perf_counter.c 95.8 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50

51 52
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
53
/*
54
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
55
 */
56
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
57 58 59 60

/*
 * Architecture provided APIs - weak aliases:
 */
61
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
62
{
63
	return NULL;
T
Thomas Gleixner 已提交
64 65
}

66 67 68
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

69
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
70 71 72

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
73 74 75 76 77
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
78

79 80
void __weak perf_counter_print_debug(void)	{ }

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

105 106 107 108 109
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

110 111 112 113 114 115 116 117
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

118 119
static void put_ctx(struct perf_counter_context *ctx)
{
120 121 122
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
123 124 125
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
126
	}
127 128
}

129 130 131 132 133
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
134 135
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		get_ctx(ctx);
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

192 193 194 195
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
196 197 198 199 200 201 202 203 204 205
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
206
	if (group_leader == counter)
207
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
208
	else {
209
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
210 211
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
212 213

	list_add_rcu(&counter->event_entry, &ctx->event_list);
214
	ctx->nr_counters++;
215 216
}

217 218
/*
 * Remove a counter from the lists for its context.
219
 * Must be called with ctx->mutex and ctx->lock held.
220
 */
221 222 223 224 225
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

226 227
	if (list_empty(&counter->list_entry))
		return;
228 229
	ctx->nr_counters--;

230
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
231
	list_del_rcu(&counter->event_entry);
232

P
Peter Zijlstra 已提交
233 234 235
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

236 237 238 239 240 241 242 243
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

244
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
245 246 247 248
		sibling->group_leader = sibling;
	}
}

249 250 251 252 253 254 255 256 257
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
258
	counter->tstamp_stopped = ctx->time;
259
	counter->pmu->disable(counter);
260 261 262 263 264
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
265
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
266 267 268
		cpuctx->exclusive = 0;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

287
	if (group_counter->attr.exclusive)
288 289 290
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
291 292 293 294 295 296
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
297
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
298 299 300 301 302 303 304 305 306 307
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
308
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
309 310
		return;

311
	spin_lock(&ctx->lock);
312 313 314 315 316
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
317

318 319
	counter_sched_out(counter, cpuctx, ctx);

320
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
321 322 323 324 325 326 327 328 329 330 331

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

332
	perf_enable();
333
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
334 335 336 337 338 339
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
340
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
341 342 343
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
344 345 346 347 348 349 350
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
351
 */
352
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
353 354 355 356 357 358 359 360 361 362
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
363
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
364 365 366 367 368
					 counter, 1);
		return;
	}

retry:
369
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
370 371 372 373 374 375
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
376
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
377 378 379 380 381 382
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
383
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
384 385
	 * succeed.
	 */
386 387
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
388 389 390 391
	}
	spin_unlock_irq(&ctx->lock);
}

392
static inline u64 perf_clock(void)
393
{
394
	return cpu_clock(smp_processor_id());
395 396 397 398 399
}

/*
 * Update the record of the current time in a context.
 */
400
static void update_context_time(struct perf_counter_context *ctx)
401
{
402 403 404 405
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
406 407 408 409 410 411 412 413 414 415
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

416 417 418 419 420 421 422 423 424 425 426
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
427 428 429 430 431 432 433 434 435 436 437 438 439 440
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
454
	if (ctx->task && cpuctx->task_ctx != ctx)
455 456
		return;

457
	spin_lock(&ctx->lock);
458 459 460 461 462 463

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
464
		update_context_time(ctx);
465
		update_counter_times(counter);
466 467 468 469 470 471 472
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

473
	spin_unlock(&ctx->lock);
474 475 476 477
}

/*
 * Disable a counter.
478 479 480 481 482 483 484 485 486 487
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
519 520
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
521
		counter->state = PERF_COUNTER_STATE_OFF;
522
	}
523 524 525 526

	spin_unlock_irq(&ctx->lock);
}

527 528 529 530 531 532
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
533
	if (counter->state <= PERF_COUNTER_STATE_OFF)
534 535 536 537 538 539 540 541 542
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

543
	if (counter->pmu->enable(counter)) {
544 545 546 547 548
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

549
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
550

551 552
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
553 554
	ctx->nr_active++;

555
	if (counter->attr.exclusive)
556 557
		cpuctx->exclusive = 1;

558 559 560
	return 0;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

607 608 609 610 611 612 613 614 615 616
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
617

618 619 620
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
647
	if (counter->attr.exclusive && cpuctx->active_oncpu)
648 649 650 651 652 653 654 655
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

656 657 658 659
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
660 661 662
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
663 664
}

T
Thomas Gleixner 已提交
665
/*
666
 * Cross CPU call to install and enable a performance counter
667 668
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
669 670 671 672 673 674
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
675
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
676
	int cpu = smp_processor_id();
677
	int err;
T
Thomas Gleixner 已提交
678 679 680 681 682

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
683 684
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
685
	 */
686
	if (ctx->task && cpuctx->task_ctx != ctx) {
687
		if (cpuctx->task_ctx || ctx->task != current)
688 689 690
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
691

692
	spin_lock(&ctx->lock);
693
	ctx->is_active = 1;
694
	update_context_time(ctx);
T
Thomas Gleixner 已提交
695 696 697 698 699

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
700
	perf_disable();
T
Thomas Gleixner 已提交
701

702
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
703

704 705 706 707 708 709 710 711
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

712 713 714 715 716
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
717
	if (!group_can_go_on(counter, cpuctx, 1))
718 719 720 721
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

722 723 724 725 726 727 728 729
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
730
		if (leader->attr.pinned) {
731
			update_group_times(leader);
732
			leader->state = PERF_COUNTER_STATE_ERROR;
733
		}
734
	}
T
Thomas Gleixner 已提交
735

736
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
737 738
		cpuctx->max_pertask--;

739
 unlock:
740
	perf_enable();
741

742
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
743 744 745 746 747 748 749 750 751 752 753
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
754 755
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
782
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
783 784 785 786 787 788 789 790 791
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
792 793
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
794 795 796
	spin_unlock_irq(&ctx->lock);
}

797 798 799 800
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
801
{
802 803 804 805 806
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
807

808 809 810 811
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
812
	if (ctx->task && cpuctx->task_ctx != ctx) {
813
		if (cpuctx->task_ctx || ctx->task != current)
814 815 816
			return;
		cpuctx->task_ctx = ctx;
	}
817

818
	spin_lock(&ctx->lock);
819
	ctx->is_active = 1;
820
	update_context_time(ctx);
821 822 823 824

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
825
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
826 827

	/*
828 829
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
830
	 */
831 832
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
833

834
	if (!group_can_go_on(counter, cpuctx, 1)) {
835
		err = -EEXIST;
836
	} else {
837
		perf_disable();
838 839 840 841 842 843
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
844
		perf_enable();
845
	}
846 847 848 849 850 851 852 853

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
854
		if (leader->attr.pinned) {
855
			update_group_times(leader);
856
			leader->state = PERF_COUNTER_STATE_ERROR;
857
		}
858 859 860
	}

 unlock:
861
	spin_unlock(&ctx->lock);
862 863 864 865
}

/*
 * Enable a counter.
866 867 868 869 870 871
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
918
	if (counter->state == PERF_COUNTER_STATE_OFF) {
919
		counter->state = PERF_COUNTER_STATE_INACTIVE;
920 921
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
922
	}
923 924 925 926
 out:
	spin_unlock_irq(&ctx->lock);
}

927
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
928
{
929 930 931
	/*
	 * not supported on inherited counters
	 */
932
	if (counter->attr.inherit)
933 934
		return -EINVAL;

935 936
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
937 938

	return 0;
939 940
}

941 942 943 944 945
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

946 947
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
948
	if (likely(!ctx->nr_counters))
949
		goto out;
950
	update_context_time(ctx);
951

952
	perf_disable();
953
	if (ctx->nr_active) {
954 955 956 957 958 959
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
960
	}
961
	perf_enable();
962
 out:
963 964 965
	spin_unlock(&ctx->lock);
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
981
		&& ctx1->parent_gen == ctx2->parent_gen
982
		&& !ctx1->pin_count && !ctx2->pin_count;
983 984
}

T
Thomas Gleixner 已提交
985 986 987 988 989 990
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
991
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
992 993 994 995
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
996 997
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
998 999
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1000
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1001
	struct perf_counter_context *next_ctx;
1002
	struct perf_counter_context *parent;
1003
	struct pt_regs *regs;
1004
	int do_switch = 1;
T
Thomas Gleixner 已提交
1005

1006 1007 1008
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);

1009
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1010 1011
		return;

1012
	update_context_time(ctx);
1013 1014 1015

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1016
	next_ctx = next->perf_counter_ctxp;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1031 1032 1033 1034
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1035 1036 1037 1038 1039 1040 1041 1042
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1043
	}
1044
	rcu_read_unlock();
1045

1046 1047 1048 1049
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1050 1051
}

1052 1053 1054
/*
 * Called with IRQs disabled
 */
1055 1056 1057 1058
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1059 1060
	if (!cpuctx->task_ctx)
		return;
1061 1062 1063 1064

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1065 1066 1067 1068
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1069 1070 1071
/*
 * Called with IRQs disabled
 */
1072
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1073
{
1074
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1075 1076
}

1077 1078 1079
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1080 1081
{
	struct perf_counter *counter;
1082
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1083

1084 1085
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1086
	if (likely(!ctx->nr_counters))
1087
		goto out;
T
Thomas Gleixner 已提交
1088

1089
	ctx->timestamp = perf_clock();
1090

1091
	perf_disable();
1092 1093 1094 1095 1096 1097 1098

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1099
		    !counter->attr.pinned)
1100 1101 1102 1103
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1104 1105 1106 1107 1108 1109
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1110 1111 1112 1113 1114

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1115 1116
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1117
			counter->state = PERF_COUNTER_STATE_ERROR;
1118
		}
1119 1120
	}

1121
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122 1123 1124 1125 1126
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1127
		    counter->attr.pinned)
1128 1129
			continue;

1130 1131 1132 1133
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1134 1135 1136
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1137 1138
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1139
				can_add_hw = 0;
1140 1141 1142 1143 1144
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1145
		}
T
Thomas Gleixner 已提交
1146
	}
1147
	perf_enable();
1148
 out:
T
Thomas Gleixner 已提交
1149
	spin_unlock(&ctx->lock);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1166
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1167

1168 1169
	if (likely(!ctx))
		return;
1170 1171
	if (cpuctx->task_ctx == ctx)
		return;
1172
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1173 1174 1175
	cpuctx->task_ctx = ctx;
}

1176 1177 1178 1179 1180 1181 1182
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1183 1184 1185
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1186 1187 1188
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1189 1190
{
	struct perf_counter *counter;
1191
	u64 interrupts, sample_period;
1192 1193 1194 1195 1196 1197 1198 1199
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1200 1201 1202 1203 1204 1205 1206 1207 1208
		interrupts = counter->hw.interrupts;
		counter->hw.interrupts = 0;

		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
			interrupts = 2*sysctl_perf_counter_limit/HZ;
		}

1209
		if (!counter->attr.freq || !counter->attr.sample_freq)
1210 1211
			continue;

1212
		events = HZ * interrupts * counter->hw.sample_period;
1213
		period = div64_u64(events, counter->attr.sample_freq);
1214

1215
		delta = (s64)(1 + period - counter->hw.sample_period);
1216 1217
		delta >>= 1;

1218
		sample_period = counter->hw.sample_period + delta;
1219

1220 1221
		if (!sample_period)
			sample_period = 1;
1222

1223
		perf_log_period(counter, sample_period);
1224

1225
		counter->hw.sample_period = sample_period;
1226 1227 1228 1229
	}
	spin_unlock(&ctx->lock);
}

1230 1231 1232 1233
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1234 1235 1236
{
	struct perf_counter *counter;

1237
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1238 1239 1240 1241
		return;

	spin_lock(&ctx->lock);
	/*
1242
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1243
	 */
1244
	perf_disable();
1245
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1246
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1247 1248
		break;
	}
1249
	perf_enable();
T
Thomas Gleixner 已提交
1250 1251

	spin_unlock(&ctx->lock);
1252 1253 1254 1255
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1256 1257 1258 1259 1260 1261 1262
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1263
	ctx = curr->perf_counter_ctxp;
1264

1265
	perf_adjust_freq(&cpuctx->ctx);
1266 1267
	if (ctx)
		perf_adjust_freq(ctx);
1268

1269
	perf_counter_cpu_sched_out(cpuctx);
1270 1271
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1272

1273
	rotate_ctx(&cpuctx->ctx);
1274 1275
	if (ctx)
		rotate_ctx(ctx);
1276

1277
	perf_counter_cpu_sched_in(cpuctx, cpu);
1278 1279
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1280 1281 1282 1283 1284
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1285
static void __read(void *info)
T
Thomas Gleixner 已提交
1286
{
I
Ingo Molnar 已提交
1287
	struct perf_counter *counter = info;
1288
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1289
	unsigned long flags;
I
Ingo Molnar 已提交
1290

1291
	local_irq_save(flags);
1292
	if (ctx->is_active)
1293
		update_context_time(ctx);
1294
	counter->pmu->read(counter);
1295
	update_counter_times(counter);
1296
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1297 1298
}

1299
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1300 1301 1302 1303 1304
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1305
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1306
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1307
					 __read, counter, 1);
1308 1309
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1310 1311
	}

1312
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1313 1314
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1331 1332
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1333
	struct perf_counter_context *parent_ctx;
1334 1335
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1336
	struct task_struct *task;
1337
	unsigned long flags;
1338
	int err;
T
Thomas Gleixner 已提交
1339 1340 1341 1342 1343 1344

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1345
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1361
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1378 1379 1380 1381 1382 1383 1384
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1385
	/* Reuse ptrace permission checks for now. */
1386 1387 1388 1389 1390
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1391
	ctx = perf_lock_task_context(task, &flags);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
1403
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1404 1405
	}

1406 1407
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1408 1409 1410
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1411
		__perf_counter_init_context(ctx, task);
1412 1413
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1414 1415 1416 1417 1418
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1419
			goto retry;
1420
		}
1421
		get_task_struct(task);
1422 1423
	}

1424
	put_task_struct(task);
T
Thomas Gleixner 已提交
1425
	return ctx;
1426 1427 1428 1429

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1430 1431
}

P
Peter Zijlstra 已提交
1432 1433 1434 1435 1436
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1437 1438
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1439 1440 1441
	kfree(counter);
}

1442 1443
static void perf_pending_sync(struct perf_counter *counter);

1444 1445
static void free_counter(struct perf_counter *counter)
{
1446 1447
	perf_pending_sync(counter);

1448
	atomic_dec(&nr_counters);
1449
	if (counter->attr.mmap)
1450
		atomic_dec(&nr_mmap_tracking);
1451
	if (counter->attr.munmap)
1452
		atomic_dec(&nr_munmap_tracking);
1453
	if (counter->attr.comm)
1454 1455
		atomic_dec(&nr_comm_tracking);

1456 1457 1458
	if (counter->destroy)
		counter->destroy(counter);

1459
	put_ctx(counter->ctx);
1460 1461 1462
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1473
	WARN_ON_ONCE(ctx->parent_ctx);
1474
	mutex_lock(&ctx->mutex);
1475
	perf_counter_remove_from_context(counter);
1476
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1477

1478 1479 1480 1481 1482
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1483
	free_counter(counter);
T
Thomas Gleixner 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1494 1495
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1496

1497 1498 1499 1500 1501 1502 1503 1504
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1505
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1506
	mutex_lock(&counter->child_mutex);
1507 1508
	values[0] = perf_counter_read(counter);
	n = 1;
1509
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 1511
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1512
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 1514
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1515
	if (counter->attr.read_format & PERF_FORMAT_ID)
1516
		values[n++] = counter->id;
1517
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1527 1528 1529 1530 1531 1532 1533
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1534
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1535 1536 1537 1538 1539
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1540
	struct perf_mmap_data *data;
1541
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1542 1543 1544 1545

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1546
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1547
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1548 1549 1550 1551 1552 1553

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1554 1555
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1556
	(void)perf_counter_read(counter);
1557
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1567
	WARN_ON_ONCE(ctx->parent_ctx);
1568
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1569 1570 1571 1572 1573
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1574
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1575 1576
}

1577 1578 1579 1580 1581 1582
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1583 1584 1585 1586 1587
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1588
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1589
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1590 1591 1592
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1593
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1594 1595 1596 1597 1598 1599 1600
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1601
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1602
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1603 1604 1605
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1606
	mutex_unlock(&counter->child_mutex);
1607 1608
}

1609 1610 1611 1612 1613 1614 1615
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1616
	if (!counter->attr.sample_period)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1627
	if (counter->attr.freq) {
1628 1629 1630 1631 1632
		if (value > sysctl_perf_counter_limit) {
			ret = -EINVAL;
			goto unlock;
		}

1633
		counter->attr.sample_freq = value;
1634
	} else {
1635
		counter->attr.sample_period = value;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		counter->hw.sample_period = value;

		perf_log_period(counter, value);
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1646 1647 1648
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1649 1650
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1651 1652 1653

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1654
		func = perf_counter_enable;
1655 1656
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1657
		func = perf_counter_disable;
1658
		break;
1659
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1660
		func = perf_counter_reset;
1661
		break;
P
Peter Zijlstra 已提交
1662 1663 1664

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1665 1666 1667 1668

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1669
	default:
P
Peter Zijlstra 已提交
1670
		return -ENOTTY;
1671
	}
P
Peter Zijlstra 已提交
1672 1673 1674 1675 1676 1677 1678

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1679 1680
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1705 1706 1707 1708 1709 1710
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1711
{
1712
	struct perf_counter_mmap_page *userpg;
1713
	struct perf_mmap_data *data;
1714 1715 1716 1717 1718 1719 1720

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1721

1722 1723 1724 1725 1726
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1727
	++userpg->lock;
1728
	barrier();
1729 1730 1731 1732
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1733

1734
	barrier();
1735
	++userpg->lock;
1736
	preempt_enable();
1737
unlock:
1738
	rcu_read_unlock();
1739 1740 1741 1742 1743
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1756

1757 1758
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1759

1760 1761
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1762
	get_page(vmf->page);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1796
	atomic_set(&data->lock, -1);
1797 1798 1799

	rcu_assign_pointer(counter->data, data);

1800
	return 0;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
1817
	struct perf_mmap_data *data;
1818 1819
	int i;

1820 1821
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1849
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1850
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1851 1852 1853
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1854
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1855 1856 1857
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1858 1859 1860
}

static struct vm_operations_struct perf_mmap_vmops = {
1861
	.open  = perf_mmap_open,
1862
	.close = perf_mmap_close,
1863 1864 1865 1866 1867 1868
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1869
	unsigned long user_locked, user_lock_limit;
1870
	struct user_struct *user = current_user();
1871
	unsigned long locked, lock_limit;
1872 1873
	unsigned long vma_size;
	unsigned long nr_pages;
1874
	long user_extra, extra;
1875
	int ret = 0;
1876 1877 1878

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1879 1880 1881 1882

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1883 1884 1885 1886 1887
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1888 1889
		return -EINVAL;

1890
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1891 1892
		return -EINVAL;

1893 1894
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1895

1896
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1897 1898 1899 1900 1901 1902 1903
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1904 1905
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1906 1907 1908 1909 1910 1911

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1912
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1913

1914 1915 1916
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1917 1918 1919

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1920
	locked = vma->vm_mm->locked_vm + extra;
1921

1922 1923 1924 1925
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1926 1927 1928

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1929 1930 1931 1932
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1933
	atomic_long_add(user_extra, &user->locked_vm);
1934 1935
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1936
unlock:
1937
	mutex_unlock(&counter->mmap_mutex);
1938 1939 1940 1941

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1942 1943

	return ret;
1944 1945
}

P
Peter Zijlstra 已提交
1946 1947 1948
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
1949
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1962 1963 1964 1965
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1966 1967
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1968
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1969
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1970 1971
};

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1982 1983 1984 1985 1986

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2014
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2015

2016
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2017 2018 2019
	PENDING_TAIL,
};

2020 2021
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2022
{
2023
	struct perf_pending_entry **head;
2024

2025
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2026 2027
		return;

2028 2029 2030
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2031 2032

	do {
2033 2034
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2035 2036 2037

	set_perf_counter_pending();

2038
	put_cpu_var(perf_pending_head);
2039 2040 2041 2042
}

static int __perf_pending_run(void)
{
2043
	struct perf_pending_entry *list;
2044 2045
	int nr = 0;

2046
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2047
	while (list != PENDING_TAIL) {
2048 2049
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2050 2051 2052

		list = list->next;

2053 2054
		func = entry->func;
		entry->next = NULL;
2055 2056 2057 2058 2059 2060 2061
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2062
		func(entry);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2084
	return counter->pending.next == NULL;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2097 2098 2099 2100
/*
 * Callchain support -- arch specific
 */

2101
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2102 2103 2104 2105
{
	return NULL;
}

2106 2107 2108 2109
/*
 * Output
 */

2110 2111 2112
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2113 2114
	unsigned long		head;
	unsigned long		offset;
2115
	int			nmi;
2116
	int			overflow;
2117 2118
	int			locked;
	unsigned long		flags;
2119 2120
};

2121
static void perf_output_wakeup(struct perf_output_handle *handle)
2122
{
2123 2124
	atomic_set(&handle->data->poll, POLL_IN);

2125
	if (handle->nmi) {
2126
		handle->counter->pending_wakeup = 1;
2127
		perf_pending_queue(&handle->counter->pending,
2128
				   perf_pending_counter);
2129
	} else
2130 2131 2132
		perf_counter_wakeup(handle->counter);
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2159
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2160 2161 2162 2163 2164 2165 2166 2167
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2168 2169
	unsigned long head;
	int cpu;
2170

2171
	data->done_head = data->head;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2182
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2183 2184 2185
		data->user_page->data_head = head;

	/*
2186
	 * NMI can happen here, which means we can miss a done_head update.
2187 2188
	 */

2189
	cpu = atomic_xchg(&data->lock, -1);
2190 2191 2192 2193 2194
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2195
	if (unlikely(atomic_long_read(&data->done_head))) {
2196 2197 2198
		/*
		 * Since we had it locked, we can lock it again.
		 */
2199
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2200 2201 2202 2203 2204
			cpu_relax();

		goto again;
	}

2205
	if (atomic_xchg(&data->wakeup, 0))
2206 2207 2208 2209 2210
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2211
static int perf_output_begin(struct perf_output_handle *handle,
2212
			     struct perf_counter *counter, unsigned int size,
2213
			     int nmi, int overflow)
2214
{
2215
	struct perf_mmap_data *data;
2216
	unsigned int offset, head;
2217

2218 2219 2220 2221 2222 2223
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2224 2225 2226 2227 2228
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2229
	handle->data	 = data;
2230 2231 2232
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2233

2234
	if (!data->nr_pages)
2235
		goto fail;
2236

2237 2238
	perf_output_lock(handle);

2239 2240
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2241
		head += size;
2242
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2243

2244
	handle->offset	= offset;
2245
	handle->head	= head;
2246 2247 2248

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2249

2250
	return 0;
2251

2252
fail:
2253
	perf_output_wakeup(handle);
2254 2255
out:
	rcu_read_unlock();
2256

2257 2258
	return -ENOSPC;
}
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2288

2289 2290 2291 2292
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
2293
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2294 2295
}

P
Peter Zijlstra 已提交
2296 2297 2298
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2299
static void perf_output_end(struct perf_output_handle *handle)
2300
{
2301 2302 2303
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2304
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2305

2306
	if (handle->overflow && wakeup_events) {
2307
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2308
		if (events >= wakeup_events) {
2309
			atomic_sub(wakeup_events, &data->events);
2310
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2311
		}
2312 2313 2314
	}

	perf_output_unlock(handle);
2315
	rcu_read_unlock();
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2340
static void perf_counter_output(struct perf_counter *counter,
2341
				int nmi, struct pt_regs *regs, u64 addr)
2342
{
2343
	int ret;
2344
	u64 sample_type = counter->attr.sample_type;
2345 2346 2347
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2348
	struct {
2349
		u32 pid, tid;
2350
	} tid_entry;
2351
	struct {
2352
		u64 id;
2353 2354
		u64 counter;
	} group_entry;
2355 2356
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2357
	u64 time;
2358 2359 2360
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2361

2362
	header.type = 0;
2363
	header.size = sizeof(header);
2364

2365
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2366
	header.misc |= perf_misc_flags(regs);
2367

2368
	if (sample_type & PERF_SAMPLE_IP) {
2369
		ip = perf_instruction_pointer(regs);
2370
		header.type |= PERF_SAMPLE_IP;
2371 2372
		header.size += sizeof(ip);
	}
2373

2374
	if (sample_type & PERF_SAMPLE_TID) {
2375
		/* namespace issues */
2376 2377
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2378

2379
		header.type |= PERF_SAMPLE_TID;
2380 2381 2382
		header.size += sizeof(tid_entry);
	}

2383
	if (sample_type & PERF_SAMPLE_TIME) {
2384 2385 2386 2387 2388
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

2389
		header.type |= PERF_SAMPLE_TIME;
2390 2391 2392
		header.size += sizeof(u64);
	}

2393 2394
	if (sample_type & PERF_SAMPLE_ADDR) {
		header.type |= PERF_SAMPLE_ADDR;
2395 2396 2397
		header.size += sizeof(u64);
	}

2398 2399
	if (sample_type & PERF_SAMPLE_CONFIG) {
		header.type |= PERF_SAMPLE_CONFIG;
2400 2401 2402
		header.size += sizeof(u64);
	}

2403 2404
	if (sample_type & PERF_SAMPLE_CPU) {
		header.type |= PERF_SAMPLE_CPU;
2405 2406 2407 2408 2409
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2410 2411
	if (sample_type & PERF_SAMPLE_GROUP) {
		header.type |= PERF_SAMPLE_GROUP;
2412 2413 2414 2415
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2416
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2417 2418 2419
		callchain = perf_callchain(regs);

		if (callchain) {
2420
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2421

2422
			header.type |= PERF_SAMPLE_CALLCHAIN;
2423 2424 2425 2426
			header.size += callchain_size;
		}
	}

2427
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2428 2429
	if (ret)
		return;
2430

2431
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2432

2433
	if (sample_type & PERF_SAMPLE_IP)
2434
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2435

2436
	if (sample_type & PERF_SAMPLE_TID)
2437
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2438

2439
	if (sample_type & PERF_SAMPLE_TIME)
2440 2441
		perf_output_put(&handle, time);

2442
	if (sample_type & PERF_SAMPLE_ADDR)
2443 2444
		perf_output_put(&handle, addr);

2445
	if (sample_type & PERF_SAMPLE_CONFIG)
2446
		perf_output_put(&handle, counter->attr.config);
2447

2448
	if (sample_type & PERF_SAMPLE_CPU)
2449 2450
		perf_output_put(&handle, cpu_entry);

2451
	/*
2452
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2453
	 */
2454
	if (sample_type & PERF_SAMPLE_GROUP) {
2455 2456
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2457

2458
		perf_output_put(&handle, nr);
2459

2460 2461 2462
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2463
				sub->pmu->read(sub);
2464

2465
			group_entry.id = sub->id;
2466
			group_entry.counter = atomic64_read(&sub->count);
2467

2468 2469
			perf_output_put(&handle, group_entry);
		}
2470
	}
P
Peter Zijlstra 已提交
2471

2472 2473
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2474

2475
	perf_output_end(&handle);
2476 2477
}

2478 2479 2480 2481 2482
/*
 * comm tracking
 */

struct perf_comm_event {
2483 2484
	struct task_struct	*task;
	char			*comm;
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2505 2506 2507
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2508 2509 2510 2511 2512 2513 2514 2515 2516
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
2517
	if (counter->attr.comm &&
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2543
	struct perf_counter_context *ctx;
2544 2545 2546
	unsigned int size;
	char *comm = comm_event->task->comm;

2547
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2548 2549 2550 2551 2552 2553 2554 2555 2556

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2567 2568 2569 2570
}

void perf_counter_comm(struct task_struct *task)
{
2571 2572 2573 2574
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2575

2576
	comm_event = (struct perf_comm_event){
2577 2578 2579 2580 2581 2582 2583 2584 2585
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2611
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2612 2613 2614 2615

	if (ret)
		return;

2616 2617 2618
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

2619 2620 2621
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2622
	perf_output_end(&handle);
2623 2624 2625 2626 2627
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
2628
	if (counter->attr.mmap &&
2629 2630 2631
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

2632
	if (counter->attr.munmap &&
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
2658
	struct perf_counter_context *ctx;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2671
		name = d_path(&file->f_path, buf, PATH_MAX);
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2682
	size = ALIGN(strlen(name)+1, sizeof(u64));
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

2703 2704 2705 2706 2707 2708
	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2709 2710 2711 2712 2713 2714
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2730 2731 2732 2733 2734 2735
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2748
/*
2749
 * Log sample_period changes so that analyzing tools can re-normalize the
2750
 * event flow.
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

2772
	if (counter->hw.sample_period == period)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
		.time = sched_clock(),
	};

I
Ingo Molnar 已提交
2804
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2805 2806 2807 2808 2809 2810 2811
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2812 2813 2814 2815 2816
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2817
			  int nmi, struct pt_regs *regs, u64 addr)
2818
{
2819
	int events = atomic_read(&counter->event_limit);
2820
	int throttle = counter->pmu->unthrottle != NULL;
2821 2822
	int ret = 0;

2823 2824
	if (!throttle) {
		counter->hw.interrupts++;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	} else {
		if (counter->hw.interrupts != MAX_INTERRUPTS) {
			counter->hw.interrupts++;
			if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
				counter->hw.interrupts = MAX_INTERRUPTS;
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
2839 2840 2841
			ret = 1;
		}
	}
2842

2843 2844 2845 2846 2847
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2848
	counter->pending_kill = POLL_IN;
2849 2850
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2851
		counter->pending_kill = POLL_HUP;
2852 2853 2854 2855 2856 2857 2858 2859
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2860
	perf_counter_output(counter, nmi, regs, addr);
2861
	return ret;
2862 2863
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
2890
	s64 period = hwc->sample_period;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2906 2907
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2908
	enum hrtimer_restart ret = HRTIMER_RESTART;
2909 2910
	struct perf_counter *counter;
	struct pt_regs *regs;
2911
	u64 period;
2912 2913

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2914
	counter->pmu->read(counter);
2915 2916 2917 2918 2919 2920

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
2921 2922
	if ((counter->attr.exclude_kernel || !regs) &&
			!counter->attr.exclude_user)
2923 2924
		regs = task_pt_regs(current);

2925
	if (regs) {
2926
		if (perf_counter_overflow(counter, 0, regs, 0))
2927 2928
			ret = HRTIMER_NORESTART;
	}
2929

2930
	period = max_t(u64, 10000, counter->hw.sample_period);
2931
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2932

2933
	return ret;
2934 2935 2936
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2937
				    int nmi, struct pt_regs *regs, u64 addr)
2938
{
2939 2940
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2941
	if (perf_counter_overflow(counter, nmi, regs, addr))
2942 2943 2944
		/* soft-disable the counter */
		;

2945 2946
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

2985
static int perf_swcounter_match(struct perf_counter *counter,
2986 2987
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2988
{
2989
	u64 event_config;
2990

2991
	event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2992

2993
	if (!perf_swcounter_is_counting(counter))
2994 2995
		return 0;

2996
	if (counter->attr.config != event_config)
2997 2998
		return 0;

2999
	if (regs) {
3000
		if (counter->attr.exclude_user && user_mode(regs))
3001
			return 0;
3002

3003
		if (counter->attr.exclude_kernel && !user_mode(regs))
3004 3005
			return 0;
	}
3006 3007 3008 3009

	return 1;
}

3010
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3011
			       int nmi, struct pt_regs *regs, u64 addr)
3012 3013
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
3014

3015
	if (counter->hw.sample_period && !neg && regs)
3016
		perf_swcounter_overflow(counter, nmi, regs, addr);
3017 3018
}

3019
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3020
				     enum perf_event_types type, u32 event,
3021 3022
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
3023 3024 3025
{
	struct perf_counter *counter;

3026
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3027 3028
		return;

P
Peter Zijlstra 已提交
3029 3030
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3031
		if (perf_swcounter_match(counter, type, event, regs))
3032
			perf_swcounter_add(counter, nr, nmi, regs, addr);
3033
	}
P
Peter Zijlstra 已提交
3034
	rcu_read_unlock();
3035 3036
}

P
Peter Zijlstra 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3051
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3052 3053
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
3054 3055
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3056
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3057
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3058 3059 3060 3061 3062 3063

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3064

3065 3066
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
3067 3068 3069 3070 3071 3072 3073 3074 3075
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
	rcu_read_unlock();
3076

P
Peter Zijlstra 已提交
3077 3078 3079 3080
	barrier();
	(*recursion)--;

out:
3081 3082 3083
	put_cpu_var(perf_cpu_context);
}

3084 3085
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3086
{
3087
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3088 3089
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3106
static const struct pmu perf_ops_generic = {
3107 3108 3109 3110 3111
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3112 3113 3114 3115
/*
 * Software counter: cpu wall time clock
 */

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3128 3129 3130 3131 3132 3133
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3134 3135
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3136 3137
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3138
		__hrtimer_start_range_ns(&hwc->hrtimer,
3139
				ns_to_ktime(period), 0,
3140 3141 3142 3143 3144 3145
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3146 3147
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3148
	if (counter->hw.sample_period)
3149
		hrtimer_cancel(&counter->hw.hrtimer);
3150
	cpu_clock_perf_counter_update(counter);
3151 3152 3153 3154
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3155
	cpu_clock_perf_counter_update(counter);
3156 3157
}

3158
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3159 3160 3161
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3162 3163
};

3164 3165 3166 3167
/*
 * Software counter: task time clock
 */

3168
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3169
{
3170
	u64 prev;
I
Ingo Molnar 已提交
3171 3172
	s64 delta;

3173
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3174 3175
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3176 3177
}

3178
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3179
{
3180
	struct hw_perf_counter *hwc = &counter->hw;
3181 3182 3183
	u64 now;

	now = counter->ctx->time;
3184

3185
	atomic64_set(&hwc->prev_count, now);
3186 3187
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3188 3189
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3190
		__hrtimer_start_range_ns(&hwc->hrtimer,
3191
				ns_to_ktime(period), 0,
3192 3193
				HRTIMER_MODE_REL, 0);
	}
3194 3195

	return 0;
I
Ingo Molnar 已提交
3196 3197 3198
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3199
{
3200
	if (counter->hw.sample_period)
3201
		hrtimer_cancel(&counter->hw.hrtimer);
3202 3203
	task_clock_perf_counter_update(counter, counter->ctx->time);

3204
}
I
Ingo Molnar 已提交
3205

3206 3207
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3220 3221
}

3222
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3223 3224 3225
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3226 3227
};

3228 3229 3230
/*
 * Software counter: cpu migrations
 */
3231
void perf_counter_task_migration(struct task_struct *task, int cpu)
3232
{
3233 3234
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx;
3235

3236 3237 3238
	perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
				 PERF_COUNT_CPU_MIGRATIONS,
				 1, 1, NULL, 0);
3239

3240 3241 3242 3243 3244 3245 3246
	ctx = perf_pin_task_context(task);
	if (ctx) {
		perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
					 PERF_COUNT_CPU_MIGRATIONS,
					 1, 1, NULL, 0);
		perf_unpin_context(ctx);
	}
3247 3248
}

3249 3250 3251
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3252 3253 3254 3255 3256
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3257
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3258
}
3259
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3260 3261 3262 3263 3264 3265

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3266
	ftrace_profile_disable(perf_event_id(&counter->attr));
3267 3268
}

3269
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3270
{
3271
	int event_id = perf_event_id(&counter->attr);
3272 3273 3274 3275 3276 3277 3278
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3279
	counter->hw.sample_period = counter->attr.sample_period;
3280 3281 3282 3283

	return &perf_ops_generic;
}
#else
3284
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3285 3286 3287 3288 3289
{
	return NULL;
}
#endif

3290
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3291
{
3292
	const struct pmu *pmu = NULL;
3293

3294 3295 3296 3297 3298 3299 3300
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3301
	switch (perf_event_id(&counter->attr)) {
3302
	case PERF_COUNT_CPU_CLOCK:
3303
		pmu = &perf_ops_cpu_clock;
3304

3305
		break;
3306
	case PERF_COUNT_TASK_CLOCK:
3307 3308 3309 3310 3311
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3312
			pmu = &perf_ops_task_clock;
3313
		else
3314
			pmu = &perf_ops_cpu_clock;
3315

3316
		break;
3317
	case PERF_COUNT_PAGE_FAULTS:
3318 3319
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3320
	case PERF_COUNT_CONTEXT_SWITCHES:
3321
	case PERF_COUNT_CPU_MIGRATIONS:
3322
		pmu = &perf_ops_generic;
3323
		break;
3324
	}
3325

3326
	return pmu;
3327 3328
}

T
Thomas Gleixner 已提交
3329 3330 3331 3332
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3333
perf_counter_alloc(struct perf_counter_attr *attr,
3334
		   int cpu,
3335
		   struct perf_counter_context *ctx,
3336 3337
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3338
{
3339
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3340
	struct perf_counter *counter;
3341
	struct hw_perf_counter *hwc;
3342
	long err;
T
Thomas Gleixner 已提交
3343

3344
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3345
	if (!counter)
3346
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3347

3348 3349 3350 3351 3352 3353 3354
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3355 3356 3357
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3358
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3359
	INIT_LIST_HEAD(&counter->event_entry);
3360
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3361 3362
	init_waitqueue_head(&counter->waitq);

3363 3364
	mutex_init(&counter->mmap_mutex);

3365
	counter->cpu		= cpu;
3366
	counter->attr		= *attr;
3367 3368 3369 3370 3371 3372 3373 3374 3375
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3376

3377
	if (attr->disabled)
3378 3379
		counter->state = PERF_COUNTER_STATE_OFF;

3380
	pmu = NULL;
3381

3382
	hwc = &counter->hw;
3383 3384
	if (attr->freq && attr->sample_freq)
		hwc->sample_period = div64_u64(TICK_NSEC, attr->sample_freq);
3385
	else
3386
		hwc->sample_period = attr->sample_period;
3387

3388
	/*
3389
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3390
	 */
3391
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3392 3393
		goto done;

3394
	if (perf_event_raw(attr)) {
3395
		pmu = hw_perf_counter_init(counter);
3396 3397 3398
		goto done;
	}

3399
	switch (perf_event_type(attr)) {
3400
	case PERF_TYPE_HARDWARE:
3401
		pmu = hw_perf_counter_init(counter);
3402 3403 3404
		break;

	case PERF_TYPE_SOFTWARE:
3405
		pmu = sw_perf_counter_init(counter);
3406 3407 3408
		break;

	case PERF_TYPE_TRACEPOINT:
3409
		pmu = tp_perf_counter_init(counter);
3410 3411
		break;
	}
3412 3413
done:
	err = 0;
3414
	if (!pmu)
3415
		err = -EINVAL;
3416 3417
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3418

3419
	if (err) {
3420 3421
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3422
		kfree(counter);
3423
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3424
	}
3425

3426
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3427

3428
	atomic_inc(&nr_counters);
3429
	if (counter->attr.mmap)
3430
		atomic_inc(&nr_mmap_tracking);
3431
	if (counter->attr.munmap)
3432
		atomic_inc(&nr_munmap_tracking);
3433
	if (counter->attr.comm)
3434 3435
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3436 3437 3438 3439
	return counter;
}

/**
3440
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3441
 *
3442
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3443
 * @pid:		target pid
I
Ingo Molnar 已提交
3444 3445
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3446
 */
3447
SYSCALL_DEFINE5(perf_counter_open,
3448
		const struct perf_counter_attr __user *, attr_uptr,
3449
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3450
{
3451
	struct perf_counter *counter, *group_leader;
3452
	struct perf_counter_attr attr;
3453
	struct perf_counter_context *ctx;
3454
	struct file *counter_file = NULL;
3455 3456
	struct file *group_file = NULL;
	int fput_needed = 0;
3457
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3458 3459
	int ret;

3460 3461 3462 3463
	/* for future expandability... */
	if (flags)
		return -EINVAL;

3464
	if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3465 3466
		return -EFAULT;

3467
	/*
I
Ingo Molnar 已提交
3468 3469 3470 3471 3472 3473 3474 3475
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3476 3477 3478 3479 3480 3481
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3482
			goto err_put_context;
3483
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3484
			goto err_put_context;
3485 3486 3487

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3488 3489 3490 3491 3492 3493 3494 3495
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3496
		 */
I
Ingo Molnar 已提交
3497 3498
		if (group_leader->ctx != ctx)
			goto err_put_context;
3499 3500 3501
		/*
		 * Only a group leader can be exclusive or pinned
		 */
3502
		if (attr.exclusive || attr.pinned)
3503
			goto err_put_context;
3504 3505
	}

3506
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3507
				     GFP_KERNEL);
3508 3509
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3510 3511 3512 3513
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3514 3515 3516 3517 3518 3519 3520
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3521
	WARN_ON_ONCE(ctx->parent_ctx);
3522
	mutex_lock(&ctx->mutex);
3523
	perf_install_in_context(ctx, counter, cpu);
3524
	++ctx->generation;
3525
	mutex_unlock(&ctx->mutex);
3526

3527 3528 3529 3530 3531 3532
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3533
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3534

3535 3536 3537
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3538 3539
	return ret;

3540
err_free_put_context:
T
Thomas Gleixner 已提交
3541 3542 3543
	kfree(counter);

err_put_context:
3544
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3545

3546
	goto out_fput;
T
Thomas Gleixner 已提交
3547 3548
}

3549 3550 3551
/*
 * inherit a counter from parent task to child task:
 */
3552
static struct perf_counter *
3553 3554 3555 3556
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3557
	      struct perf_counter *group_leader,
3558 3559 3560 3561
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3562 3563 3564 3565 3566 3567 3568 3569 3570
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3571
	child_counter = perf_counter_alloc(&parent_counter->attr,
3572 3573
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3574 3575
	if (IS_ERR(child_counter))
		return child_counter;
3576
	get_ctx(child_ctx);
3577

3578 3579
	/*
	 * Make the child state follow the state of the parent counter,
3580
	 * not its attr.disabled bit.  We hold the parent's mutex,
3581
	 * so we won't race with perf_counter_{en, dis}able_family.
3582 3583 3584 3585 3586 3587
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3588 3589 3590
	/*
	 * Link it up in the child's context:
	 */
3591
	add_counter_to_ctx(child_counter, child_ctx);
3592 3593 3594 3595 3596

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
3597
	child_counter->attr.inherit = 1;
3598 3599 3600 3601 3602 3603 3604 3605 3606

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3607 3608 3609
	/*
	 * Link this into the parent counter's child list
	 */
3610
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3611
	mutex_lock(&parent_counter->child_mutex);
3612
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3613
	mutex_unlock(&parent_counter->child_mutex);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3626
	struct perf_counter *child_ctr;
3627 3628 3629

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3630 3631
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3632
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3633 3634 3635 3636
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3637
	}
3638 3639 3640
	return 0;
}

3641 3642 3643
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3644
	u64 child_val;
3645 3646 3647 3648 3649 3650 3651

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3652 3653 3654 3655
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3656 3657 3658 3659

	/*
	 * Remove this counter from the parent's list
	 */
3660
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3661
	mutex_lock(&parent_counter->child_mutex);
3662
	list_del_init(&child_counter->child_list);
3663
	mutex_unlock(&parent_counter->child_mutex);
3664 3665 3666 3667 3668 3669 3670 3671

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3672
static void
3673
__perf_counter_exit_task(struct perf_counter *child_counter,
3674 3675 3676 3677
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3678
	update_counter_times(child_counter);
3679
	perf_counter_remove_from_context(child_counter);
3680

3681 3682 3683 3684 3685 3686
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3687 3688
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3689
		free_counter(child_counter);
3690
	}
3691 3692 3693
}

/*
3694
 * When a child task exits, feed back counter values to parent counters.
3695 3696 3697 3698 3699
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3700
	unsigned long flags;
3701

3702
	if (likely(!child->perf_counter_ctxp))
3703 3704
		return;

3705
	local_irq_save(flags);
3706 3707 3708 3709 3710 3711 3712
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
3713
	__perf_counter_task_sched_out(child_ctx);
3714 3715 3716 3717 3718 3719 3720

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3721
	child->perf_counter_ctxp = NULL;
3722 3723 3724 3725 3726 3727 3728 3729 3730
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
3731
	spin_unlock(&child_ctx->lock);
3732 3733 3734 3735
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3736
again:
3737 3738
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
3739
		__perf_counter_exit_task(child_counter, child_ctx);
3740 3741 3742 3743 3744 3745 3746 3747

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3748 3749 3750 3751

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3752 3753
}

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3792 3793 3794
/*
 * Initialize the perf_counter context in task_struct
 */
3795
int perf_counter_init_task(struct task_struct *child)
3796 3797
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3798
	struct perf_counter_context *cloned_ctx;
3799
	struct perf_counter *counter;
3800
	struct task_struct *parent = current;
3801
	int inherited_all = 1;
3802
	int ret = 0;
3803

3804
	child->perf_counter_ctxp = NULL;
3805

3806 3807 3808
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3809
	if (likely(!parent->perf_counter_ctxp))
3810 3811
		return 0;

3812 3813
	/*
	 * This is executed from the parent task context, so inherit
3814 3815
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3816 3817
	 */

3818 3819
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3820
		return -ENOMEM;
3821

3822 3823
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
3824
	get_task_struct(child);
3825

3826
	/*
3827 3828
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
3829
	 */
3830 3831
	parent_ctx = perf_pin_task_context(parent);

3832 3833 3834 3835 3836 3837 3838
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

3839 3840 3841 3842
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3843
	mutex_lock(&parent_ctx->mutex);
3844 3845 3846 3847 3848

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3849 3850 3851 3852
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3853
		if (!counter->attr.inherit) {
3854
			inherited_all = 0;
3855
			continue;
3856
		}
3857

3858 3859 3860
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3861
			inherited_all = 0;
3862
			break;
3863 3864 3865 3866 3867 3868 3869
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
3870 3871 3872 3873
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
3874
		 */
3875 3876 3877
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
3878
			child_ctx->parent_gen = parent_ctx->parent_gen;
3879 3880 3881 3882 3883
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3884 3885
	}

3886
	mutex_unlock(&parent_ctx->mutex);
3887

3888
	perf_unpin_context(parent_ctx);
3889

3890
	return ret;
3891 3892
}

3893
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3894
{
3895
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3896

3897 3898
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3899

3900
	spin_lock(&perf_resource_lock);
3901
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3902
	spin_unlock(&perf_resource_lock);
3903

3904
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3905 3906 3907
}

#ifdef CONFIG_HOTPLUG_CPU
3908
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3909 3910 3911 3912 3913
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3914 3915
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3916
}
3917
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3918
{
3919 3920 3921 3922
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3923
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3924
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3925 3926
}
#else
3927
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3939
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3940 3941 3942 3943
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3944
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

3954 3955 3956
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
3957 3958
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
3959
	.priority		= 20,
T
Thomas Gleixner 已提交
3960 3961
};

3962
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3989
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3999
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4021
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4022
	perf_overcommit = val;
4023
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);