memcontrol.c 145.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044
	/*
1045 1046 1047 1048 1049 1050 1051
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
1052
	 */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	smp_mb();
	/*
	 * If the page is uncharged, it may be freed soon, but it
	 * could also be swap cache (readahead, swapoff) that needs to
	 * be reclaimable in the future.  root_mem_cgroup will babysit
	 * it for the time being.
	 */
	if (PageCgroupUsed(pc)) {
		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
		smp_rmb();
		memcg = pc->mem_cgroup;
		SetPageCgroupAcctLRU(pc);
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1071
}
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1082
 */
1083
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086
	struct mem_cgroup *memcg;
1087 1088 1089 1090 1091 1092
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * root_mem_cgroup babysits uncharged LRU pages, but
	 * PageCgroupUsed is cleared when the page is about to get
	 * freed.  PageCgroupAcctLRU remembers whether the
	 * LRU-accounting happened against pc->mem_cgroup or
	 * root_mem_cgroup.
	 */
	if (TestClearPageCgroupAcctLRU(pc)) {
		VM_BUG_ON(!pc->mem_cgroup);
		memcg = pc->mem_cgroup;
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108 1109
}

1110
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	mem_cgroup_lru_del_list(page, page_lru(page));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1133
{
1134 1135 1136
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

K
KAMEZAWA Hiroyuki 已提交
1139
/*
1140 1141 1142 1143
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1144
 */
1145
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1146
{
1147
	enum lru_list lru;
1148 1149 1150 1151
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1163
	spin_lock_irqsave(&zone->lru_lock, flags);
1164
	lru = page_lru(page);
1165
	/*
1166 1167 1168 1169 1170 1171 1172 1173 1174
	 * The uncharged page could still be registered to the LRU of
	 * the stale pc->mem_cgroup.
	 *
	 * As pc->mem_cgroup is about to get overwritten, the old LRU
	 * accounting needs to be taken care of.  Let root_mem_cgroup
	 * babysit the page until the new memcg is responsible for it.
	 *
	 * The PCG_USED bit is guarded by lock_page() as the page is
	 * swapcache/pagecache.
1175
	 */
1176 1177 1178 1179
	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1180
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1181 1182
}

1183
static void mem_cgroup_lru_add_after_commit(struct page *page)
1184
{
1185
	enum lru_list lru;
1186 1187 1188
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1199 1200 1201
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1202
	spin_lock_irqsave(&zone->lru_lock, flags);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	lru = page_lru(page);
	/*
	 * If the page is not on the LRU, someone will soon put it
	 * there.  If it is, and also already accounted for on the
	 * memcg-side, it must be on the right lruvec as setting
	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
	 * Otherwise, root_mem_cgroup has been babysitting the page
	 * during the charge.  Move it to the new memcg now.
	 */
	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1216 1217 1218
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

1219
/*
1220
 * Checks whether given mem is same or in the root_mem_cgroup's
1221 1222
 * hierarchy subtree
 */
1223 1224
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1225
{
1226 1227 1228
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1229 1230 1231 1232 1233
	}

	return true;
}

1234
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235 1236
{
	int ret;
1237
	struct mem_cgroup *curr = NULL;
1238
	struct task_struct *p;
1239

1240
	p = find_lock_task_mm(task);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1256 1257
	if (!curr)
		return 0;
1258
	/*
1259
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1260
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1261 1262
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1263
	 */
1264
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1265
	css_put(&curr->css);
1266 1267 1268
	return ret;
}

1269
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1270
{
1271 1272 1273
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1274
	unsigned long inactive;
1275
	unsigned long active;
1276
	unsigned long gb;
1277

1278 1279 1280 1281
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1282

1283 1284 1285 1286 1287 1288
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1289
	return inactive * inactive_ratio < active;
1290 1291
}

1292
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1293 1294 1295
{
	unsigned long active;
	unsigned long inactive;
1296 1297
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1298

1299 1300 1301 1302
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1303 1304 1305 1306

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1307 1308 1309
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1310
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1327 1328
	if (!PageCgroupUsed(pc))
		return NULL;
1329 1330
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1331
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1332 1333 1334
	return &mz->reclaim_stat;
}

1335 1336 1337
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1338
/**
1339 1340
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1341
 *
1342
 * Returns the maximum amount of memory @mem can be charged with, in
1343
 * pages.
1344
 */
1345
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1346
{
1347 1348
	unsigned long long margin;

1349
	margin = res_counter_margin(&memcg->res);
1350
	if (do_swap_account)
1351
		margin = min(margin, res_counter_margin(&memcg->memsw));
1352
	return margin >> PAGE_SHIFT;
1353 1354
}

1355
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1356 1357 1358 1359 1360 1361 1362
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1363
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1364 1365
}

1366
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1367 1368
{
	int cpu;
1369 1370

	get_online_cpus();
1371
	spin_lock(&memcg->pcp_counter_lock);
1372
	for_each_online_cpu(cpu)
1373 1374 1375
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1376
	put_online_cpus();
1377 1378 1379 1380

	synchronize_rcu();
}

1381
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1382 1383 1384
{
	int cpu;

1385
	if (!memcg)
1386
		return;
1387
	get_online_cpus();
1388
	spin_lock(&memcg->pcp_counter_lock);
1389
	for_each_online_cpu(cpu)
1390 1391 1392
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1393
	put_online_cpus();
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1407
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1408 1409
{
	VM_BUG_ON(!rcu_read_lock_held());
1410
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1411
}
1412

1413
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414
{
1415 1416
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1417
	bool ret = false;
1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1427

1428 1429
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1430 1431
unlock:
	spin_unlock(&mc.lock);
1432 1433 1434
	return ret;
}

1435
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 1437
{
	if (mc.moving_task && current != mc.moving_task) {
1438
		if (mem_cgroup_under_move(memcg)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1451
/**
1452
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1471
	if (!memcg || !p)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1518 1519 1520 1521
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1522
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1523 1524
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1525 1526
	struct mem_cgroup *iter;

1527
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1528
		num++;
1529 1530 1531
	return num;
}

D
David Rientjes 已提交
1532 1533 1534 1535 1536 1537 1538 1539
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1540 1541 1542
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1543 1544 1545 1546 1547 1548 1549 1550
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1597
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1598 1599
		int nid, bool noswap)
{
1600
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1601 1602 1603
		return true;
	if (noswap || !total_swap_pages)
		return false;
1604
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1605 1606 1607 1608
		return true;
	return false;

}
1609 1610 1611 1612 1613 1614 1615 1616
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1617
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1618 1619
{
	int nid;
1620 1621 1622 1623
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1624
	if (!atomic_read(&memcg->numainfo_events))
1625
		return;
1626
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1627 1628 1629
		return;

	/* make a nodemask where this memcg uses memory from */
1630
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1631 1632 1633

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1634 1635
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1636
	}
1637

1638 1639
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1654
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1655 1656 1657
{
	int node;

1658 1659
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1660

1661
	node = next_node(node, memcg->scan_nodes);
1662
	if (node == MAX_NUMNODES)
1663
		node = first_node(memcg->scan_nodes);
1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1673
	memcg->last_scanned_node = node;
1674 1675 1676
	return node;
}

1677 1678 1679 1680 1681 1682
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1683
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1684 1685 1686 1687 1688 1689 1690
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1691 1692
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1693
		     nid < MAX_NUMNODES;
1694
		     nid = next_node(nid, memcg->scan_nodes)) {
1695

1696
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697 1698 1699 1700 1701 1702 1703
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1704
		if (node_isset(nid, memcg->scan_nodes))
1705
			continue;
1706
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1707 1708 1709 1710 1711
			return true;
	}
	return false;
}

1712
#else
1713
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1714 1715 1716
{
	return 0;
}
1717

1718
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1719
{
1720
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1721
}
1722 1723
#endif

1724 1725 1726 1727
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1728
{
1729
	struct mem_cgroup *victim = NULL;
1730
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1731
	int loop = 0;
1732
	unsigned long excess;
1733
	unsigned long nr_scanned;
1734 1735 1736 1737
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1738

1739
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1740

1741
	while (1) {
1742
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1743
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1744
			loop++;
1745 1746 1747 1748 1749 1750
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1751
				if (!total)
1752 1753
					break;
				/*
L
Lucas De Marchi 已提交
1754
				 * We want to do more targeted reclaim.
1755 1756 1757 1758 1759
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1760
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1761 1762
					break;
			}
1763
			continue;
1764
		}
1765
		if (!mem_cgroup_reclaimable(victim, false))
1766
			continue;
1767 1768 1769 1770
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1771
			break;
1772
	}
1773
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1774
	return total;
1775 1776
}

K
KAMEZAWA Hiroyuki 已提交
1777 1778 1779
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1780
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1781
 */
1782
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1783
{
1784
	struct mem_cgroup *iter, *failed = NULL;
1785

1786
	for_each_mem_cgroup_tree(iter, memcg) {
1787
		if (iter->oom_lock) {
1788 1789 1790 1791 1792
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1793 1794
			mem_cgroup_iter_break(memcg, iter);
			break;
1795 1796
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1797
	}
K
KAMEZAWA Hiroyuki 已提交
1798

1799
	if (!failed)
1800
		return true;
1801 1802 1803 1804 1805

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1806
	for_each_mem_cgroup_tree(iter, memcg) {
1807
		if (iter == failed) {
1808 1809
			mem_cgroup_iter_break(memcg, iter);
			break;
1810 1811 1812
		}
		iter->oom_lock = false;
	}
1813
	return false;
1814
}
1815

1816
/*
1817
 * Has to be called with memcg_oom_lock
1818
 */
1819
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1820
{
K
KAMEZAWA Hiroyuki 已提交
1821 1822
	struct mem_cgroup *iter;

1823
	for_each_mem_cgroup_tree(iter, memcg)
1824 1825 1826 1827
		iter->oom_lock = false;
	return 0;
}

1828
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829 1830 1831
{
	struct mem_cgroup *iter;

1832
	for_each_mem_cgroup_tree(iter, memcg)
1833 1834 1835
		atomic_inc(&iter->under_oom);
}

1836
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837 1838 1839
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1845
	for_each_mem_cgroup_tree(iter, memcg)
1846
		atomic_add_unless(&iter->under_oom, -1, 0);
1847 1848
}

1849
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1850 1851
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855 1856 1857 1858 1859
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1860 1861
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1862 1863 1864
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869 1870

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1871 1872
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875 1876
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1877
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1878
{
1879 1880
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1881 1882
}

1883
static void memcg_oom_recover(struct mem_cgroup *memcg)
1884
{
1885 1886
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1887 1888
}

K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1892
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1893
{
K
KAMEZAWA Hiroyuki 已提交
1894
	struct oom_wait_info owait;
1895
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1896

1897
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1902
	need_to_kill = true;
1903
	mem_cgroup_mark_under_oom(memcg);
1904

1905
	/* At first, try to OOM lock hierarchy under memcg.*/
1906
	spin_lock(&memcg_oom_lock);
1907
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1908 1909 1910 1911 1912
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1913
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1914
	if (!locked || memcg->oom_kill_disable)
1915 1916
		need_to_kill = false;
	if (locked)
1917
		mem_cgroup_oom_notify(memcg);
1918
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1919

1920 1921
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1922
		mem_cgroup_out_of_memory(memcg, mask);
1923
	} else {
K
KAMEZAWA Hiroyuki 已提交
1924
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1925
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1926
	}
1927
	spin_lock(&memcg_oom_lock);
1928
	if (locked)
1929 1930
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1931
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1932

1933
	mem_cgroup_unmark_under_oom(memcg);
1934

K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1938
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1939
	return true;
1940 1941
}

1942 1943 1944
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1964
 */
1965

1966 1967
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1968
{
1969
	struct mem_cgroup *memcg;
1970 1971
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1972
	unsigned long uninitialized_var(flags);
1973

1974
	if (mem_cgroup_disabled())
1975 1976
		return;

1977
	rcu_read_lock();
1978 1979
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1980 1981
		goto out;
	/* pc->mem_cgroup is unstable ? */
1982
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1983
		/* take a lock against to access pc->mem_cgroup */
1984
		move_lock_page_cgroup(pc, &flags);
1985
		need_unlock = true;
1986 1987
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1988 1989
			goto out;
	}
1990 1991

	switch (idx) {
1992
	case MEMCG_NR_FILE_MAPPED:
1993 1994 1995
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1996
			ClearPageCgroupFileMapped(pc);
1997
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1998 1999 2000
		break;
	default:
		BUG();
2001
	}
2002

2003
	this_cpu_add(memcg->stat->count[idx], val);
2004

2005 2006
out:
	if (unlikely(need_unlock))
2007
		move_unlock_page_cgroup(pc, &flags);
2008 2009
	rcu_read_unlock();
	return;
2010
}
2011
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2012

2013 2014 2015 2016
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2017
#define CHARGE_BATCH	32U
2018 2019
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2020
	unsigned int nr_pages;
2021
	struct work_struct work;
2022 2023
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2024 2025
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2026
static DEFINE_MUTEX(percpu_charge_mutex);
2027 2028

/*
2029
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2030 2031 2032 2033
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2034
static bool consume_stock(struct mem_cgroup *memcg)
2035 2036 2037 2038 2039
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2040
	if (memcg == stock->cached && stock->nr_pages)
2041
		stock->nr_pages--;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2055 2056 2057 2058
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2059
		if (do_swap_account)
2060 2061
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2074
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2075 2076 2077 2078
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2079
 * This will be consumed by consume_stock() function, later.
2080
 */
2081
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2082 2083 2084
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2085
	if (stock->cached != memcg) { /* reset if necessary */
2086
		drain_stock(stock);
2087
		stock->cached = memcg;
2088
	}
2089
	stock->nr_pages += nr_pages;
2090 2091 2092 2093
	put_cpu_var(memcg_stock);
}

/*
2094
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2095 2096
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2097
 */
2098
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2099
{
2100
	int cpu, curcpu;
2101

2102 2103
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2104
	curcpu = get_cpu();
2105 2106
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2107
		struct mem_cgroup *memcg;
2108

2109 2110
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2111
			continue;
2112
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2113
			continue;
2114 2115 2116 2117 2118 2119
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2120
	}
2121
	put_cpu();
2122 2123 2124 2125 2126 2127

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2128
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2129 2130 2131
			flush_work(&stock->work);
	}
out:
2132
 	put_online_cpus();
2133 2134 2135 2136 2137 2138 2139 2140
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2141
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2142
{
2143 2144 2145 2146 2147
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2148
	drain_all_stock(root_memcg, false);
2149
	mutex_unlock(&percpu_charge_mutex);
2150 2151 2152
}

/* This is a synchronous drain interface. */
2153
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2154 2155
{
	/* called when force_empty is called */
2156
	mutex_lock(&percpu_charge_mutex);
2157
	drain_all_stock(root_memcg, true);
2158
	mutex_unlock(&percpu_charge_mutex);
2159 2160
}

2161 2162 2163 2164
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2165
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2166 2167 2168
{
	int i;

2169
	spin_lock(&memcg->pcp_counter_lock);
2170
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2171
		long x = per_cpu(memcg->stat->count[i], cpu);
2172

2173 2174
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2175
	}
2176
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2177
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2178

2179 2180
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2181
	}
2182
	/* need to clear ON_MOVE value, works as a kind of lock. */
2183 2184
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2185 2186
}

2187
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2188 2189 2190
{
	int idx = MEM_CGROUP_ON_MOVE;

2191 2192 2193
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2194 2195 2196
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197 2198 2199 2200 2201
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2202
	struct mem_cgroup *iter;
2203

2204
	if ((action == CPU_ONLINE)) {
2205
		for_each_mem_cgroup(iter)
2206 2207 2208 2209
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2210
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2211
		return NOTIFY_OK;
2212

2213
	for_each_mem_cgroup(iter)
2214 2215
		mem_cgroup_drain_pcp_counter(iter, cpu);

2216 2217 2218 2219 2220
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2231
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2232
				unsigned int nr_pages, bool oom_check)
2233
{
2234
	unsigned long csize = nr_pages * PAGE_SIZE;
2235 2236 2237 2238 2239
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2240
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2241 2242 2243 2244

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2245
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2246 2247 2248
		if (likely(!ret))
			return CHARGE_OK;

2249
		res_counter_uncharge(&memcg->res, csize);
2250 2251 2252 2253
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2254
	/*
2255 2256
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2257 2258 2259 2260
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2261
	if (nr_pages == CHARGE_BATCH)
2262 2263 2264 2265 2266
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2267
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2268
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2269
		return CHARGE_RETRY;
2270
	/*
2271 2272 2273 2274 2275 2276 2277
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2278
	 */
2279
	if (nr_pages == 1 && ret)
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2299 2300 2301
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2302
 */
2303
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2304
				   gfp_t gfp_mask,
2305
				   unsigned int nr_pages,
2306
				   struct mem_cgroup **ptr,
2307
				   bool oom)
2308
{
2309
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2310
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2311
	struct mem_cgroup *memcg = NULL;
2312
	int ret;
2313

K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2322

2323
	/*
2324 2325
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2326 2327 2328
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2329
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2330 2331
		goto bypass;
again:
2332 2333 2334 2335
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2336
			goto done;
2337
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2338
			goto done;
2339
		css_get(&memcg->css);
2340
	} else {
K
KAMEZAWA Hiroyuki 已提交
2341
		struct task_struct *p;
2342

K
KAMEZAWA Hiroyuki 已提交
2343 2344 2345
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2346
		 * Because we don't have task_lock(), "p" can exit.
2347
		 * In that case, "memcg" can point to root or p can be NULL with
2348 2349 2350 2351 2352 2353
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2354
		 */
2355 2356
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2357 2358 2359
			rcu_read_unlock();
			goto done;
		}
2360
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2373
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2374 2375 2376 2377 2378
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2379

2380 2381
	do {
		bool oom_check;
2382

2383
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2384
		if (fatal_signal_pending(current)) {
2385
			css_put(&memcg->css);
2386
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2387
		}
2388

2389 2390 2391 2392
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2393
		}
2394

2395
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2396 2397 2398 2399
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2400
			batch = nr_pages;
2401 2402
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2403
			goto again;
2404
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2405
			css_put(&memcg->css);
2406 2407
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2408
			if (!oom) {
2409
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2410
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2411
			}
2412 2413 2414 2415
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2416
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2417
			goto bypass;
2418
		}
2419 2420
	} while (ret != CHARGE_OK);

2421
	if (batch > nr_pages)
2422 2423
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2424
done:
2425
	*ptr = memcg;
2426 2427
	return 0;
nomem:
2428
	*ptr = NULL;
2429
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2430
bypass:
2431
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2432
	return 0;
2433
}
2434

2435 2436 2437 2438 2439
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2440
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2441
				       unsigned int nr_pages)
2442
{
2443
	if (!mem_cgroup_is_root(memcg)) {
2444 2445
		unsigned long bytes = nr_pages * PAGE_SIZE;

2446
		res_counter_uncharge(&memcg->res, bytes);
2447
		if (do_swap_account)
2448
			res_counter_uncharge(&memcg->memsw, bytes);
2449
	}
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2471
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2472
{
2473
	struct mem_cgroup *memcg = NULL;
2474
	struct page_cgroup *pc;
2475
	unsigned short id;
2476 2477
	swp_entry_t ent;

2478 2479 2480
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2481
	lock_page_cgroup(pc);
2482
	if (PageCgroupUsed(pc)) {
2483 2484 2485
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2486
	} else if (PageSwapCache(page)) {
2487
		ent.val = page_private(page);
2488
		id = lookup_swap_cgroup_id(ent);
2489
		rcu_read_lock();
2490 2491 2492
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2493
		rcu_read_unlock();
2494
	}
2495
	unlock_page_cgroup(pc);
2496
	return memcg;
2497 2498
}

2499
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2500
				       struct page *page,
2501
				       unsigned int nr_pages,
2502
				       struct page_cgroup *pc,
2503
				       enum charge_type ctype)
2504
{
2505 2506 2507
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2508
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2509 2510 2511 2512 2513 2514
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2515
	pc->mem_cgroup = memcg;
2516 2517 2518 2519 2520 2521 2522
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2523
	smp_wmb();
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2537

2538
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2539
	unlock_page_cgroup(pc);
2540 2541 2542 2543 2544
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2545
	memcg_check_events(memcg, page);
2546
}
2547

2548 2549 2550 2551 2552 2553
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
2554 2555 2556
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2557
 */
2558
void mem_cgroup_split_huge_fixup(struct page *head)
2559 2560
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2561 2562
	struct page_cgroup *pc;
	int i;
2563

2564 2565
	if (mem_cgroup_disabled())
		return;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		/*
		 * LRU flags cannot be copied because we need to add tail
		 * page to LRU by generic call and our hooks will be called.
		 */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2576

2577 2578 2579 2580 2581 2582 2583
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;
		/*
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2584
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2585
		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2586
	}
2587 2588 2589
}
#endif

2590
/**
2591
 * mem_cgroup_move_account - move account of the page
2592
 * @page: the page
2593
 * @nr_pages: number of regular pages (>1 for huge pages)
2594 2595 2596
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2597
 * @uncharge: whether we should call uncharge and css_put against @from.
2598 2599
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2600
 * - page is not on LRU (isolate_page() is useful.)
2601
 * - compound_lock is held when nr_pages > 1
2602
 *
2603
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2604
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2605 2606
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2607
 */
2608 2609 2610 2611 2612 2613
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2614
{
2615 2616
	unsigned long flags;
	int ret;
2617

2618
	VM_BUG_ON(from == to);
2619
	VM_BUG_ON(PageLRU(page));
2620 2621 2622 2623 2624 2625 2626
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2627
	if (nr_pages > 1 && !PageTransHuge(page))
2628 2629 2630 2631 2632 2633 2634 2635 2636
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2637

2638
	if (PageCgroupFileMapped(pc)) {
2639 2640 2641 2642 2643
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2644
	}
2645
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2646 2647
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2648
		__mem_cgroup_cancel_charge(from, nr_pages);
2649

2650
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2651
	pc->mem_cgroup = to;
2652
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2653 2654 2655
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2656
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2657
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2658
	 * status here.
2659
	 */
2660 2661 2662
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2663
	unlock_page_cgroup(pc);
2664 2665 2666
	/*
	 * check events
	 */
2667 2668
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2669
out:
2670 2671 2672 2673 2674 2675 2676
	return ret;
}

/*
 * move charges to its parent.
 */

2677 2678
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2679 2680 2681 2682 2683 2684
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2685
	unsigned int nr_pages;
2686
	unsigned long uninitialized_var(flags);
2687 2688 2689 2690 2691 2692
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2693 2694 2695 2696 2697
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2698

2699
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2700

2701
	parent = mem_cgroup_from_cont(pcg);
2702
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2703
	if (ret || !parent)
2704
		goto put_back;
2705

2706
	if (nr_pages > 1)
2707 2708
		flags = compound_lock_irqsave(page);

2709
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2710
	if (ret)
2711
		__mem_cgroup_cancel_charge(parent, nr_pages);
2712

2713
	if (nr_pages > 1)
2714
		compound_unlock_irqrestore(page, flags);
2715
put_back:
K
KAMEZAWA Hiroyuki 已提交
2716
	putback_lru_page(page);
2717
put:
2718
	put_page(page);
2719
out:
2720 2721 2722
	return ret;
}

2723 2724 2725 2726 2727 2728 2729
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2730
				gfp_t gfp_mask, enum charge_type ctype)
2731
{
2732
	struct mem_cgroup *memcg = NULL;
2733
	unsigned int nr_pages = 1;
2734
	struct page_cgroup *pc;
2735
	bool oom = true;
2736
	int ret;
A
Andrea Arcangeli 已提交
2737

A
Andrea Arcangeli 已提交
2738
	if (PageTransHuge(page)) {
2739
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2740
		VM_BUG_ON(!PageTransHuge(page));
2741 2742 2743 2744 2745
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2746
	}
2747 2748

	pc = lookup_page_cgroup(page);
2749 2750
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2751 2752
		return ret;

2753
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2754 2755 2756
	return 0;
}

2757 2758
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2759
{
2760
	if (mem_cgroup_disabled())
2761
		return 0;
2762 2763 2764
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2765
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2766
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2767 2768
}

D
Daisuke Nishimura 已提交
2769 2770 2771 2772
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2773
static void
2774
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2775 2776 2777 2778 2779 2780 2781 2782 2783
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2784
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2785 2786 2787 2788
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2789 2790
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2791
{
2792
	struct mem_cgroup *memcg = NULL;
2793
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2794 2795
	int ret;

2796
	if (mem_cgroup_disabled())
2797
		return 0;
2798 2799
	if (PageCompound(page))
		return 0;
2800

2801
	if (unlikely(!mm))
2802
		mm = &init_mm;
2803 2804
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2805

2806 2807 2808 2809
	if (!PageSwapCache(page)) {
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
		WARN_ON_ONCE(PageLRU(page));
	} else { /* page is swapcache/shmem */
2810
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2811
		if (!ret)
2812 2813
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2814
	return ret;
2815 2816
}

2817 2818 2819
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2820
 * struct page_cgroup is acquired. This refcnt will be consumed by
2821 2822
 * "commit()" or removed by "cancel()"
 */
2823 2824
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2825
				 gfp_t mask, struct mem_cgroup **memcgp)
2826
{
2827
	struct mem_cgroup *memcg;
2828
	int ret;
2829

2830
	*memcgp = NULL;
2831

2832
	if (mem_cgroup_disabled())
2833 2834 2835 2836 2837 2838
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2839 2840 2841
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2842 2843
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2844
		goto charge_cur_mm;
2845 2846
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2847
		goto charge_cur_mm;
2848 2849
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2850
	css_put(&memcg->css);
2851
	return ret;
2852 2853 2854
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2855
	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2856 2857
}

D
Daisuke Nishimura 已提交
2858
static void
2859
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2860
					enum charge_type ctype)
2861
{
2862
	if (mem_cgroup_disabled())
2863
		return;
2864
	if (!memcg)
2865
		return;
2866
	cgroup_exclude_rmdir(&memcg->css);
2867

2868
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2869 2870 2871
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2872 2873 2874
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2875
	 */
2876
	if (do_swap_account && PageSwapCache(page)) {
2877
		swp_entry_t ent = {.val = page_private(page)};
2878
		struct mem_cgroup *swap_memcg;
2879 2880 2881 2882
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2883 2884
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2885 2886 2887 2888
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2889 2890 2891 2892 2893
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2894
		}
2895
		rcu_read_unlock();
2896
	}
2897 2898 2899 2900 2901
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2902
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2903 2904
}

2905 2906
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2907
{
2908 2909
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2910 2911
}

2912
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2913
{
2914
	if (mem_cgroup_disabled())
2915
		return;
2916
	if (!memcg)
2917
		return;
2918
	__mem_cgroup_cancel_charge(memcg, 1);
2919 2920
}

2921
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2922 2923
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2924 2925 2926
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2939
		batch->memcg = memcg;
2940 2941
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2942
	 * In those cases, all pages freed continuously can be expected to be in
2943 2944 2945 2946 2947 2948 2949 2950
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2951
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2952 2953
		goto direct_uncharge;

2954 2955 2956 2957 2958
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2959
	if (batch->memcg != memcg)
2960 2961
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2962
	batch->nr_pages++;
2963
	if (uncharge_memsw)
2964
		batch->memsw_nr_pages++;
2965 2966
	return;
direct_uncharge:
2967
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2968
	if (uncharge_memsw)
2969 2970 2971
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2972 2973
	return;
}
2974

2975
/*
2976
 * uncharge if !page_mapped(page)
2977
 */
2978
static struct mem_cgroup *
2979
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2980
{
2981
	struct mem_cgroup *memcg = NULL;
2982 2983
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2984

2985
	if (mem_cgroup_disabled())
2986
		return NULL;
2987

K
KAMEZAWA Hiroyuki 已提交
2988
	if (PageSwapCache(page))
2989
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2990

A
Andrea Arcangeli 已提交
2991
	if (PageTransHuge(page)) {
2992
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2993 2994
		VM_BUG_ON(!PageTransHuge(page));
	}
2995
	/*
2996
	 * Check if our page_cgroup is valid
2997
	 */
2998
	pc = lookup_page_cgroup(page);
2999
	if (unlikely(!PageCgroupUsed(pc)))
3000
		return NULL;
3001

3002
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3003

3004
	memcg = pc->mem_cgroup;
3005

K
KAMEZAWA Hiroyuki 已提交
3006 3007 3008 3009 3010
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3011
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3012 3013
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3025
	}
K
KAMEZAWA Hiroyuki 已提交
3026

3027
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3028

3029
	ClearPageCgroupUsed(pc);
3030 3031 3032 3033 3034 3035
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3036

3037
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3038
	/*
3039
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3040 3041
	 * will never be freed.
	 */
3042
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3043
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3044 3045
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3046
	}
3047 3048
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3049

3050
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3051 3052 3053

unlock_out:
	unlock_page_cgroup(pc);
3054
	return NULL;
3055 3056
}

3057 3058
void mem_cgroup_uncharge_page(struct page *page)
{
3059 3060 3061
	/* early check. */
	if (page_mapped(page))
		return;
3062
	VM_BUG_ON(page->mapping && !PageAnon(page));
3063 3064 3065 3066 3067 3068
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3069
	VM_BUG_ON(page->mapping);
3070 3071 3072
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3087 3088
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3109 3110 3111 3112 3113 3114
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3115
	memcg_oom_recover(batch->memcg);
3116 3117 3118 3119
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3120
#ifdef CONFIG_SWAP
3121
/*
3122
 * called after __delete_from_swap_cache() and drop "page" account.
3123 3124
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3125 3126
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3127 3128
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3129 3130 3131 3132 3133 3134
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3135

K
KAMEZAWA Hiroyuki 已提交
3136 3137 3138 3139 3140
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3141
		swap_cgroup_record(ent, css_id(&memcg->css));
3142
}
3143
#endif
3144 3145 3146 3147 3148 3149 3150

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3151
{
3152
	struct mem_cgroup *memcg;
3153
	unsigned short id;
3154 3155 3156 3157

	if (!do_swap_account)
		return;

3158 3159 3160
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3161
	if (memcg) {
3162 3163 3164 3165
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3166
		if (!mem_cgroup_is_root(memcg))
3167
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3168
		mem_cgroup_swap_statistics(memcg, false);
3169 3170
		mem_cgroup_put(memcg);
	}
3171
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3172
}
3173 3174 3175 3176 3177 3178

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3179
 * @need_fixup: whether we should fixup res_counters and refcounts.
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3190
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3191 3192 3193 3194 3195 3196 3197 3198
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3199
		mem_cgroup_swap_statistics(to, true);
3200
		/*
3201 3202 3203 3204 3205 3206
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3207 3208
		 */
		mem_cgroup_get(to);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3220 3221 3222 3223 3224 3225
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3226
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3227 3228 3229
{
	return -EINVAL;
}
3230
#endif
K
KAMEZAWA Hiroyuki 已提交
3231

3232
/*
3233 3234
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3235
 */
3236
int mem_cgroup_prepare_migration(struct page *page,
3237
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3238
{
3239
	struct mem_cgroup *memcg = NULL;
3240
	struct page_cgroup *pc;
3241
	enum charge_type ctype;
3242
	int ret = 0;
3243

3244
	*memcgp = NULL;
3245

A
Andrea Arcangeli 已提交
3246
	VM_BUG_ON(PageTransHuge(page));
3247
	if (mem_cgroup_disabled())
3248 3249
		return 0;

3250 3251 3252
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3253 3254
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3286
	}
3287
	unlock_page_cgroup(pc);
3288 3289 3290 3291
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3292
	if (!memcg)
3293
		return 0;
3294

3295 3296
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3297
	css_put(&memcg->css);/* drop extra refcnt */
3298
	if (ret || *memcgp == NULL) {
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3309
	}
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3323
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3324
	return ret;
3325
}
3326

3327
/* remove redundant charge if migration failed*/
3328
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3329
	struct page *oldpage, struct page *newpage, bool migration_ok)
3330
{
3331
	struct page *used, *unused;
3332 3333
	struct page_cgroup *pc;

3334
	if (!memcg)
3335
		return;
3336
	/* blocks rmdir() */
3337
	cgroup_exclude_rmdir(&memcg->css);
3338
	if (!migration_ok) {
3339 3340
		used = oldpage;
		unused = newpage;
3341
	} else {
3342
		used = newpage;
3343 3344
		unused = oldpage;
	}
3345
	/*
3346 3347 3348
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3349
	 */
3350 3351 3352 3353
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3354

3355 3356
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3357
	/*
3358 3359 3360 3361 3362 3363
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3364
	 */
3365 3366
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3367
	/*
3368 3369
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3370 3371 3372
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3373
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3374
}
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3420 3421 3422 3423 3424 3425
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3426 3427 3428 3429 3430
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3471 3472
static DEFINE_MUTEX(set_limit_mutex);

3473
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3474
				unsigned long long val)
3475
{
3476
	int retry_count;
3477
	u64 memswlimit, memlimit;
3478
	int ret = 0;
3479 3480
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3481
	int enlarge;
3482 3483 3484 3485 3486 3487 3488 3489 3490

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3491

3492
	enlarge = 0;
3493
	while (retry_count) {
3494 3495 3496 3497
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3498 3499 3500
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3501
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3502 3503 3504 3505 3506 3507
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3508 3509
			break;
		}
3510 3511 3512 3513 3514

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3515
		ret = res_counter_set_limit(&memcg->res, val);
3516 3517 3518 3519 3520 3521
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3522 3523 3524 3525 3526
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3527 3528
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3529 3530 3531 3532 3533 3534
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3535
	}
3536 3537
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3538

3539 3540 3541
	return ret;
}

L
Li Zefan 已提交
3542 3543
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3544
{
3545
	int retry_count;
3546
	u64 memlimit, memswlimit, oldusage, curusage;
3547 3548
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3549
	int enlarge = 0;
3550

3551 3552 3553
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3554 3555 3556 3557 3558 3559 3560 3561
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3562
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3563 3564 3565 3566 3567 3568 3569 3570
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3571 3572 3573
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3574
		ret = res_counter_set_limit(&memcg->memsw, val);
3575 3576 3577 3578 3579 3580
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3581 3582 3583 3584 3585
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3586 3587 3588
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3589
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3590
		/* Usage is reduced ? */
3591
		if (curusage >= oldusage)
3592
			retry_count--;
3593 3594
		else
			oldusage = curusage;
3595
	}
3596 3597
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3598 3599 3600
	return ret;
}

3601
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3602 3603
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3604 3605 3606 3607 3608 3609
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3610
	unsigned long long excess;
3611
	unsigned long nr_scanned;
3612 3613 3614 3615

	if (order > 0)
		return 0;

3616
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3630
		nr_scanned = 0;
3631 3632
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3633
		nr_reclaimed += reclaimed;
3634
		*total_scanned += nr_scanned;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3657
				if (next_mz == mz)
3658
					css_put(&next_mz->mem->css);
3659
				else /* next_mz == NULL or other memcg */
3660 3661 3662 3663
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3664
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3665 3666 3667 3668 3669 3670 3671 3672
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3673 3674
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3693 3694 3695 3696
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3697
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3698
				int node, int zid, enum lru_list lru)
3699
{
K
KAMEZAWA Hiroyuki 已提交
3700 3701
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3702
	struct list_head *list;
3703 3704
	struct page *busy;
	struct zone *zone;
3705
	int ret = 0;
3706

K
KAMEZAWA Hiroyuki 已提交
3707
	zone = &NODE_DATA(node)->node_zones[zid];
3708
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3709
	list = &mz->lruvec.lists[lru];
3710

3711 3712 3713 3714 3715
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3716
		struct page_cgroup *pc;
3717 3718
		struct page *page;

3719
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3720
		spin_lock_irqsave(&zone->lru_lock, flags);
3721
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3722
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3723
			break;
3724
		}
3725 3726 3727
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3728
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3729
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3730 3731
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3732
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3733

3734
		pc = lookup_page_cgroup(page);
3735

3736
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3737
		if (ret == -ENOMEM)
3738
			break;
3739 3740 3741

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3742
			busy = page;
3743 3744 3745
			cond_resched();
		} else
			busy = NULL;
3746
	}
K
KAMEZAWA Hiroyuki 已提交
3747

3748 3749 3750
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3751 3752 3753 3754 3755 3756
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3757
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3758
{
3759 3760 3761
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3762
	struct cgroup *cgrp = memcg->css.cgroup;
3763

3764
	css_get(&memcg->css);
3765 3766

	shrink = 0;
3767 3768 3769
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3770
move_account:
3771
	do {
3772
		ret = -EBUSY;
3773 3774 3775 3776
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3777
			goto out;
3778 3779
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3780
		drain_all_stock_sync(memcg);
3781
		ret = 0;
3782
		mem_cgroup_start_move(memcg);
3783
		for_each_node_state(node, N_HIGH_MEMORY) {
3784
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3785
				enum lru_list l;
3786
				for_each_lru(l) {
3787
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3788
							node, zid, l);
3789 3790 3791
					if (ret)
						break;
				}
3792
			}
3793 3794 3795
			if (ret)
				break;
		}
3796 3797
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3798 3799 3800
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3801
		cond_resched();
3802
	/* "ret" should also be checked to ensure all lists are empty. */
3803
	} while (memcg->res.usage > 0 || ret);
3804
out:
3805
	css_put(&memcg->css);
3806
	return ret;
3807 3808

try_to_free:
3809 3810
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3811 3812 3813
		ret = -EBUSY;
		goto out;
	}
3814 3815
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3816 3817
	/* try to free all pages in this cgroup */
	shrink = 1;
3818
	while (nr_retries && memcg->res.usage > 0) {
3819
		int progress;
3820 3821 3822 3823 3824

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3825
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3826
						false);
3827
		if (!progress) {
3828
			nr_retries--;
3829
			/* maybe some writeback is necessary */
3830
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3831
		}
3832 3833

	}
K
KAMEZAWA Hiroyuki 已提交
3834
	lru_add_drain();
3835
	/* try move_account...there may be some *locked* pages. */
3836
	goto move_account;
3837 3838
}

3839 3840 3841 3842 3843 3844
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3845 3846 3847 3848 3849 3850 3851 3852 3853
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3854
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3855
	struct cgroup *parent = cont->parent;
3856
	struct mem_cgroup *parent_memcg = NULL;
3857 3858

	if (parent)
3859
		parent_memcg = mem_cgroup_from_cont(parent);
3860 3861 3862

	cgroup_lock();
	/*
3863
	 * If parent's use_hierarchy is set, we can't make any modifications
3864 3865 3866 3867 3868 3869
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3870
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3871 3872
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3873
			memcg->use_hierarchy = val;
3874 3875 3876 3877 3878 3879 3880 3881 3882
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3883

3884
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3885
					       enum mem_cgroup_stat_index idx)
3886
{
K
KAMEZAWA Hiroyuki 已提交
3887
	struct mem_cgroup *iter;
3888
	long val = 0;
3889

3890
	/* Per-cpu values can be negative, use a signed accumulator */
3891
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3892 3893 3894 3895 3896
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3897 3898
}

3899
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3900
{
K
KAMEZAWA Hiroyuki 已提交
3901
	u64 val;
3902

3903
	if (!mem_cgroup_is_root(memcg)) {
3904
		if (!swap)
3905
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3906
		else
3907
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3908 3909
	}

3910 3911
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3912

K
KAMEZAWA Hiroyuki 已提交
3913
	if (swap)
3914
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3915 3916 3917 3918

	return val << PAGE_SHIFT;
}

3919
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3920
{
3921
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3922
	u64 val;
3923 3924 3925 3926 3927 3928
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3929
		if (name == RES_USAGE)
3930
			val = mem_cgroup_usage(memcg, false);
3931
		else
3932
			val = res_counter_read_u64(&memcg->res, name);
3933 3934
		break;
	case _MEMSWAP:
3935
		if (name == RES_USAGE)
3936
			val = mem_cgroup_usage(memcg, true);
3937
		else
3938
			val = res_counter_read_u64(&memcg->memsw, name);
3939 3940 3941 3942 3943 3944
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3945
}
3946 3947 3948 3949
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3950 3951
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3952
{
3953
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3954
	int type, name;
3955 3956 3957
	unsigned long long val;
	int ret;

3958 3959 3960
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3961
	case RES_LIMIT:
3962 3963 3964 3965
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3966 3967
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3968 3969 3970
		if (ret)
			break;
		if (type == _MEM)
3971
			ret = mem_cgroup_resize_limit(memcg, val);
3972 3973
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3974
		break;
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3989 3990 3991 3992 3993
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3994 3995
}

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4024
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4025
{
4026
	struct mem_cgroup *memcg;
4027
	int type, name;
4028

4029
	memcg = mem_cgroup_from_cont(cont);
4030 4031 4032
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4033
	case RES_MAX_USAGE:
4034
		if (type == _MEM)
4035
			res_counter_reset_max(&memcg->res);
4036
		else
4037
			res_counter_reset_max(&memcg->memsw);
4038 4039
		break;
	case RES_FAILCNT:
4040
		if (type == _MEM)
4041
			res_counter_reset_failcnt(&memcg->res);
4042
		else
4043
			res_counter_reset_failcnt(&memcg->memsw);
4044 4045
		break;
	}
4046

4047
	return 0;
4048 4049
}

4050 4051 4052 4053 4054 4055
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4056
#ifdef CONFIG_MMU
4057 4058 4059
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4060
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4061 4062 4063 4064 4065 4066 4067 4068 4069

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4070
	memcg->move_charge_at_immigrate = val;
4071 4072 4073 4074
	cgroup_unlock();

	return 0;
}
4075 4076 4077 4078 4079 4080 4081
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4082

K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086 4087

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4088
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4089 4090
	MCS_PGPGIN,
	MCS_PGPGOUT,
4091
	MCS_SWAP,
4092 4093
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4104 4105
};

K
KAMEZAWA Hiroyuki 已提交
4106 4107 4108 4109 4110 4111
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4112
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4113 4114
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4115
	{"swap", "total_swap"},
4116 4117
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4118 4119 4120 4121 4122 4123 4124 4125
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4126
static void
4127
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4128 4129 4130 4131
{
	s64 val;

	/* per cpu stat */
4132
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4133
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4134
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4135
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4136
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4137
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4138
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4139
	s->stat[MCS_PGPGIN] += val;
4140
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4141
	s->stat[MCS_PGPGOUT] += val;
4142
	if (do_swap_account) {
4143
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4144 4145
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4146
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4147
	s->stat[MCS_PGFAULT] += val;
4148
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4149
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4150 4151

	/* per zone stat */
4152
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4153
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4154
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4155
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4156
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4157
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4158
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4159
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4160
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4161 4162 4163 4164
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4165
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4166
{
K
KAMEZAWA Hiroyuki 已提交
4167 4168
	struct mem_cgroup *iter;

4169
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4170
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4171 4172
}

4173 4174 4175 4176 4177 4178 4179 4180 4181
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4182
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4183 4184
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4185
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4186 4187 4188 4189
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4190
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4191 4192
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4193 4194
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4195 4196 4197 4198
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4199
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4200 4201
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4202 4203
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4204 4205 4206 4207
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4208
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4209 4210
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4211 4212
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4213 4214 4215 4216 4217 4218 4219
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4220 4221
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4222 4223
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4224
	struct mcs_total_stat mystat;
4225 4226
	int i;

K
KAMEZAWA Hiroyuki 已提交
4227 4228
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4229

4230

4231 4232 4233
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4234
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4235
	}
L
Lee Schermerhorn 已提交
4236

K
KAMEZAWA Hiroyuki 已提交
4237
	/* Hierarchical information */
4238 4239 4240 4241 4242 4243 4244
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4245

K
KAMEZAWA Hiroyuki 已提交
4246 4247
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4248 4249 4250
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4251
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4252
	}
K
KAMEZAWA Hiroyuki 已提交
4253

K
KOSAKI Motohiro 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4281 4282 4283
	return 0;
}

K
KOSAKI Motohiro 已提交
4284 4285 4286 4287
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4288
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4289 4290 4291 4292 4293 4294 4295
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4296

K
KOSAKI Motohiro 已提交
4297 4298 4299 4300 4301 4302 4303
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4304 4305 4306

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4307 4308
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4309 4310
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4311
		return -EINVAL;
4312
	}
K
KOSAKI Motohiro 已提交
4313 4314 4315

	memcg->swappiness = val;

4316 4317
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4318 4319 4320
	return 0;
}

4321 4322 4323 4324 4325 4326 4327 4328
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4329
		t = rcu_dereference(memcg->thresholds.primary);
4330
	else
4331
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4343
	i = t->current_threshold;
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4367
	t->current_threshold = i - 1;
4368 4369 4370 4371 4372 4373
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4374 4375 4376 4377 4378 4379 4380
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4391
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4392 4393 4394
{
	struct mem_cgroup_eventfd_list *ev;

4395
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4396 4397 4398 4399
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4400
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4401
{
K
KAMEZAWA Hiroyuki 已提交
4402 4403
	struct mem_cgroup *iter;

4404
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4405
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4406 4407 4408 4409
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4410 4411
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4412 4413
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4414 4415
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4416
	int i, size, ret;
4417 4418 4419 4420 4421 4422

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4423

4424
	if (type == _MEM)
4425
		thresholds = &memcg->thresholds;
4426
	else if (type == _MEMSWAP)
4427
		thresholds = &memcg->memsw_thresholds;
4428 4429 4430 4431 4432 4433
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4434
	if (thresholds->primary)
4435 4436
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4437
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4438 4439

	/* Allocate memory for new array of thresholds */
4440
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4441
			GFP_KERNEL);
4442
	if (!new) {
4443 4444 4445
		ret = -ENOMEM;
		goto unlock;
	}
4446
	new->size = size;
4447 4448

	/* Copy thresholds (if any) to new array */
4449 4450
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4451
				sizeof(struct mem_cgroup_threshold));
4452 4453
	}

4454
	/* Add new threshold */
4455 4456
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4457 4458

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4459
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4460 4461 4462
			compare_thresholds, NULL);

	/* Find current threshold */
4463
	new->current_threshold = -1;
4464
	for (i = 0; i < size; i++) {
4465
		if (new->entries[i].threshold < usage) {
4466
			/*
4467 4468
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4469 4470
			 * it here.
			 */
4471
			++new->current_threshold;
4472 4473 4474
		}
	}

4475 4476 4477 4478 4479
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4480

4481
	/* To be sure that nobody uses thresholds */
4482 4483 4484 4485 4486 4487 4488 4489
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4490
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4491
	struct cftype *cft, struct eventfd_ctx *eventfd)
4492 4493
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494 4495
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4496 4497
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4498
	int i, j, size;
4499 4500 4501

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4502
		thresholds = &memcg->thresholds;
4503
	else if (type == _MEMSWAP)
4504
		thresholds = &memcg->memsw_thresholds;
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4520 4521 4522
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4523 4524 4525
			size++;
	}

4526
	new = thresholds->spare;
4527

4528 4529
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4530 4531
		kfree(new);
		new = NULL;
4532
		goto swap_buffers;
4533 4534
	}

4535
	new->size = size;
4536 4537

	/* Copy thresholds and find current threshold */
4538 4539 4540
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4541 4542
			continue;

4543 4544
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4545
			/*
4546
			 * new->current_threshold will not be used
4547 4548 4549
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4550
			++new->current_threshold;
4551 4552 4553 4554
		}
		j++;
	}

4555
swap_buffers:
4556 4557 4558
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4559

4560
	/* To be sure that nobody uses thresholds */
4561 4562 4563 4564
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4565

K
KAMEZAWA Hiroyuki 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4578
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4579 4580 4581 4582 4583

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4584
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4585
		eventfd_signal(eventfd, 1);
4586
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4587 4588 4589 4590

	return 0;
}

4591
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4592 4593
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4594
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4595 4596 4597 4598 4599
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4600
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4601

4602
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4603 4604 4605 4606 4607 4608
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4609
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4610 4611
}

4612 4613 4614
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4615
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4616

4617
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4618

4619
	if (atomic_read(&memcg->under_oom))
4620 4621 4622 4623 4624 4625 4626 4627 4628
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4629
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4641
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4642 4643 4644
		cgroup_unlock();
		return -EINVAL;
	}
4645
	memcg->oom_kill_disable = val;
4646
	if (!val)
4647
		memcg_oom_recover(memcg);
4648 4649 4650 4651
	cgroup_unlock();
	return 0;
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4668 4669 4670
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4671 4672 4673 4674 4675 4676 4677
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4678
	return mem_cgroup_sockets_init(cont, ss);
4679 4680
};

G
Glauber Costa 已提交
4681 4682 4683 4684 4685
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4686 4687 4688 4689 4690
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4691 4692 4693 4694 4695

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4696 4697
#endif

B
Balbir Singh 已提交
4698 4699
static struct cftype mem_cgroup_files[] = {
	{
4700
		.name = "usage_in_bytes",
4701
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4702
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4703 4704
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4705
	},
4706 4707
	{
		.name = "max_usage_in_bytes",
4708
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4709
		.trigger = mem_cgroup_reset,
4710 4711
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4712
	{
4713
		.name = "limit_in_bytes",
4714
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4715
		.write_string = mem_cgroup_write,
4716
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4717
	},
4718 4719 4720 4721 4722 4723
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4724 4725
	{
		.name = "failcnt",
4726
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4727
		.trigger = mem_cgroup_reset,
4728
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4729
	},
4730 4731
	{
		.name = "stat",
4732
		.read_map = mem_control_stat_show,
4733
	},
4734 4735 4736 4737
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4738 4739 4740 4741 4742
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4743 4744 4745 4746 4747
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4748 4749 4750 4751 4752
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4753 4754
	{
		.name = "oom_control",
4755 4756
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4757 4758 4759 4760
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4761 4762 4763 4764
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4765
		.mode = S_IRUGO,
4766 4767
	},
#endif
B
Balbir Singh 已提交
4768 4769
};

4770 4771 4772 4773 4774 4775
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4776 4777
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4813
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4814 4815
{
	struct mem_cgroup_per_node *pn;
4816
	struct mem_cgroup_per_zone *mz;
4817
	enum lru_list l;
4818
	int zone, tmp = node;
4819 4820 4821 4822 4823 4824 4825 4826
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4827 4828
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4829
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4830 4831
	if (!pn)
		return 1;
4832 4833 4834

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4835
		for_each_lru(l)
4836
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4837
		mz->usage_in_excess = 0;
4838
		mz->on_tree = false;
4839
		mz->mem = memcg;
4840
	}
4841
	memcg->info.nodeinfo[node] = pn;
4842 4843 4844
	return 0;
}

4845
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4846
{
4847
	kfree(memcg->info.nodeinfo[node]);
4848 4849
}

4850 4851 4852
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4853
	int size = sizeof(struct mem_cgroup);
4854

4855
	/* Can be very big if MAX_NUMNODES is very big */
4856
	if (size < PAGE_SIZE)
4857
		mem = kzalloc(size, GFP_KERNEL);
4858
	else
4859
		mem = vzalloc(size);
4860

4861 4862 4863
	if (!mem)
		return NULL;

4864
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4865 4866
	if (!mem->stat)
		goto out_free;
4867
	spin_lock_init(&mem->pcp_counter_lock);
4868
	return mem;
4869 4870 4871 4872 4873 4874 4875

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4876 4877
}

4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4889
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4890
{
K
KAMEZAWA Hiroyuki 已提交
4891 4892
	int node;

4893 4894
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4895

K
KAMEZAWA Hiroyuki 已提交
4896
	for_each_node_state(node, N_POSSIBLE)
4897
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4898

4899
	free_percpu(memcg->stat);
4900
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4901
		kfree(memcg);
4902
	else
4903
		vfree(memcg);
4904 4905
}

4906
static void mem_cgroup_get(struct mem_cgroup *memcg)
4907
{
4908
	atomic_inc(&memcg->refcnt);
4909 4910
}

4911
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4912
{
4913 4914 4915
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4916 4917 4918
		if (parent)
			mem_cgroup_put(parent);
	}
4919 4920
}

4921
static void mem_cgroup_put(struct mem_cgroup *memcg)
4922
{
4923
	__mem_cgroup_put(memcg, 1);
4924 4925
}

4926 4927 4928
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4929
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4930
{
4931
	if (!memcg->res.parent)
4932
		return NULL;
4933
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4934
}
G
Glauber Costa 已提交
4935
EXPORT_SYMBOL(parent_mem_cgroup);
4936

4937 4938 4939
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4940
	if (!mem_cgroup_disabled() && really_do_swap_account)
4941 4942 4943 4944 4945 4946 4947 4948
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4961
			goto err_cleanup;
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

err_cleanup:
	for_each_node_state(node, N_POSSIBLE) {
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4982 4983
}

L
Li Zefan 已提交
4984
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4985 4986
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4987
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4988
	long error = -ENOMEM;
4989
	int node;
B
Balbir Singh 已提交
4990

4991 4992
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4993
		return ERR_PTR(error);
4994

4995
	for_each_node_state(node, N_POSSIBLE)
4996
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4997
			goto free_out;
4998

4999
	/* root ? */
5000
	if (cont->parent == NULL) {
5001
		int cpu;
5002
		enable_swap_cgroup();
5003
		parent = NULL;
5004 5005
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5006
		root_mem_cgroup = memcg;
5007 5008 5009 5010 5011
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5012
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5013
	} else {
5014
		parent = mem_cgroup_from_cont(cont->parent);
5015 5016
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5017
	}
5018

5019
	if (parent && parent->use_hierarchy) {
5020 5021
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5022 5023 5024 5025 5026 5027 5028
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5029
	} else {
5030 5031
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5032
	}
5033 5034
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5035

K
KOSAKI Motohiro 已提交
5036
	if (parent)
5037 5038 5039 5040 5041
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5042
free_out:
5043
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5044
	return ERR_PTR(error);
B
Balbir Singh 已提交
5045 5046
}

5047
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5048 5049
					struct cgroup *cont)
{
5050
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5051

5052
	return mem_cgroup_force_empty(memcg, false);
5053 5054
}

B
Balbir Singh 已提交
5055 5056 5057
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5058
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5059

G
Glauber Costa 已提交
5060 5061
	kmem_cgroup_destroy(ss, cont);

5062
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5063 5064 5065 5066 5067
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5068 5069 5070 5071 5072 5073 5074
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5075 5076 5077 5078

	if (!ret)
		ret = register_kmem_files(cont, ss);

5079
	return ret;
B
Balbir Singh 已提交
5080 5081
}

5082
#ifdef CONFIG_MMU
5083
/* Handlers for move charge at task migration. */
5084 5085
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5086
{
5087 5088
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5089
	struct mem_cgroup *memcg = mc.to;
5090

5091
	if (mem_cgroup_is_root(memcg)) {
5092 5093 5094 5095 5096 5097 5098 5099
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5100
		 * "memcg" cannot be under rmdir() because we've already checked
5101 5102 5103 5104
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5105
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5106
			goto one_by_one;
5107
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5108
						PAGE_SIZE * count, &dummy)) {
5109
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5126 5127 5128
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5129 5130 5131 5132
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5133 5134 5135 5136 5137 5138 5139 5140
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5141
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5142 5143 5144 5145 5146 5147
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5148 5149 5150
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5151 5152 5153 5154 5155
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5156
	swp_entry_t	ent;
5157 5158 5159 5160 5161
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5162
	MC_TARGET_SWAP,
5163 5164
};

D
Daisuke Nishimura 已提交
5165 5166
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5167
{
D
Daisuke Nishimura 已提交
5168
	struct page *page = vm_normal_page(vma, addr, ptent);
5169

D
Daisuke Nishimura 已提交
5170 5171 5172 5173 5174 5175
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5176 5177
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5196 5197
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5198
		return NULL;
5199
	}
D
Daisuke Nishimura 已提交
5200 5201 5202 5203 5204 5205
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5227 5228 5229 5230 5231 5232
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5233
		if (do_swap_account)
5234 5235
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5236
	}
5237
#endif
5238 5239 5240
	return page;
}

D
Daisuke Nishimura 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5253 5254
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5255 5256 5257

	if (!page && !ent.val)
		return 0;
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5273 5274
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5275
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5276 5277 5278
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5291 5292
	split_huge_page_pmd(walk->mm, pmd);

5293 5294 5295 5296 5297 5298 5299
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5300 5301 5302
	return 0;
}

5303 5304 5305 5306 5307
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5308
	down_read(&mm->mmap_sem);
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5320
	up_read(&mm->mmap_sem);
5321 5322 5323 5324 5325 5326 5327 5328 5329

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5330 5331 5332 5333 5334
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5335 5336
}

5337 5338
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5339
{
5340 5341 5342
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5343
	/* we must uncharge all the leftover precharges from mc.to */
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5355
	}
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5390
	spin_lock(&mc.lock);
5391 5392
	mc.from = NULL;
	mc.to = NULL;
5393
	spin_unlock(&mc.lock);
5394
	mem_cgroup_end_move(from);
5395 5396
}

5397 5398
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5399
				struct cgroup_taskset *tset)
5400
{
5401
	struct task_struct *p = cgroup_taskset_first(tset);
5402
	int ret = 0;
5403
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5404

5405
	if (memcg->move_charge_at_immigrate) {
5406 5407 5408
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5409
		VM_BUG_ON(from == memcg);
5410 5411 5412 5413 5414

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5415 5416 5417 5418
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5419
			VM_BUG_ON(mc.moved_charge);
5420
			VM_BUG_ON(mc.moved_swap);
5421
			mem_cgroup_start_move(from);
5422
			spin_lock(&mc.lock);
5423
			mc.from = from;
5424
			mc.to = memcg;
5425
			spin_unlock(&mc.lock);
5426
			/* We set mc.moving_task later */
5427 5428 5429 5430

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5431 5432
		}
		mmput(mm);
5433 5434 5435 5436 5437 5438
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5439
				struct cgroup_taskset *tset)
5440
{
5441
	mem_cgroup_clear_mc();
5442 5443
}

5444 5445 5446
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5447
{
5448 5449 5450 5451 5452
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5453
	split_huge_page_pmd(walk->mm, pmd);
5454 5455 5456 5457 5458 5459 5460 5461
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5462
		swp_entry_t ent;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5474 5475
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5476
				mc.precharge--;
5477 5478
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5479 5480 5481 5482 5483
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5484 5485
		case MC_TARGET_SWAP:
			ent = target.ent;
5486 5487
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5488
				mc.precharge--;
5489 5490 5491
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5492
			break;
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5507
		ret = mem_cgroup_do_precharge(1);
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5551
	up_read(&mm->mmap_sem);
5552 5553
}

B
Balbir Singh 已提交
5554 5555
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5556
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5557
{
5558
	struct task_struct *p = cgroup_taskset_first(tset);
5559
	struct mm_struct *mm = get_task_mm(p);
5560 5561

	if (mm) {
5562 5563 5564
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5565 5566
		mmput(mm);
	}
5567 5568
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5569
}
5570 5571 5572
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5573
				struct cgroup_taskset *tset)
5574 5575 5576 5577 5578
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5579
				struct cgroup_taskset *tset)
5580 5581 5582 5583
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5584
				struct cgroup_taskset *tset)
5585 5586 5587
{
}
#endif
B
Balbir Singh 已提交
5588

B
Balbir Singh 已提交
5589 5590 5591 5592
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5593
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5594 5595
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5596 5597
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5598
	.attach = mem_cgroup_move_task,
5599
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5600
	.use_id = 1,
B
Balbir Singh 已提交
5601
};
5602 5603

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5604 5605 5606
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5607
	if (!strcmp(s, "1"))
5608
		really_do_swap_account = 1;
5609
	else if (!strcmp(s, "0"))
5610 5611 5612
		really_do_swap_account = 0;
	return 1;
}
5613
__setup("swapaccount=", enable_swap_account);
5614 5615

#endif