perf_counter.c 60.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11 12 13
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
14
#include <linux/file.h>
T
Thomas Gleixner 已提交
15 16 17 18 19 20 21
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
22
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
23
#include <linux/perf_counter.h>
24 25
#include <linux/mm.h>
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
26
#include <linux/rculist.h>
P
Peter Zijlstra 已提交
27
#include <linux/hardirq.h>
T
Thomas Gleixner 已提交
28

29 30
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
31 32 33 34 35
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

36
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
37 38 39 40 41 42 43 44 45 46 47
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
48
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
49
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
50
{
51
	return NULL;
T
Thomas Gleixner 已提交
52 53
}

54
u64 __weak hw_perf_save_disable(void)		{ return 0; }
55
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
56
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
57 58 59 60 61 62
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
63

64 65
void __weak perf_counter_print_debug(void)	{ }

66 67 68 69 70 71 72 73 74 75 76 77 78 79
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
80 81

	list_add_rcu(&counter->event_entry, &ctx->event_list);
82 83 84 85 86 87 88 89
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
90
	list_del_rcu(&counter->event_entry);
91 92 93 94 95 96 97 98 99

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

100
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
101 102 103 104
		sibling->group_leader = sibling;
	}
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
146 147 148 149 150 151
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
152
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
153 154 155 156
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
157
	unsigned long flags;
158
	u64 perf_flags;
T
Thomas Gleixner 已提交
159 160 161 162 163 164 165 166 167

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
168 169
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
170

171 172 173
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
174 175 176 177 178 179
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
180
	perf_flags = hw_perf_save_disable();
181
	list_del_counter(counter, ctx);
182
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
183 184 185 186 187 188 189 190 191 192 193

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
194 195
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
196 197 198 199 200 201
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
202
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
203 204 205 206
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
207
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
208 209 210 211 212 213 214 215 216 217
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
218
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
219 220 221 222 223
					 counter, 1);
		return;
	}

retry:
224
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
225 226 227 228 229 230
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
231
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
232 233 234 235 236 237
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
238
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
239 240
	 * succeed.
	 */
241
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
242
		ctx->nr_counters--;
243
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
244 245 246 247 248
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

342 343 344 345 346 347
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
348
	if (counter->state <= PERF_COUNTER_STATE_OFF)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

364 365
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
366 367
	ctx->nr_active++;

368 369 370
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

371 372 373
	return 0;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
421
/*
422
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
423 424 425 426 427 428
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
429
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
430
	int cpu = smp_processor_id();
431
	unsigned long flags;
432
	u64 perf_flags;
433
	int err;
T
Thomas Gleixner 已提交
434 435 436 437 438 439 440 441 442

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
443 444
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
445 446 447 448 449

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
450
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
451

452
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
453
	ctx->nr_counters++;
454
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
455

456 457 458 459 460 461 462 463
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

464 465 466 467 468
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
469
	if (!group_can_go_on(counter, cpuctx, 1))
470 471 472 473
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

474 475 476 477 478 479 480 481 482 483 484
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
485

486
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
487 488
		cpuctx->max_pertask--;

489
 unlock:
490 491
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
492 493
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
494 495 496 497 498 499 500 501 502 503 504
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
505 506
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
534
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
535 536 537 538 539 540 541 542 543
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
544 545
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
546 547 548 549 550
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

551 552 553 554
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
555
{
556 557 558 559 560 561
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
562

563 564 565 566 567
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
568 569
		return;

570 571 572
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

573
	counter->prev_state = counter->state;
574 575 576
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
577 578

	/*
579 580
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
581
	 */
582 583
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
677 678
}

679 680 681 682
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
683
	u64 flags;
684

685 686
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
687
	if (likely(!ctx->nr_counters))
688
		goto out;
689

690
	flags = hw_perf_save_disable();
691 692 693 694
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
695
	hw_perf_restore(flags);
696
 out:
697 698 699
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
700 701 702 703 704 705
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
706
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
707 708 709 710 711 712 713 714
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
715
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
716 717 718 719

	if (likely(!cpuctx->task_ctx))
		return;

720 721
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
722 723
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
724 725 726
	cpuctx->task_ctx = NULL;
}

727
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
728
{
729
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
730 731
}

I
Ingo Molnar 已提交
732
static int
733 734 735 736 737
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
738
	struct perf_counter *counter, *partial_group;
739 740 741 742 743 744 745 746
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
747

748
	group_counter->prev_state = group_counter->state;
749 750
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
751 752 753 754

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
755
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
756
		counter->prev_state = counter->state;
757 758 759 760 761 762
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

763
	return 0;
764 765 766 767 768 769 770 771 772 773

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
774
	}
775
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
776

777
	return -EAGAIN;
778 779
}

780 781 782
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
783 784
{
	struct perf_counter *counter;
785
	u64 flags;
786
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
787

788 789
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
790
	if (likely(!ctx->nr_counters))
791
		goto out;
T
Thomas Gleixner 已提交
792

793
	flags = hw_perf_save_disable();
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

817
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
818 819 820 821 822 823 824 825
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

826 827 828 829
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
830 831 832
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

833
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
834 835
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
836
		}
T
Thomas Gleixner 已提交
837
	}
838
	hw_perf_restore(flags);
839
 out:
T
Thomas Gleixner 已提交
840
	spin_unlock(&ctx->lock);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
858

859
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
860 861 862
	cpuctx->task_ctx = ctx;
}

863 864 865 866 867 868 869
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

870 871 872 873 874
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
875
	unsigned long flags;
876 877 878 879 880 881
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
882
	curr_rq_lock_irq_save(&flags);
883 884
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
885 886 887
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

888 889 890 891 892 893 894 895 896
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

897 898 899 900
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
901

902 903 904 905
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
906
	curr_rq_unlock_irq_restore(&flags);
907 908 909 910 911 912 913 914 915

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
916
	unsigned long flags;
917 918 919 920 921 922
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
923
	curr_rq_lock_irq_save(&flags);
924 925
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
926 927 928
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

929 930
	perf_counter_task_sched_out(curr, cpu);

931 932 933 934 935 936 937 938
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
939
		if (counter->state > PERF_COUNTER_STATE_OFF)
940
			continue;
941
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
942
		counter->hw_event.disabled = 0;
943 944 945 946 947 948 949
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
950
	curr_rq_unlock_irq_restore(&flags);
951 952 953 954

	return 0;
}

955 956 957 958
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
959 960
{
	struct perf_counter *counter;
961
	u64 perf_flags;
T
Thomas Gleixner 已提交
962

963
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
964 965 966 967
		return;

	spin_lock(&ctx->lock);
	/*
968
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
969
	 */
970
	perf_flags = hw_perf_save_disable();
971
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
972
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
973 974
		break;
	}
975
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
976 977

	spin_unlock(&ctx->lock);
978 979 980 981 982 983 984 985 986 987 988
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
989

990 991 992 993 994 995
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
996 997 998 999 1000 1001
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1002
static void __read(void *info)
T
Thomas Gleixner 已提交
1003
{
I
Ingo Molnar 已提交
1004
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
1005
	unsigned long flags;
I
Ingo Molnar 已提交
1006

I
Ingo Molnar 已提交
1007
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
1008
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1009
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1010 1011
}

1012
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1013 1014 1015 1016 1017
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1018
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1019
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1020
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1021 1022
	}

1023
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092 1093 1094
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1095 1096
static void free_counter(struct perf_counter *counter)
{
1097 1098 1099
	if (counter->destroy)
		counter->destroy(counter);

1100 1101 1102
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1113
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1114 1115
	mutex_lock(&counter->mutex);

1116
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1117 1118

	mutex_unlock(&counter->mutex);
1119
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1120

1121
	free_counter(counter);
1122
	put_context(ctx);
T
Thomas Gleixner 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

1135
	if (count < sizeof(cntval))
T
Thomas Gleixner 已提交
1136 1137
		return -EINVAL;

1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1146
	mutex_lock(&counter->mutex);
1147
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1158
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1159 1160 1161 1162 1163
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
1164
	unsigned int events = POLLIN;
T
Thomas Gleixner 已提交
1165 1166 1167 1168 1169 1170

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1189 1190
static void __perf_counter_update_userpage(struct perf_counter *counter,
					   struct perf_mmap_data *data)
1191
{
1192
	struct perf_counter_mmap_page *userpg = data->user_page;
1193

1194 1195 1196 1197 1198
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1199 1200 1201 1202 1203 1204
	++userpg->lock;
	smp_wmb();
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1205 1206

	userpg->data_head = atomic_read(&data->head);
1207 1208
	smp_wmb();
	++userpg->lock;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	preempt_enable();
}

void perf_counter_update_userpage(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		__perf_counter_update_userpage(counter, data);
	rcu_read_unlock();
1221 1222 1223 1224 1225
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1238

1239 1240
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1241

1242 1243
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1244
	get_page(vmf->page);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1281
	return 0;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1334 1335 1336
}

static struct vm_operations_struct perf_mmap_vmops = {
1337 1338
	.open = perf_mmap_open,
	.close = perf_mmap_close,
1339 1340 1341 1342 1343 1344
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1345 1346 1347 1348
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1349 1350 1351

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1352 1353 1354 1355 1356

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

	if (nr_pages == 0 || !is_power_of_2(nr_pages))
1357 1358
		return -EINVAL;

1359
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1360 1361
		return -EINVAL;

1362 1363
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	locked = vma_size >>  PAGE_SHIFT;
	locked += vma->vm_mm->locked_vm;

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
		return -EPERM;

	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count))
		goto out;

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
	if (!ret)
		atomic_set(&counter->mmap_count, 1);
out:
	mutex_unlock(&counter->mmap_mutex);
1384 1385 1386 1387

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1388 1389

	return ret;
1390 1391
}

T
Thomas Gleixner 已提交
1392 1393 1394 1395
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1396 1397
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1398
	.mmap			= perf_mmap,
T
Thomas Gleixner 已提交
1399 1400
};

1401 1402 1403 1404
/*
 * Output
 */

1405 1406
static int perf_output_write(struct perf_counter *counter, int nmi,
			     void *buf, ssize_t size)
1407
{
1408 1409 1410 1411
	struct perf_mmap_data *data;
	unsigned int offset, head, nr;
	unsigned int len;
	int ret, wakeup;
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	rcu_read_lock();
	ret = -ENOSPC;
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

	if (!data->nr_pages)
		goto out;

	ret = -EINVAL;
	if (size > PAGE_SIZE)
		goto out;

	do {
		offset = head = atomic_read(&data->head);
		head += sizeof(u64);
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

	wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	nr = (offset >> PAGE_SHIFT) & (data->nr_pages - 1);
	offset &= PAGE_SIZE - 1;

	len = min_t(unsigned int, PAGE_SIZE - offset, size);
	memcpy(data->data_pages[nr] + offset, buf, len);
	size -= len;

	if (size) {
		nr = (nr + 1) & (data->nr_pages - 1);
		memcpy(data->data_pages[nr], buf + len, size);
	}

	/*
	 * generate a poll() wakeup for every page boundary crossed
	 */
	if (wakeup) {
		__perf_counter_update_userpage(counter, data);
		if (nmi) {
			counter->wakeup_pending = 1;
			set_perf_counter_pending();
		} else
			wake_up(&counter->waitq);
1455
	}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	ret = 0;
out:
	rcu_read_unlock();

	return ret;
}

static void perf_output_simple(struct perf_counter *counter,
			       int nmi, struct pt_regs *regs)
{
	u64 entry;

	entry = instruction_pointer(regs);

	perf_output_write(counter, nmi, &entry, sizeof(entry));
1471 1472
}

1473 1474 1475 1476 1477 1478
struct group_entry {
	u64 event;
	u64 counter;
};

static void perf_output_group(struct perf_counter *counter, int nmi)
1479 1480 1481 1482 1483
{
	struct perf_counter *leader, *sub;

	leader = counter->group_leader;
	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1484 1485
		struct group_entry entry;

1486 1487
		if (sub != counter)
			sub->hw_ops->read(sub);
1488 1489 1490 1491 1492

		entry.event = sub->hw_event.config;
		entry.counter = atomic64_read(&sub->count);

		perf_output_write(counter, nmi, &entry, sizeof(entry));
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	}
}

void perf_counter_output(struct perf_counter *counter,
			 int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		return;

	case PERF_RECORD_IRQ:
1504
		perf_output_simple(counter, nmi, regs);
1505 1506 1507
		break;

	case PERF_RECORD_GROUP:
1508
		perf_output_group(counter, nmi);
1509 1510 1511 1512
		break;
	}
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
1573
		perf_counter_output(counter, 0, regs);
1574 1575 1576 1577 1578 1579 1580 1581 1582

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
1583 1584
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
1585
	perf_counter_output(counter, nmi, regs);
1586 1587
}

1588
static int perf_swcounter_match(struct perf_counter *counter,
1589 1590
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
1591 1592 1593 1594
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

1595
	if (perf_event_raw(&counter->hw_event))
1596 1597
		return 0;

1598
	if (perf_event_type(&counter->hw_event) != type)
1599 1600
		return 0;

1601
	if (perf_event_id(&counter->hw_event) != event)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1613 1614 1615 1616 1617 1618 1619 1620
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1621
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1622 1623
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
1624 1625 1626
{
	struct perf_counter *counter;

1627
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1628 1629
		return;

P
Peter Zijlstra 已提交
1630 1631
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1632
		if (perf_swcounter_match(counter, type, event, regs))
1633
			perf_swcounter_add(counter, nr, nmi, regs);
1634
	}
P
Peter Zijlstra 已提交
1635
	rcu_read_unlock();
1636 1637
}

P
Peter Zijlstra 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

1652 1653
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
1654 1655
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
1656 1657 1658 1659 1660 1661 1662
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
1663

1664 1665 1666 1667 1668
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
1669

P
Peter Zijlstra 已提交
1670 1671 1672 1673
	barrier();
	(*recursion)--;

out:
1674 1675 1676
	put_cpu_var(perf_cpu_context);
}

1677 1678 1679 1680 1681
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1698 1699 1700 1701 1702 1703
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1704 1705 1706 1707
/*
 * Software counter: cpu wall time clock
 */

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1720 1721 1722 1723 1724 1725
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1726 1727
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1737 1738
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1739
	hrtimer_cancel(&counter->hw.hrtimer);
1740
	cpu_clock_perf_counter_update(counter);
1741 1742 1743 1744
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1745
	cpu_clock_perf_counter_update(counter);
1746 1747 1748
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1749 1750 1751
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1752 1753
};

1754 1755 1756 1757
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1758 1759 1760 1761
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1762
{
I
Ingo Molnar 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1783 1784
}

1785
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1786
{
1787 1788 1789
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1790 1791
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1792 1793 1794 1795 1796
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
1797 1798

	return 0;
I
Ingo Molnar 已提交
1799 1800 1801
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1802
{
1803 1804 1805 1806
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
1807

1808 1809 1810 1811
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
1812 1813 1814
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1815 1816 1817
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1818 1819
};

1820 1821 1822 1823
/*
 * Software counter: cpu migrations
 */

1824
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1825
{
1826 1827 1828 1829 1830
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1831 1832 1833 1834 1835 1836 1837 1838
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1839
	now = get_cpu_migrations(counter);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1853
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1854
{
1855 1856 1857
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1858
	return 0;
1859 1860 1861 1862 1863 1864 1865 1866
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1867 1868 1869
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1870 1871
};

1872 1873 1874
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
1875 1876 1877 1878 1879 1880
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1881 1882 1883 1884 1885 1886 1887
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
1888
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
1889 1890 1891 1892 1893
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
1894
	int event_id = perf_event_id(&counter->hw_event);
1895 1896 1897 1898 1899 1900 1901
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
1902
	counter->hw.irq_period = counter->hw_event.irq_period;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

1914 1915 1916
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
1917
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
1918
	const struct hw_perf_counter_ops *hw_ops = NULL;
1919
	struct hw_perf_counter *hwc = &counter->hw;
1920

1921 1922 1923 1924 1925 1926 1927
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1928
	switch (perf_event_id(&counter->hw_event)) {
1929
	case PERF_COUNT_CPU_CLOCK:
1930 1931 1932 1933
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1934
		break;
1935
	case PERF_COUNT_TASK_CLOCK:
1936 1937 1938 1939 1940 1941 1942 1943
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1944 1945 1946

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1947
		break;
1948
	case PERF_COUNT_PAGE_FAULTS:
1949 1950
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
1951
	case PERF_COUNT_CONTEXT_SWITCHES:
1952
		hw_ops = &perf_ops_generic;
1953
		break;
1954
	case PERF_COUNT_CPU_MIGRATIONS:
1955 1956
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1957
		break;
1958
	}
1959 1960 1961 1962

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

1963 1964 1965
	return hw_ops;
}

T
Thomas Gleixner 已提交
1966 1967 1968 1969
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1970 1971
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1972
		   struct perf_counter_context *ctx,
1973 1974
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1975
{
1976
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1977
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1978

1979
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1980 1981 1982
	if (!counter)
		return NULL;

1983 1984 1985 1986 1987 1988 1989
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1990
	mutex_init(&counter->mutex);
1991
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
1992
	INIT_LIST_HEAD(&counter->event_entry);
1993
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1994 1995
	init_waitqueue_head(&counter->waitq);

1996 1997
	mutex_init(&counter->mmap_mutex);

1998 1999
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2000 2001 2002
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
2003
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2004
	counter->hw_ops			= NULL;
2005
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2006

2007
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2008 2009 2010
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2011
	hw_ops = NULL;
2012

2013
	if (perf_event_raw(hw_event)) {
2014
		hw_ops = hw_perf_counter_init(counter);
2015 2016 2017 2018
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2019
	case PERF_TYPE_HARDWARE:
2020
		hw_ops = hw_perf_counter_init(counter);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2031

I
Ingo Molnar 已提交
2032 2033 2034 2035
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
2036
done:
I
Ingo Molnar 已提交
2037
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2038 2039 2040 2041 2042

	return counter;
}

/**
2043
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2044 2045
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2046
 * @pid:		target pid
I
Ingo Molnar 已提交
2047 2048
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2049
 */
2050
SYSCALL_DEFINE5(perf_counter_open,
2051
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2052
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2053
{
2054
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2055
	struct perf_counter_hw_event hw_event;
2056
	struct perf_counter_context *ctx;
2057
	struct file *counter_file = NULL;
2058 2059
	struct file *group_file = NULL;
	int fput_needed = 0;
2060
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2061 2062
	int ret;

2063 2064 2065 2066
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2067
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2068 2069
		return -EFAULT;

2070
	/*
I
Ingo Molnar 已提交
2071 2072 2073 2074 2075 2076 2077 2078
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2079 2080 2081 2082 2083 2084
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2085
			goto err_put_context;
2086
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2087
			goto err_put_context;
2088 2089 2090

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2091 2092 2093 2094 2095 2096 2097 2098
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2099
		 */
I
Ingo Molnar 已提交
2100 2101
		if (group_leader->ctx != ctx)
			goto err_put_context;
2102 2103 2104 2105 2106
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2107 2108
	}

2109
	ret = -EINVAL;
2110 2111
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
2112 2113 2114 2115 2116
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2117 2118 2119 2120 2121 2122 2123
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2124
	mutex_lock(&ctx->mutex);
2125
	perf_install_in_context(ctx, counter, cpu);
2126
	mutex_unlock(&ctx->mutex);
2127 2128

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2129

2130 2131 2132
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2133 2134
	return ret;

2135
err_free_put_context:
T
Thomas Gleixner 已提交
2136 2137 2138 2139 2140
	kfree(counter);

err_put_context:
	put_context(ctx);

2141
	goto out_fput;
T
Thomas Gleixner 已提交
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151 2152
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2153
	mutex_init(&ctx->mutex);
2154
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2155
	INIT_LIST_HEAD(&ctx->event_list);
2156 2157 2158 2159 2160 2161
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2162
static struct perf_counter *
2163 2164 2165 2166
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2167
	      struct perf_counter *group_leader,
2168 2169 2170 2171
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2172 2173 2174 2175 2176 2177 2178 2179 2180
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2181
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2182 2183
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2184
	if (!child_counter)
2185
		return NULL;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2247 2248 2249
	return 0;
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2277 2278 2279 2280 2281 2282
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2283
	struct perf_counter *sub, *tmp;
2284 2285

	/*
2286 2287 2288 2289 2290 2291
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2292
	 */
2293 2294 2295 2296
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2297
		struct perf_cpu_context *cpuctx;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2309 2310 2311

		cpuctx = &__get_cpu_var(perf_cpu_context);

2312
		group_sched_out(child_counter, cpuctx, child_ctx);
2313

2314
		list_del_init(&child_counter->list_entry);
2315

2316
		child_ctx->nr_counters--;
2317

2318 2319 2320
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2321 2322 2323 2324 2325 2326 2327

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2328 2329 2330 2331
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2332
			if (sub->parent) {
2333
				sync_child_counter(sub, sub->parent);
2334
				free_counter(sub);
2335
			}
2336
		}
2337
		free_counter(child_counter);
2338
	}
2339 2340 2341
}

/*
2342
 * When a child task exits, feed back counter values to parent counters.
2343
 *
2344
 * Note: we may be running in child context, but the PID is not hashed
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2368
	struct perf_counter *counter;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2388
	mutex_lock(&parent_ctx->mutex);
2389 2390 2391 2392 2393 2394

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2395
		if (!counter->hw_event.inherit)
2396 2397
			continue;

2398
		if (inherit_group(counter, parent,
2399 2400 2401 2402
				  parent_ctx, child, child_ctx))
			break;
	}

2403
	mutex_unlock(&parent_ctx->mutex);
2404 2405
}

2406
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2407
{
2408
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2409

2410 2411
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2412 2413

	mutex_lock(&perf_resource_mutex);
2414
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2415
	mutex_unlock(&perf_resource_mutex);
2416

2417
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2418 2419 2420
}

#ifdef CONFIG_HOTPLUG_CPU
2421
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2422 2423 2424 2425 2426
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2427 2428
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2429
}
2430
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2431
{
2432 2433 2434 2435
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2436
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2437
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2438 2439
}
#else
2440
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2452
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2453 2454 2455 2456
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2457
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);