intel_ringbuffer.c 89.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50 51 52 53 54 55 56 57 58 59 60
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

61
bool intel_engine_stopped(struct intel_engine_cs *engine)
62
{
63
	struct drm_i915_private *dev_priv = engine->i915;
64
	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65
}
66

67
static void __intel_ring_advance(struct intel_engine_cs *engine)
68
{
69
	struct intel_ringbuffer *ringbuf = engine->buffer;
70
	ringbuf->tail &= ringbuf->size - 1;
71
	if (intel_engine_stopped(engine))
72
		return;
73
	engine->write_tail(engine, ringbuf->tail);
74 75
}

76
static int
77
gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 79 80
		       u32	invalidate_domains,
		       u32	flush_domains)
{
81
	struct intel_engine_cs *engine = req->engine;
82 83 84 85
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
86
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 88 89 90 91
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

92
	ret = intel_ring_begin(req, 2);
93 94 95
	if (ret)
		return ret;

96 97 98
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
99 100 101 102 103

	return 0;
}

static int
104
gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 106
		       u32	invalidate_domains,
		       u32	flush_domains)
107
{
108
	struct intel_engine_cs *engine = req->engine;
109
	u32 cmd;
110
	int ret;
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 143 144
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
145

146
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147
	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148
		cmd |= MI_INVALIDATE_ISP;
149

150
	ret = intel_ring_begin(req, 2);
151 152
	if (ret)
		return ret;
153

154 155 156
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
157 158

	return 0;
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
199
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200
{
201
	struct intel_engine_cs *engine = req->engine;
202
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 204
	int ret;

205
	ret = intel_ring_begin(req, 6);
206 207 208
	if (ret)
		return ret;

209 210
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 213 214 215 216
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
217

218
	ret = intel_ring_begin(req, 6);
219 220 221
	if (ret)
		return ret;

222 223 224 225 226 227 228
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
229 230 231 232 233

	return 0;
}

static int
234 235
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
236
{
237
	struct intel_engine_cs *engine = req->engine;
238
	u32 flags = 0;
239
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 241
	int ret;

242
	/* Force SNB workarounds for PIPE_CONTROL flushes */
243
	ret = intel_emit_post_sync_nonzero_flush(req);
244 245 246
	if (ret)
		return ret;

247 248 249 250
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
251 252 253 254 255 256 257
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
258
		flags |= PIPE_CONTROL_CS_STALL;
259 260 261 262 263 264 265 266 267 268 269
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
270
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271
	}
272

273
	ret = intel_ring_begin(req, 4);
274 275 276
	if (ret)
		return ret;

277 278 279 280 281
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
282 283 284 285

	return 0;
}

286
static int
287
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288
{
289
	struct intel_engine_cs *engine = req->engine;
290 291
	int ret;

292
	ret = intel_ring_begin(req, 4);
293 294 295
	if (ret)
		return ret;

296 297
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 300 301
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
302 303 304 305

	return 0;
}

306
static int
307
gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 309
		       u32 invalidate_domains, u32 flush_domains)
{
310
	struct intel_engine_cs *engine = req->engine;
311
	u32 flags = 0;
312
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 314
	int ret;

315 316 317 318 319 320 321 322 323 324
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

325 326 327 328 329 330 331
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 335 336 337 338 339 340 341
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 344 345 346
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
347
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348

349 350
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

351 352 353
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
354
		gen7_render_ring_cs_stall_wa(req);
355 356
	}

357
	ret = intel_ring_begin(req, 4);
358 359 360
	if (ret)
		return ret;

361 362 363 364 365
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
366 367 368 369

	return 0;
}

370
static int
371
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 373
		       u32 flags, u32 scratch_addr)
{
374
	struct intel_engine_cs *engine = req->engine;
375 376
	int ret;

377
	ret = intel_ring_begin(req, 6);
378 379 380
	if (ret)
		return ret;

381 382 383 384 385 386 387
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
388 389 390 391

	return 0;
}

B
Ben Widawsky 已提交
392
static int
393
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
394 395 396
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
397
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398
	int ret;
B
Ben Widawsky 已提交
399 400 401 402 403 404

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
407 408 409 410 411 412 413 414 415 416
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417 418

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419
		ret = gen8_emit_pipe_control(req,
420 421 422 423 424
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
425 426
	}

427
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
428 429
}

430
static void ring_write_tail(struct intel_engine_cs *engine,
431
			    u32 value)
432
{
433
	struct drm_i915_private *dev_priv = engine->i915;
434
	I915_WRITE_TAIL(engine, value);
435 436
}

437
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438
{
439
	struct drm_i915_private *dev_priv = engine->i915;
440
	u64 acthd;
441

442
	if (INTEL_GEN(dev_priv) >= 8)
443 444
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
445
	else if (INTEL_GEN(dev_priv) >= 4)
446
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 448 449 450
	else
		acthd = I915_READ(ACTHD);

	return acthd;
451 452
}

453
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454
{
455
	struct drm_i915_private *dev_priv = engine->i915;
456 457 458
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
459
	if (INTEL_GEN(dev_priv) >= 4)
460 461 462 463
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

464
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465
{
466
	struct drm_i915_private *dev_priv = engine->i915;
467
	i915_reg_t mmio;
468 469 470 471

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
472
	if (IS_GEN7(dev_priv)) {
473
		switch (engine->id) {
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
492
	} else if (IS_GEN6(dev_priv)) {
493
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 495
	} else {
		/* XXX: gen8 returns to sanity */
496
		mmio = RING_HWS_PGA(engine->mmio_base);
497 498
	}

499
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 501 502 503 504 505 506 507 508
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
509
	if (IS_GEN(dev_priv, 6, 7)) {
510
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511 512

		/* ring should be idle before issuing a sync flush*/
513
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514 515 516 517

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
518 519 520
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
521
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522
				  engine->name);
523 524 525
	}
}

526
static bool stop_ring(struct intel_engine_cs *engine)
527
{
528
	struct drm_i915_private *dev_priv = engine->i915;
529

530
	if (!IS_GEN2(dev_priv)) {
531
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
532 533 534 535 536
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
537 538
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
539 540 541 542
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
543
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
544
				return false;
545 546
		}
	}
547

548 549 550
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
551

552
	if (!IS_GEN2(dev_priv)) {
553 554
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
555
	}
556

557
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
558
}
559

560 561 562 563 564
void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
{
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
}

565
static int init_ring_common(struct intel_engine_cs *engine)
566
{
567
	struct drm_i915_private *dev_priv = engine->i915;
568
	struct intel_ringbuffer *ringbuf = engine->buffer;
569
	struct drm_i915_gem_object *obj = ringbuf->obj;
570 571
	int ret = 0;

572
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
573

574
	if (!stop_ring(engine)) {
575
		/* G45 ring initialization often fails to reset head to zero */
576 577
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
578 579 580 581 582
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
583

584
		if (!stop_ring(engine)) {
585 586
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
587 588 589 590 591
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
592 593
			ret = -EIO;
			goto out;
594
		}
595 596
	}

597
	if (I915_NEED_GFX_HWS(dev_priv))
598
		intel_ring_setup_status_page(engine);
599
	else
600
		ring_setup_phys_status_page(engine);
601

602
	/* Enforce ordering by reading HEAD register back */
603
	I915_READ_HEAD(engine);
604

605 606 607 608
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
609
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
610 611

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
612
	if (I915_READ_HEAD(engine))
613
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
614 615 616
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
617

618
	I915_WRITE_CTL(engine,
619
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
620
			| RING_VALID);
621 622

	/* If the head is still not zero, the ring is dead */
623 624 625
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
626
		DRM_ERROR("%s initialization failed "
627
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
628 629 630 631 632 633
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
634 635
		ret = -EIO;
		goto out;
636 637
	}

638
	ringbuf->last_retired_head = -1;
639 640
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
641
	intel_ring_update_space(ringbuf);
642

643
	intel_engine_init_hangcheck(engine);
644

645
out:
646
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
647 648

	return ret;
649 650
}

651
void
652
intel_fini_pipe_control(struct intel_engine_cs *engine)
653
{
654
	if (engine->scratch.obj == NULL)
655 656
		return;

657
	if (INTEL_GEN(engine->i915) >= 5) {
658 659
		kunmap(sg_page(engine->scratch.obj->pages->sgl));
		i915_gem_object_ggtt_unpin(engine->scratch.obj);
660 661
	}

662 663
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
664 665 666
}

int
667
intel_init_pipe_control(struct intel_engine_cs *engine)
668 669 670
{
	int ret;

671
	WARN_ON(engine->scratch.obj);
672

673
	engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
674
	if (IS_ERR(engine->scratch.obj)) {
675
		DRM_ERROR("Failed to allocate seqno page\n");
676 677
		ret = PTR_ERR(engine->scratch.obj);
		engine->scratch.obj = NULL;
678 679
		goto err;
	}
680

681 682
	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
					      I915_CACHE_LLC);
683 684
	if (ret)
		goto err_unref;
685

686
	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 688 689
	if (ret)
		goto err_unref;

690 691 692
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
	if (engine->scratch.cpu_page == NULL) {
693
		ret = -ENOMEM;
694
		goto err_unpin;
695
	}
696

697
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698
			 engine->name, engine->scratch.gtt_offset);
699 700 701
	return 0;

err_unpin:
702
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703
err_unref:
704
	drm_gem_object_unreference(&engine->scratch.obj->base);
705 706 707 708
err:
	return ret;
}

709
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710
{
711
	struct intel_engine_cs *engine = req->engine;
712 713
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
714

715
	if (w->count == 0)
716
		return 0;
717

718
	engine->gpu_caches_dirty = true;
719
	ret = intel_ring_flush_all_caches(req);
720 721
	if (ret)
		return ret;
722

723
	ret = intel_ring_begin(req, (w->count * 2 + 2));
724 725 726
	if (ret)
		return ret;

727
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
728
	for (i = 0; i < w->count; i++) {
729 730
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
731
	}
732
	intel_ring_emit(engine, MI_NOOP);
733

734
	intel_ring_advance(engine);
735

736
	engine->gpu_caches_dirty = true;
737
	ret = intel_ring_flush_all_caches(req);
738 739
	if (ret)
		return ret;
740

741
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
742

743
	return 0;
744 745
}

746
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
747 748 749
{
	int ret;

750
	ret = intel_ring_workarounds_emit(req);
751 752 753
	if (ret != 0)
		return ret;

754
	ret = i915_gem_render_state_init(req);
755
	if (ret)
756
		return ret;
757

758
	return 0;
759 760
}

761
static int wa_add(struct drm_i915_private *dev_priv,
762 763
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
764 765 766 767 768 769 770 771 772 773 774 775 776
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
777 778
}

779
#define WA_REG(addr, mask, val) do { \
780
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
781 782
		if (r) \
			return r; \
783
	} while (0)
784 785

#define WA_SET_BIT_MASKED(addr, mask) \
786
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
787 788

#define WA_CLR_BIT_MASKED(addr, mask) \
789
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
790

791
#define WA_SET_FIELD_MASKED(addr, mask, value) \
792
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
793

794 795
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
796

797
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
798

799 800
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
801
{
802
	struct drm_i915_private *dev_priv = engine->i915;
803
	struct i915_workarounds *wa = &dev_priv->workarounds;
804
	const uint32_t index = wa->hw_whitelist_count[engine->id];
805 806 807 808

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

809
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
810
		 i915_mmio_reg_offset(reg));
811
	wa->hw_whitelist_count[engine->id]++;
812 813 814 815

	return 0;
}

816
static int gen8_init_workarounds(struct intel_engine_cs *engine)
817
{
818
	struct drm_i915_private *dev_priv = engine->i915;
819 820

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
821

822 823 824
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

825 826 827 828
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

829 830 831 832 833
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
834
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
835
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
836
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 838
			  HDC_FORCE_NON_COHERENT);

839 840 841 842 843 844 845 846 847 848
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

849 850 851
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

852 853 854 855 856 857 858 859 860 861 862 863
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

864 865 866
	return 0;
}

867
static int bdw_init_workarounds(struct intel_engine_cs *engine)
868
{
869
	struct drm_i915_private *dev_priv = engine->i915;
870
	int ret;
871

872
	ret = gen8_init_workarounds(engine);
873 874 875
	if (ret)
		return ret;

876
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
877
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
878

879
	/* WaDisableDopClockGating:bdw */
880 881
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
882

883 884
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
885

886
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
887 888 889
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
890
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
891 892 893 894

	return 0;
}

895
static int chv_init_workarounds(struct intel_engine_cs *engine)
896
{
897
	struct drm_i915_private *dev_priv = engine->i915;
898
	int ret;
899

900
	ret = gen8_init_workarounds(engine);
901 902 903
	if (ret)
		return ret;

904
	/* WaDisableThreadStallDopClockGating:chv */
905
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906

907 908 909
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

910 911 912
	return 0;
}

913
static int gen9_init_workarounds(struct intel_engine_cs *engine)
914
{
915
	struct drm_i915_private *dev_priv = engine->i915;
916
	int ret;
917

918 919 920
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

921
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 923 924
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

925
	/* WaDisableKillLogic:bxt,skl,kbl */
926 927 928
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

929 930
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
931
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932
			  FLOW_CONTROL_ENABLE |
933 934
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

935
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 937 938
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

939
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 941
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
942 943
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
944

945
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 947
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
948 949
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
950 951 952 953 954
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
955 956
	}

957 958
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 960 961
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
962

963 964
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 966
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967

968
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 970 971
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

972
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 974
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
975 976 977
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

978 979 980 981
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

1004 1005 1006 1007
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 1009 1010
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

1011
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 1013
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

1014
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 1016 1017
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1018 1019 1020 1021 1022
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

1023
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 1026 1027
	if (ret)
		return ret;

1028
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 1031 1032
	if (ret)
		return ret;

1033 1034 1035
	return 0;
}

1036
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037
{
1038
	struct drm_i915_private *dev_priv = engine->i915;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1049
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1077
static int skl_init_workarounds(struct intel_engine_cs *engine)
1078
{
1079
	struct drm_i915_private *dev_priv = engine->i915;
1080
	int ret;
1081

1082
	ret = gen9_init_workarounds(engine);
1083 1084
	if (ret)
		return ret;
1085

1086 1087 1088 1089 1090
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1091
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1092 1093 1094 1095
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1096
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1097 1098 1099 1100 1101 1102 1103 1104
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1105
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1106 1107 1108 1109 1110
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1111
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1112 1113 1114 1115
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1116
	/* WaDisablePowerCompilerClockGating:skl */
1117
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1118 1119 1120
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1121
	/* WaBarrierPerformanceFixDisable:skl */
1122
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1123 1124 1125 1126
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1127
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1128
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1129 1130 1131 1132
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1133 1134 1135
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1136
	/* WaDisableLSQCROPERFforOCL:skl */
1137
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1138 1139 1140
	if (ret)
		return ret;

1141
	return skl_tune_iz_hashing(engine);
1142 1143
}

1144
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1145
{
1146
	struct drm_i915_private *dev_priv = engine->i915;
1147
	int ret;
1148

1149
	ret = gen9_init_workarounds(engine);
1150 1151
	if (ret)
		return ret;
1152

1153 1154
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1155
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1156 1157 1158
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1159
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160 1161 1162 1163
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1164 1165 1166 1167
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1168 1169 1170 1171 1172 1173
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1174
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1175
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1176 1177 1178 1179 1180
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1181 1182 1183
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1184
	/* WaDisableLSQCROPERFforOCL:bxt */
1185
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1186
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1187 1188
		if (ret)
			return ret;
1189

1190
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1191 1192
		if (ret)
			return ret;
1193 1194
	}

1195
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1196
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1197 1198
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1199

1200 1201 1202 1203 1204
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1205 1206 1207
	return 0;
}

1208 1209
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1210
	struct drm_i915_private *dev_priv = engine->i915;
1211 1212 1213 1214 1215 1216
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1217 1218 1219 1220
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1221 1222 1223 1224 1225
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1226 1227 1228 1229 1230
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1231 1232 1233 1234 1235 1236 1237 1238
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1239 1240 1241 1242 1243
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1244 1245 1246
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1247 1248 1249 1250 1251
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1252 1253 1254 1255 1256
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1257 1258 1259
	return 0;
}

1260
int init_workarounds_ring(struct intel_engine_cs *engine)
1261
{
1262
	struct drm_i915_private *dev_priv = engine->i915;
1263

1264
	WARN_ON(engine->id != RCS);
1265 1266

	dev_priv->workarounds.count = 0;
1267
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1268

1269
	if (IS_BROADWELL(dev_priv))
1270
		return bdw_init_workarounds(engine);
1271

1272
	if (IS_CHERRYVIEW(dev_priv))
1273
		return chv_init_workarounds(engine);
1274

1275
	if (IS_SKYLAKE(dev_priv))
1276
		return skl_init_workarounds(engine);
1277

1278
	if (IS_BROXTON(dev_priv))
1279
		return bxt_init_workarounds(engine);
1280

1281 1282 1283
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1284 1285 1286
	return 0;
}

1287
static int init_render_ring(struct intel_engine_cs *engine)
1288
{
1289
	struct drm_i915_private *dev_priv = engine->i915;
1290
	int ret = init_ring_common(engine);
1291 1292
	if (ret)
		return ret;
1293

1294
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1295
	if (IS_GEN(dev_priv, 4, 6))
1296
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1297 1298 1299 1300

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1301
	 *
1302
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1303
	 */
1304
	if (IS_GEN(dev_priv, 6, 7))
1305 1306
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1307
	/* Required for the hardware to program scanline values for waiting */
1308
	/* WaEnableFlushTlbInvalidationMode:snb */
1309
	if (IS_GEN6(dev_priv))
1310
		I915_WRITE(GFX_MODE,
1311
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1312

1313
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1314
	if (IS_GEN7(dev_priv))
1315
		I915_WRITE(GFX_MODE_GEN7,
1316
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1317
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1318

1319
	if (IS_GEN6(dev_priv)) {
1320 1321 1322 1323 1324 1325
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1326
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1327 1328
	}

1329
	if (IS_GEN(dev_priv, 6, 7))
1330
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1331

1332 1333
	if (HAS_L3_DPF(dev_priv))
		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1334

1335
	return init_workarounds_ring(engine);
1336 1337
}

1338
static void render_ring_cleanup(struct intel_engine_cs *engine)
1339
{
1340
	struct drm_i915_private *dev_priv = engine->i915;
1341 1342 1343 1344 1345 1346

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1347

1348
	intel_fini_pipe_control(engine);
1349 1350
}

1351
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1352 1353 1354
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1355
	struct intel_engine_cs *signaller = signaller_req->engine;
1356
	struct drm_i915_private *dev_priv = signaller_req->i915;
1357
	struct intel_engine_cs *waiter;
1358 1359
	enum intel_engine_id id;
	int ret, num_rings;
1360

1361
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1362 1363 1364
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1365
	ret = intel_ring_begin(signaller_req, num_dwords);
1366 1367 1368
	if (ret)
		return ret;

1369 1370
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1371 1372 1373 1374 1375 1376
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
1377
					   PIPE_CONTROL_CS_STALL);
1378 1379
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1380
		intel_ring_emit(signaller, signaller_req->seqno);
1381 1382
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1383
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1384 1385 1386 1387 1388 1389
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1390
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1391 1392 1393
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1394
	struct intel_engine_cs *signaller = signaller_req->engine;
1395
	struct drm_i915_private *dev_priv = signaller_req->i915;
1396
	struct intel_engine_cs *waiter;
1397 1398
	enum intel_engine_id id;
	int ret, num_rings;
1399

1400
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1401 1402 1403
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1404
	ret = intel_ring_begin(signaller_req, num_dwords);
1405 1406 1407
	if (ret)
		return ret;

1408 1409
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1410 1411 1412 1413 1414 1415 1416 1417
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1418
		intel_ring_emit(signaller, signaller_req->seqno);
1419
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1420
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1421 1422 1423 1424 1425 1426
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1427
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1428
		       unsigned int num_dwords)
1429
{
1430
	struct intel_engine_cs *signaller = signaller_req->engine;
1431
	struct drm_i915_private *dev_priv = signaller_req->i915;
1432
	struct intel_engine_cs *useless;
1433 1434
	enum intel_engine_id id;
	int ret, num_rings;
1435

1436
#define MBOX_UPDATE_DWORDS 3
1437
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1438 1439
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1440

1441
	ret = intel_ring_begin(signaller_req, num_dwords);
1442 1443 1444
	if (ret)
		return ret;

1445 1446
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1447 1448

		if (i915_mmio_reg_valid(mbox_reg)) {
1449
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1450
			intel_ring_emit_reg(signaller, mbox_reg);
1451
			intel_ring_emit(signaller, signaller_req->seqno);
1452 1453
		}
	}
1454

1455 1456 1457 1458
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1459
	return 0;
1460 1461
}

1462 1463
/**
 * gen6_add_request - Update the semaphore mailbox registers
1464 1465
 *
 * @request - request to write to the ring
1466 1467 1468 1469
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1470
static int
1471
gen6_add_request(struct drm_i915_gem_request *req)
1472
{
1473
	struct intel_engine_cs *engine = req->engine;
1474
	int ret;
1475

1476 1477
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1478
	else
1479
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1480

1481 1482 1483
	if (ret)
		return ret;

1484 1485 1486
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1487
	intel_ring_emit(engine, req->seqno);
1488 1489
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1490 1491 1492 1493

	return 0;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	/* We're thrashing one dword of HWS. */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	intel_ring_emit(engine, MI_NOOP);
	__intel_ring_advance(engine);

	return 0;
}

1523
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1524 1525 1526 1527 1528
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1529 1530 1531 1532 1533 1534 1535
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1536 1537

static int
1538
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1539 1540 1541
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1542
	struct intel_engine_cs *waiter = waiter_req->engine;
1543
	struct drm_i915_private *dev_priv = waiter_req->i915;
1544
	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1545
	struct i915_hw_ppgtt *ppgtt;
1546 1547
	int ret;

1548
	ret = intel_ring_begin(waiter_req, 4);
1549 1550 1551 1552 1553 1554 1555
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1556 1557
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1558
	intel_ring_advance(waiter);
1559 1560 1561 1562 1563 1564 1565 1566 1567

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1568 1569 1570
	return 0;
}

1571
static int
1572
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1573
	       struct intel_engine_cs *signaller,
1574
	       u32 seqno)
1575
{
1576
	struct intel_engine_cs *waiter = waiter_req->engine;
1577 1578 1579
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1580 1581
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1582

1583 1584 1585 1586 1587 1588
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1589
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1590

1591
	ret = intel_ring_begin(waiter_req, 4);
1592 1593 1594
	if (ret)
		return ret;

1595
	/* If seqno wrap happened, omit the wait with no-ops */
1596
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1597
		intel_ring_emit(waiter, dw1 | wait_mbox);
1598 1599 1600 1601 1602 1603 1604 1605 1606
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1607
	intel_ring_advance(waiter);
1608 1609 1610 1611

	return 0;
}

1612 1613
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
1614 1615
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
1616 1617 1618 1619 1620 1621
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
1622
pc_render_add_request(struct drm_i915_gem_request *req)
1623
{
1624
	struct intel_engine_cs *engine = req->engine;
1625 1626 1627
	u32 addr = engine->status_page.gfx_addr +
		(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	u32 scratch_addr = addr;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
1638
	ret = intel_ring_begin(req, 32);
1639 1640 1641
	if (ret)
		return ret;

1642
	intel_ring_emit(engine,
1643 1644
			GFX_OP_PIPE_CONTROL(4) |
			PIPE_CONTROL_QW_WRITE |
1645 1646
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1647 1648
	intel_ring_emit(engine, addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, req->seqno);
1649 1650
	intel_ring_emit(engine, 0);
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1651
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1652
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1653
	scratch_addr += 2 * CACHELINE_BYTES;
1654
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655
	scratch_addr += 2 * CACHELINE_BYTES;
1656
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1657
	scratch_addr += 2 * CACHELINE_BYTES;
1658
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1659
	scratch_addr += 2 * CACHELINE_BYTES;
1660
	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1661

1662 1663
	intel_ring_emit(engine,
			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1664 1665
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1666
			PIPE_CONTROL_NOTIFY);
1667 1668
	intel_ring_emit(engine, addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, req->seqno);
1669 1670
	intel_ring_emit(engine, 0);
	__intel_ring_advance(engine);
1671 1672 1673 1674

	return 0;
}

1675 1676
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1677
{
1678
	struct drm_i915_private *dev_priv = engine->i915;
1679

1680 1681
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1682 1683 1684 1685 1686 1687 1688 1689 1690
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1691 1692 1693
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1694
	 */
1695
	spin_lock_irq(&dev_priv->uncore.lock);
1696
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1697
	spin_unlock_irq(&dev_priv->uncore.lock);
1698 1699
}

1700
static bool
1701
gen5_ring_get_irq(struct intel_engine_cs *engine)
1702
{
1703
	struct drm_i915_private *dev_priv = engine->i915;
1704
	unsigned long flags;
1705

1706
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1707 1708
		return false;

1709
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1710 1711
	if (engine->irq_refcount++ == 0)
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1712
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1713 1714 1715 1716 1717

	return true;
}

static void
1718
gen5_ring_put_irq(struct intel_engine_cs *engine)
1719
{
1720
	struct drm_i915_private *dev_priv = engine->i915;
1721
	unsigned long flags;
1722

1723
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 1725
	if (--engine->irq_refcount == 0)
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1726
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1727 1728
}

1729
static bool
1730
i9xx_ring_get_irq(struct intel_engine_cs *engine)
1731
{
1732
	struct drm_i915_private *dev_priv = engine->i915;
1733
	unsigned long flags;
1734

1735
	if (!intel_irqs_enabled(dev_priv))
1736 1737
		return false;

1738
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739 1740
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1741 1742 1743
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1744
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1745 1746

	return true;
1747 1748
}

1749
static void
1750
i9xx_ring_put_irq(struct intel_engine_cs *engine)
1751
{
1752
	struct drm_i915_private *dev_priv = engine->i915;
1753
	unsigned long flags;
1754

1755
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1756 1757
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
1758 1759 1760
		I915_WRITE(IMR, dev_priv->irq_mask);
		POSTING_READ(IMR);
	}
1761
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1762 1763
}

C
Chris Wilson 已提交
1764
static bool
1765
i8xx_ring_get_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1766
{
1767
	struct drm_i915_private *dev_priv = engine->i915;
1768
	unsigned long flags;
C
Chris Wilson 已提交
1769

1770
	if (!intel_irqs_enabled(dev_priv))
C
Chris Wilson 已提交
1771 1772
		return false;

1773
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1774 1775
	if (engine->irq_refcount++ == 0) {
		dev_priv->irq_mask &= ~engine->irq_enable_mask;
C
Chris Wilson 已提交
1776 1777 1778
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1779
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1780 1781 1782 1783 1784

	return true;
}

static void
1785
i8xx_ring_put_irq(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1786
{
1787
	struct drm_i915_private *dev_priv = engine->i915;
1788
	unsigned long flags;
C
Chris Wilson 已提交
1789

1790
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1791 1792
	if (--engine->irq_refcount == 0) {
		dev_priv->irq_mask |= engine->irq_enable_mask;
C
Chris Wilson 已提交
1793 1794 1795
		I915_WRITE16(IMR, dev_priv->irq_mask);
		POSTING_READ16(IMR);
	}
1796
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
C
Chris Wilson 已提交
1797 1798
}

1799
static int
1800
bsd_ring_flush(struct drm_i915_gem_request *req,
1801 1802
	       u32     invalidate_domains,
	       u32     flush_domains)
1803
{
1804
	struct intel_engine_cs *engine = req->engine;
1805 1806
	int ret;

1807
	ret = intel_ring_begin(req, 2);
1808 1809 1810
	if (ret)
		return ret;

1811 1812 1813
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1814
	return 0;
1815 1816
}

1817
static int
1818
i9xx_add_request(struct drm_i915_gem_request *req)
1819
{
1820
	struct intel_engine_cs *engine = req->engine;
1821 1822
	int ret;

1823
	ret = intel_ring_begin(req, 4);
1824 1825
	if (ret)
		return ret;
1826

1827 1828 1829
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1830
	intel_ring_emit(engine, req->seqno);
1831 1832
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1833

1834
	return 0;
1835 1836
}

1837
static bool
1838
gen6_ring_get_irq(struct intel_engine_cs *engine)
1839
{
1840
	struct drm_i915_private *dev_priv = engine->i915;
1841
	unsigned long flags;
1842

1843 1844
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
		return false;
1845

1846
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1847
	if (engine->irq_refcount++ == 0) {
1848
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1849 1850
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1851
					 GT_PARITY_ERROR(dev_priv)));
1852
		else
1853 1854
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1855
	}
1856
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1857 1858 1859 1860 1861

	return true;
}

static void
1862
gen6_ring_put_irq(struct intel_engine_cs *engine)
1863
{
1864
	struct drm_i915_private *dev_priv = engine->i915;
1865
	unsigned long flags;
1866

1867
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1868
	if (--engine->irq_refcount == 0) {
1869 1870
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1871
		else
1872 1873
			I915_WRITE_IMR(engine, ~0);
		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1874
	}
1875
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1876 1877
}

B
Ben Widawsky 已提交
1878
static bool
1879
hsw_vebox_get_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1880
{
1881
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1882 1883
	unsigned long flags;

1884
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
B
Ben Widawsky 已提交
1885 1886
		return false;

1887
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1888 1889 1890
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1891
	}
1892
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1893 1894 1895 1896 1897

	return true;
}

static void
1898
hsw_vebox_put_irq(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1899
{
1900
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1901 1902
	unsigned long flags;

1903
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1904 1905 1906
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~0);
		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1907
	}
1908
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
B
Ben Widawsky 已提交
1909 1910
}

1911
static bool
1912
gen8_ring_get_irq(struct intel_engine_cs *engine)
1913
{
1914
	struct drm_i915_private *dev_priv = engine->i915;
1915 1916
	unsigned long flags;

1917
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1918 1919 1920
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1921
	if (engine->irq_refcount++ == 0) {
1922
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1923 1924
			I915_WRITE_IMR(engine,
				       ~(engine->irq_enable_mask |
1925 1926
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
		} else {
1927
			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1928
		}
1929
		POSTING_READ(RING_IMR(engine->mmio_base));
1930 1931 1932 1933 1934 1935 1936
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void
1937
gen8_ring_put_irq(struct intel_engine_cs *engine)
1938
{
1939
	struct drm_i915_private *dev_priv = engine->i915;
1940 1941 1942
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1943
	if (--engine->irq_refcount == 0) {
1944
		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1945
			I915_WRITE_IMR(engine,
1946 1947
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
		} else {
1948
			I915_WRITE_IMR(engine, ~0);
1949
		}
1950
		POSTING_READ(RING_IMR(engine->mmio_base));
1951 1952 1953 1954
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1955
static int
1956
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1957
			 u64 offset, u32 length,
1958
			 unsigned dispatch_flags)
1959
{
1960
	struct intel_engine_cs *engine = req->engine;
1961
	int ret;
1962

1963
	ret = intel_ring_begin(req, 2);
1964 1965 1966
	if (ret)
		return ret;

1967
	intel_ring_emit(engine,
1968 1969
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1970 1971
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1972 1973
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1974

1975 1976 1977
	return 0;
}

1978 1979
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1980 1981
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1982
static int
1983
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1984 1985
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1986
{
1987
	struct intel_engine_cs *engine = req->engine;
1988
	u32 cs_offset = engine->scratch.gtt_offset;
1989
	int ret;
1990

1991
	ret = intel_ring_begin(req, 6);
1992 1993
	if (ret)
		return ret;
1994

1995
	/* Evict the invalid PTE TLBs */
1996 1997 1998 1999 2000 2001 2002
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2003

2004
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2005 2006 2007
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

2008
		ret = intel_ring_begin(req, 6 + 2);
2009 2010
		if (ret)
			return ret;
2011 2012 2013 2014 2015

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
2027 2028

		/* ... and execute it. */
2029
		offset = cs_offset;
2030
	}
2031

2032
	ret = intel_ring_begin(req, 2);
2033 2034 2035
	if (ret)
		return ret;

2036 2037 2038 2039
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
2040

2041 2042 2043 2044
	return 0;
}

static int
2045
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2046
			 u64 offset, u32 len,
2047
			 unsigned dispatch_flags)
2048
{
2049
	struct intel_engine_cs *engine = req->engine;
2050 2051
	int ret;

2052
	ret = intel_ring_begin(req, 2);
2053 2054 2055
	if (ret)
		return ret;

2056 2057 2058 2059
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
2060 2061 2062 2063

	return 0;
}

2064
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2065
{
2066
	struct drm_i915_private *dev_priv = engine->i915;
2067 2068 2069 2070

	if (!dev_priv->status_page_dmah)
		return;

2071
	drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2072
	engine->status_page.page_addr = NULL;
2073 2074
}

2075
static void cleanup_status_page(struct intel_engine_cs *engine)
2076
{
2077
	struct drm_i915_gem_object *obj;
2078

2079
	obj = engine->status_page.obj;
2080
	if (obj == NULL)
2081 2082
		return;

2083
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
2084
	i915_gem_object_ggtt_unpin(obj);
2085
	drm_gem_object_unreference(&obj->base);
2086
	engine->status_page.obj = NULL;
2087 2088
}

2089
static int init_status_page(struct intel_engine_cs *engine)
2090
{
2091
	struct drm_i915_gem_object *obj = engine->status_page.obj;
2092

2093
	if (obj == NULL) {
2094
		unsigned flags;
2095
		int ret;
2096

2097
		obj = i915_gem_object_create(engine->i915->dev, 4096);
2098
		if (IS_ERR(obj)) {
2099
			DRM_ERROR("Failed to allocate status page\n");
2100
			return PTR_ERR(obj);
2101
		}
2102

2103 2104 2105 2106
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

2107
		flags = 0;
2108
		if (!HAS_LLC(engine->i915))
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2121 2122 2123 2124 2125 2126
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

2127
		engine->status_page.obj = obj;
2128
	}
2129

2130 2131 2132
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2133

2134
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2135
			engine->name, engine->status_page.gfx_addr);
2136 2137 2138 2139

	return 0;
}

2140
static int init_phys_status_page(struct intel_engine_cs *engine)
2141
{
2142
	struct drm_i915_private *dev_priv = engine->i915;
2143 2144 2145

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
2146
			drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2147 2148 2149 2150
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

2151 2152
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2153 2154 2155 2156

	return 0;
}

2157
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2158
{
2159 2160 2161
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

2162
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2163
		i915_gem_object_unpin_map(ringbuf->obj);
2164
	else
2165
		i915_vma_unpin_iomap(ringbuf->vma);
2166
	ringbuf->virtual_start = NULL;
2167

2168
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2169
	ringbuf->vma = NULL;
2170 2171
}

2172
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2173 2174 2175
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *obj = ringbuf->obj;
2176 2177
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2178
	void *addr;
2179 2180
	int ret;

2181
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2182
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2183 2184
		if (ret)
			return ret;
2185

2186
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2187 2188
		if (ret)
			goto err_unpin;
2189

2190 2191 2192
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2193
			goto err_unpin;
2194 2195
		}
	} else {
2196 2197
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2198 2199
		if (ret)
			return ret;
2200

2201
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2202 2203
		if (ret)
			goto err_unpin;
2204

2205 2206 2207
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2208 2209 2210
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2211
			goto err_unpin;
2212
		}
2213 2214
	}

2215
	ringbuf->virtual_start = addr;
2216
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2217
	return 0;
2218 2219 2220 2221

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2222 2223
}

2224
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2225
{
2226 2227 2228 2229
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2230 2231
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2232
{
2233
	struct drm_i915_gem_object *obj;
2234

2235 2236
	obj = NULL;
	if (!HAS_LLC(dev))
2237
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2238
	if (obj == NULL)
2239
		obj = i915_gem_object_create(dev, ringbuf->size);
2240 2241
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2242

2243 2244 2245
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2246
	ringbuf->obj = obj;
2247

2248
	return 0;
2249 2250
}

2251 2252 2253 2254 2255 2256 2257
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2258 2259 2260
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2261
		return ERR_PTR(-ENOMEM);
2262
	}
2263

2264
	ring->engine = engine;
2265
	list_add(&ring->link, &engine->buffers);
2266 2267 2268 2269 2270 2271 2272

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2273
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2274 2275 2276 2277 2278
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2279
	ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2280
	if (ret) {
2281 2282 2283
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2295
	list_del(&ring->link);
2296 2297 2298
	kfree(ring);
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

	lockdep_assert_held(&ctx->i915->dev->struct_mutex);

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	i915_gem_context_reference(ctx);
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

	lockdep_assert_held(&ctx->i915->dev->struct_mutex);

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

	i915_gem_context_unreference(ctx);
}

2350
static int intel_init_ring_buffer(struct drm_device *dev,
2351
				  struct intel_engine_cs *engine)
2352
{
2353
	struct drm_i915_private *dev_priv = to_i915(dev);
2354
	struct intel_ringbuffer *ringbuf;
2355 2356
	int ret;

2357
	WARN_ON(engine->buffer);
2358

2359
	engine->i915 = dev_priv;
2360 2361 2362 2363 2364 2365 2366
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->buffers);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2367

2368 2369 2370
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2383
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2384 2385 2386 2387
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2388
	engine->buffer = ringbuf;
2389

2390
	if (I915_NEED_GFX_HWS(dev_priv)) {
2391
		ret = init_status_page(engine);
2392
		if (ret)
2393
			goto error;
2394
	} else {
2395 2396
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2397
		if (ret)
2398
			goto error;
2399 2400
	}

2401
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2402 2403
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2404
				engine->name, ret);
2405 2406
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2407
	}
2408

2409
	ret = i915_cmd_parser_init_ring(engine);
2410
	if (ret)
2411 2412 2413
		goto error;

	return 0;
2414

2415
error:
2416
	intel_cleanup_engine(engine);
2417
	return ret;
2418 2419
}

2420
void intel_cleanup_engine(struct intel_engine_cs *engine)
2421
{
2422
	struct drm_i915_private *dev_priv;
2423

2424
	if (!intel_engine_initialized(engine))
2425 2426
		return;

2427
	dev_priv = engine->i915;
2428

2429
	if (engine->buffer) {
2430
		intel_stop_engine(engine);
2431
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2432

2433 2434 2435
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2436
	}
2437

2438 2439
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2440

2441
	if (I915_NEED_GFX_HWS(dev_priv)) {
2442
		cleanup_status_page(engine);
2443
	} else {
2444 2445
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2446
	}
2447

2448 2449
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2450
	intel_engine_fini_breadcrumbs(engine);
2451 2452 2453

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2454
	engine->i915 = NULL;
2455 2456
}

2457
int intel_engine_idle(struct intel_engine_cs *engine)
2458
{
2459
	struct drm_i915_gem_request *req;
2460 2461

	/* Wait upon the last request to be completed */
2462
	if (list_empty(&engine->request_list))
2463 2464
		return 0;

2465 2466 2467
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2468 2469 2470

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2471
				   req->i915->mm.interruptible,
2472
				   NULL, NULL);
2473 2474
}

2475
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2476
{
2477 2478 2479 2480 2481 2482
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2483
	request->reserved_space += LEGACY_REQUEST_SIZE;
2484

2485
	request->ringbuf = request->engine->buffer;
2486 2487 2488 2489 2490

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2491
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2492
	return 0;
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

	intel_ring_update_space(ringbuf);
	if (ringbuf->space >= bytes)
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2514
	GEM_BUG_ON(!req->reserved_space);
2515 2516 2517 2518

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2519
		/*
2520 2521 2522
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2523
		 */
2524 2525 2526 2527 2528 2529 2530 2531
		if (target->ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
		space = __intel_ring_space(target->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
			break;
2532
	}
2533

2534 2535 2536 2537
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2538 2539
}

2540
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2541
{
2542
	struct intel_ringbuffer *ringbuf = req->ringbuf;
2543
	int remain_actual = ringbuf->size - ringbuf->tail;
2544 2545 2546
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2547
	bool need_wrap = false;
2548

2549
	total_bytes = bytes + req->reserved_space;
2550

2551 2552 2553 2554 2555 2556 2557
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2558 2559 2560 2561 2562 2563 2564
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2565
		wait_bytes = remain_actual + req->reserved_space;
2566
	} else {
2567 2568
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2569 2570
	}

2571 2572
	if (wait_bytes > ringbuf->space) {
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2573 2574
		if (unlikely(ret))
			return ret;
2575

2576
		intel_ring_update_space(ringbuf);
2577 2578
		if (unlikely(ringbuf->space < wait_bytes))
			return -EAGAIN;
M
Mika Kuoppala 已提交
2579 2580
	}

2581 2582 2583
	if (unlikely(need_wrap)) {
		GEM_BUG_ON(remain_actual > ringbuf->space);
		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2584

2585 2586 2587 2588 2589 2590
		/* Fill the tail with MI_NOOP */
		memset(ringbuf->virtual_start + ringbuf->tail,
		       0, remain_actual);
		ringbuf->tail = 0;
		ringbuf->space -= remain_actual;
	}
2591

2592 2593
	ringbuf->space -= bytes;
	GEM_BUG_ON(ringbuf->space < 0);
2594
	return 0;
2595
}
2596

2597
/* Align the ring tail to a cacheline boundary */
2598
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2599
{
2600
	struct intel_engine_cs *engine = req->engine;
2601
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2602 2603 2604 2605 2606
	int ret;

	if (num_dwords == 0)
		return 0;

2607
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2608
	ret = intel_ring_begin(req, num_dwords);
2609 2610 2611 2612
	if (ret)
		return ret;

	while (num_dwords--)
2613
		intel_ring_emit(engine, MI_NOOP);
2614

2615
	intel_ring_advance(engine);
2616 2617 2618 2619

	return 0;
}

2620
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2621
{
2622
	struct drm_i915_private *dev_priv = engine->i915;
2623

2624 2625 2626 2627 2628 2629 2630 2631
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2632
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2633 2634
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2635
		if (HAS_VEBOX(dev_priv))
2636
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2637
	}
2638 2639 2640 2641 2642 2643 2644 2645
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2646 2647
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2648

2649 2650 2651
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2652
	engine->last_submitted_seqno = seqno;
2653

2654
	engine->hangcheck.seqno = seqno;
2655 2656 2657 2658 2659 2660 2661

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2662
}
2663

2664
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2665
				     u32 value)
2666
{
2667
	struct drm_i915_private *dev_priv = engine->i915;
2668

2669 2670
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2671
       /* Every tail move must follow the sequence below */
2672 2673 2674 2675

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2676 2677
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2678 2679

	/* Clear the context id. Here be magic! */
2680
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2681

2682
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2683 2684 2685 2686 2687
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2688
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2689

2690
	/* Now that the ring is fully powered up, update the tail */
2691 2692
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2693 2694 2695 2696

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2697 2698 2699 2700
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2701 2702
}

2703
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2704
			       u32 invalidate, u32 flush)
2705
{
2706
	struct intel_engine_cs *engine = req->engine;
2707
	uint32_t cmd;
2708 2709
	int ret;

2710
	ret = intel_ring_begin(req, 4);
2711 2712 2713
	if (ret)
		return ret;

2714
	cmd = MI_FLUSH_DW;
2715
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2716
		cmd += 1;
2717 2718 2719 2720 2721 2722 2723 2724

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2725 2726 2727 2728 2729 2730
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2731
	if (invalidate & I915_GEM_GPU_DOMAINS)
2732 2733
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2734 2735 2736
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2737
	if (INTEL_GEN(req->i915) >= 8) {
2738 2739
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2740
	} else  {
2741 2742
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2743
	}
2744
	intel_ring_advance(engine);
2745
	return 0;
2746 2747
}

2748
static int
2749
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2750
			      u64 offset, u32 len,
2751
			      unsigned dispatch_flags)
2752
{
2753
	struct intel_engine_cs *engine = req->engine;
2754
	bool ppgtt = USES_PPGTT(engine->dev) &&
2755
			!(dispatch_flags & I915_DISPATCH_SECURE);
2756 2757
	int ret;

2758
	ret = intel_ring_begin(req, 4);
2759 2760 2761 2762
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2763
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2764 2765
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2766 2767 2768 2769
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2770 2771 2772 2773

	return 0;
}

2774
static int
2775
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2776 2777
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2778
{
2779
	struct intel_engine_cs *engine = req->engine;
2780 2781
	int ret;

2782
	ret = intel_ring_begin(req, 2);
2783 2784 2785
	if (ret)
		return ret;

2786
	intel_ring_emit(engine,
2787
			MI_BATCH_BUFFER_START |
2788
			(dispatch_flags & I915_DISPATCH_SECURE ?
2789 2790 2791
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2792
	/* bit0-7 is the length on GEN6+ */
2793 2794
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2795 2796 2797 2798

	return 0;
}

2799
static int
2800
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2801
			      u64 offset, u32 len,
2802
			      unsigned dispatch_flags)
2803
{
2804
	struct intel_engine_cs *engine = req->engine;
2805
	int ret;
2806

2807
	ret = intel_ring_begin(req, 2);
2808 2809
	if (ret)
		return ret;
2810

2811
	intel_ring_emit(engine,
2812
			MI_BATCH_BUFFER_START |
2813 2814
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2815
	/* bit0-7 is the length on GEN6+ */
2816 2817
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2818

2819
	return 0;
2820 2821
}

2822 2823
/* Blitter support (SandyBridge+) */

2824
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2825
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2826
{
2827
	struct intel_engine_cs *engine = req->engine;
2828
	uint32_t cmd;
2829 2830
	int ret;

2831
	ret = intel_ring_begin(req, 4);
2832 2833 2834
	if (ret)
		return ret;

2835
	cmd = MI_FLUSH_DW;
2836
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2837
		cmd += 1;
2838 2839 2840 2841 2842 2843 2844 2845

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2846 2847 2848 2849 2850 2851
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2852
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2853
		cmd |= MI_INVALIDATE_TLB;
2854 2855 2856
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2857
	if (INTEL_GEN(req->i915) >= 8) {
2858 2859
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2860
	} else  {
2861 2862
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2863
	}
2864
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2865

2866
	return 0;
Z
Zou Nan hai 已提交
2867 2868
}

2869 2870 2871
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2872
	struct drm_i915_gem_object *obj;
2873
	int ret, i;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
		obj = i915_gem_object_create(dev_priv->dev, 4096);
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
				drm_gem_object_unreference(&obj->base);
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2896 2897 2898 2899
	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2900 2901
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2902 2903
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2915 2916 2917
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2966 2967 2968
	}
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
	if (INTEL_GEN(dev_priv) >= 8) {
		engine->irq_get = gen8_ring_get_irq;
		engine->irq_put = gen8_ring_put_irq;
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->irq_get = gen6_ring_get_irq;
		engine->irq_put = gen6_ring_put_irq;
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
		engine->irq_get = gen5_ring_get_irq;
		engine->irq_put = gen5_ring_put_irq;
	} else if (INTEL_GEN(dev_priv) >= 3) {
		engine->irq_get = i9xx_ring_get_irq;
		engine->irq_put = i9xx_ring_put_irq;
	} else {
		engine->irq_get = i8xx_ring_get_irq;
		engine->irq_put = i8xx_ring_put_irq;
	}
}

2992 2993 2994
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2995
	engine->init_hw = init_ring_common;
2996
	engine->write_tail = ring_write_tail;
2997

2998 2999
	engine->add_request = i9xx_add_request;
	if (INTEL_GEN(dev_priv) >= 6)
3000
		engine->add_request = gen6_add_request;
3001 3002 3003 3004

	if (INTEL_GEN(dev_priv) >= 8)
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
	else if (INTEL_GEN(dev_priv) >= 6)
3005
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3006
	else if (INTEL_GEN(dev_priv) >= 4)
3007
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3008 3009 3010 3011
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
	else
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
3012

3013
	intel_ring_init_irq(dev_priv, engine);
3014
	intel_ring_init_semaphores(dev_priv, engine);
3015 3016
}

3017 3018
int intel_init_render_ring_buffer(struct drm_device *dev)
{
3019
	struct drm_i915_private *dev_priv = dev->dev_private;
3020
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3021 3022
	struct drm_i915_gem_object *obj;
	int ret;
3023

3024 3025 3026
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
3027
	engine->hw_id = 0;
3028
	engine->mmio_base = RENDER_RING_BASE;
3029

3030 3031
	intel_ring_default_vfuncs(dev_priv, engine);

3032
	if (INTEL_GEN(dev_priv) >= 8) {
3033
		engine->init_context = intel_rcs_ctx_init;
3034
		engine->add_request = gen8_render_add_request;
3035 3036
		engine->flush = gen8_render_ring_flush;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3037
		if (i915_semaphore_is_enabled(dev_priv))
3038
			engine->semaphore.signal = gen8_rcs_signal;
3039
	} else if (INTEL_GEN(dev_priv) >= 6) {
3040 3041
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
3042
		if (IS_GEN6(dev_priv))
3043 3044
			engine->flush = gen6_render_ring_flush;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3045
	} else if (IS_GEN5(dev_priv)) {
3046 3047 3048
		engine->add_request = pc_render_add_request;
		engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
3049
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3050
	} else {
3051
		if (INTEL_GEN(dev_priv) < 4)
3052
			engine->flush = gen2_render_ring_flush;
3053
		else
3054 3055
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
3056
	}
B
Ben Widawsky 已提交
3057

3058
	if (IS_HASWELL(dev_priv))
3059
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
3060

3061 3062
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
3063

3064
	/* Workaround batchbuffer to combat CS tlb bug. */
3065
	if (HAS_BROKEN_CS_TLB(dev_priv)) {
3066
		obj = i915_gem_object_create(dev, I830_WA_SIZE);
3067
		if (IS_ERR(obj)) {
3068
			DRM_ERROR("Failed to allocate batch bo\n");
3069
			return PTR_ERR(obj);
3070 3071
		}

3072
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3073 3074 3075 3076 3077 3078
		if (ret != 0) {
			drm_gem_object_unreference(&obj->base);
			DRM_ERROR("Failed to ping batch bo\n");
			return ret;
		}

3079 3080
		engine->scratch.obj = obj;
		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
3081 3082
	}

3083
	ret = intel_init_ring_buffer(dev, engine);
3084 3085 3086
	if (ret)
		return ret;

3087
	if (INTEL_GEN(dev_priv) >= 5) {
3088
		ret = intel_init_pipe_control(engine);
3089 3090 3091 3092 3093
		if (ret)
			return ret;
	}

	return 0;
3094 3095 3096 3097
}

int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
3098
	struct drm_i915_private *dev_priv = dev->dev_private;
3099
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
3100

3101 3102 3103
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
3104
	engine->hw_id = 1;
3105

3106 3107
	intel_ring_default_vfuncs(dev_priv, engine);

3108
	if (INTEL_GEN(dev_priv) >= 6) {
3109
		engine->mmio_base = GEN6_BSD_RING_BASE;
3110
		/* gen6 bsd needs a special wa for tail updates */
3111
		if (IS_GEN6(dev_priv))
3112 3113
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
3114
		if (INTEL_GEN(dev_priv) >= 8)
3115
			engine->irq_enable_mask =
3116
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
3117
		else
3118
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3119
	} else {
3120 3121
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
3122
		if (IS_GEN5(dev_priv))
3123
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3124
		else
3125
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3126 3127
	}

3128
	return intel_init_ring_buffer(dev, engine);
3129
}
3130

3131
/**
3132
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3133 3134 3135 3136
 */
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3137
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3138 3139 3140 3141

	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
3142
	engine->hw_id = 4;
3143
	engine->mmio_base = GEN8_BSD2_RING_BASE;
3144 3145 3146

	intel_ring_default_vfuncs(dev_priv, engine);

3147 3148
	engine->flush = gen6_bsd_ring_flush;
	engine->irq_enable_mask =
3149 3150
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;

3151
	return intel_init_ring_buffer(dev, engine);
3152 3153
}

3154 3155
int intel_init_blt_ring_buffer(struct drm_device *dev)
{
3156
	struct drm_i915_private *dev_priv = dev->dev_private;
3157
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3158 3159 3160 3161

	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
3162
	engine->hw_id = 2;
3163
	engine->mmio_base = BLT_RING_BASE;
3164 3165 3166

	intel_ring_default_vfuncs(dev_priv, engine);

3167
	engine->flush = gen6_ring_flush;
3168
	if (INTEL_GEN(dev_priv) >= 8)
3169
		engine->irq_enable_mask =
3170
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3171
	else
3172
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3173

3174
	return intel_init_ring_buffer(dev, engine);
3175
}
3176

B
Ben Widawsky 已提交
3177 3178
int intel_init_vebox_ring_buffer(struct drm_device *dev)
{
3179
	struct drm_i915_private *dev_priv = dev->dev_private;
3180
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
B
Ben Widawsky 已提交
3181

3182 3183 3184
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
3185
	engine->hw_id = 3;
3186
	engine->mmio_base = VEBOX_RING_BASE;
3187 3188 3189

	intel_ring_default_vfuncs(dev_priv, engine);

3190
	engine->flush = gen6_ring_flush;
3191

3192
	if (INTEL_GEN(dev_priv) >= 8) {
3193
		engine->irq_enable_mask =
3194
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3195
	} else {
3196 3197 3198
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
		engine->irq_get = hsw_vebox_get_irq;
		engine->irq_put = hsw_vebox_put_irq;
3199
	}
B
Ben Widawsky 已提交
3200

3201
	return intel_init_ring_buffer(dev, engine);
B
Ben Widawsky 已提交
3202 3203
}

3204
int
3205
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3206
{
3207
	struct intel_engine_cs *engine = req->engine;
3208 3209
	int ret;

3210
	if (!engine->gpu_caches_dirty)
3211 3212
		return 0;

3213
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3214 3215 3216
	if (ret)
		return ret;

3217
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3218

3219
	engine->gpu_caches_dirty = false;
3220 3221 3222 3223
	return 0;
}

int
3224
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3225
{
3226
	struct intel_engine_cs *engine = req->engine;
3227 3228 3229 3230
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
3231
	if (engine->gpu_caches_dirty)
3232 3233
		flush_domains = I915_GEM_GPU_DOMAINS;

3234
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3235 3236 3237
	if (ret)
		return ret;

3238
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3239

3240
	engine->gpu_caches_dirty = false;
3241 3242
	return 0;
}
3243 3244

void
3245
intel_stop_engine(struct intel_engine_cs *engine)
3246 3247 3248
{
	int ret;

3249
	if (!intel_engine_initialized(engine))
3250 3251
		return;

3252
	ret = intel_engine_idle(engine);
3253
	if (ret)
3254
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3255
			  engine->name, ret);
3256

3257
	stop_ring(engine);
3258
}