0;
4118 4119
		else {
			int freed;
L
Linus Torvalds 已提交
4120

4121 4122 4123 4124
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4125
next:
L
Linus Torvalds 已提交
4126 4127 4128
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4129
	mutex_unlock(&cache_chain_mutex);
4130
	next_reap_node();
4131
out:
A
Andrew Morton 已提交
4132
	/* Set up the next iteration */
4133
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4134 4135 4136 4137
}

#ifdef CONFIG_PROC_FS

4138
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4139
{
4140 4141 4142 4143
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4144
#if STATS
4145
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4146
#else
4147
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4148
#endif
4149 4150 4151 4152
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4153
#if STATS
4154
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4155
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4156
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4157
#endif
4158 4159 4160 4161 4162 4163 4164 4165
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4166
	mutex_lock(&cache_chain_mutex);
4167 4168
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4169 4170 4171 4172 4173 4174
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4175
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4176 4177 4178 4179
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4180
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4181
	++*pos;
A
Andrew Morton 已提交
4182 4183
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4184 4185 4186 4187
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4188
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4189 4190 4191 4192
}

static int s_show(struct seq_file *m, void *p)
{
4193
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4194 4195 4196 4197 4198
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4199
	const char *name;
L
Linus Torvalds 已提交
4200
	char *error = NULL;
4201 4202
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4203 4204 4205

	active_objs = 0;
	num_slabs = 0;
4206 4207 4208 4209 4210
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4211 4212
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4213

4214
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4215 4216 4217 4218 4219
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4220
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4221 4222 4223 4224 4225 4226 4227
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4228
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4229 4230 4231 4232 4233
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4234 4235
		if (l3->shared)
			shared_avail += l3->shared->avail;
4236

4237
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4238
	}
P
Pekka Enberg 已提交
4239 4240
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4241
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4242 4243
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4244
	name = cachep->name;
L
Linus Torvalds 已提交
4245 4246 4247 4248
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4249
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4250
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4251
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4252
		   cachep->limit, cachep->batchcount, cachep->shared);
4253
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4254
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4255
#if STATS
P
Pekka Enberg 已提交
4256
	{			/* list3 stats */
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4264
		unsigned long node_frees = cachep->node_frees;
4265
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4266

4267
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4268
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4269
				reaped, errors, max_freeable, node_allocs,
4270
				node_frees, overflows);
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4280
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4301
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4302 4303 4304 4305
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4316 4317
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4318
{
P
Pekka Enberg 已提交
4319
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4320
	int limit, batchcount, shared, res;
4321
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4322

L
Linus Torvalds 已提交
4323 4324 4325 4326
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4327
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4338
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4339
	res = -EINVAL;
4340
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4341
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4342 4343
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4344
				res = 0;
L
Linus Torvalds 已提交
4345
			} else {
4346
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4347
						       batchcount, shared);
L
Linus Torvalds 已提交
4348 4349 4350 4351
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4352
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4353 4354 4355 4356
	if (res >= 0)
		res = count;
	return res;
}
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4423
	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4424

4425
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4426
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4427
		if (modname[0])
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4462
		list_for_each_entry(slabp, &l3->slabs_full, list)
4463
			handle_slab(n, cachep, slabp);
4464
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4491

4492 4493 4494
	return 0;
}

4495
const struct seq_operations slabstats_op = {
4496 4497 4498 4499 4500 4501
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4502 4503
#endif

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4516
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4517
{
4518 4519
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4520

4521
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4522
}