perf_counter.c 75.4 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40 41 42 43 44 45 46 47 48
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
49
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
50
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
51
{
52
	return NULL;
T
Thomas Gleixner 已提交
53 54
}

55
u64 __weak hw_perf_save_disable(void)		{ return 0; }
56
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
57
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
58 59 60 61 62 63
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
64

65 66
void __weak perf_counter_print_debug(void)	{ }

67 68 69 70 71 72 73 74 75 76 77 78
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
79
	else {
80
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
81 82
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
83 84

	list_add_rcu(&counter->event_entry, &ctx->event_list);
85 86 87 88 89 90 91 92
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
93
	list_del_rcu(&counter->event_entry);
94

P
Peter Zijlstra 已提交
95 96 97
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

98 99 100 101 102 103 104 105
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

106
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 108 109 110
		sibling->group_leader = sibling;
	}
}

111 112 113 114 115 116 117 118 119
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
120
	counter->tstamp_stopped = ctx->time;
121 122 123 124 125 126 127 128 129 130
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
153 154 155 156 157 158
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
159
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
160 161 162 163
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
164
	unsigned long flags;
165
	u64 perf_flags;
T
Thomas Gleixner 已提交
166 167 168 169 170 171 172 173 174

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

175
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
176

177 178 179
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
180 181 182 183 184 185
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
186
	perf_flags = hw_perf_save_disable();
187
	list_del_counter(counter, ctx);
188
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
189 190 191 192 193 194 195 196 197 198 199

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

200
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
201 202 203 204 205 206
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
207
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
208 209 210 211
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
212
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
213 214 215 216 217 218 219 220 221 222
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
223
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
224 225 226 227 228
					 counter, 1);
		return;
	}

retry:
229
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
230 231 232 233 234 235
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
236
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
237 238 239 240 241 242
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
243
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
244 245
	 * succeed.
	 */
246
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
247
		ctx->nr_counters--;
248
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
249 250 251 252 253
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

254
static inline u64 perf_clock(void)
255
{
256
	return cpu_clock(smp_processor_id());
257 258 259 260 261
}

/*
 * Update the record of the current time in a context.
 */
262
static void update_context_time(struct perf_counter_context *ctx)
263
{
264 265 266 267
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
268 269 270 271 272 273 274 275 276 277
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

278 279 280 281 282 283 284 285 286 287 288
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

320
	spin_lock_irqsave(&ctx->lock, flags);
321 322 323 324 325 326

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
327
		update_context_time(ctx);
328
		update_counter_times(counter);
329 330 331 332 333 334 335
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

336
	spin_unlock_irqrestore(&ctx->lock, flags);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
372 373
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
374
		counter->state = PERF_COUNTER_STATE_OFF;
375
	}
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

398 399 400 401 402 403
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
404
	if (counter->state <= PERF_COUNTER_STATE_OFF)
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

420
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
421

422 423
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
424 425
	ctx->nr_active++;

426 427 428
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

429 430 431
	return 0;
}

432 433 434 435 436 437 438 439 440 441
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
442

443 444 445
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

481 482 483 484 485 486
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
487 488 489
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
490 491
}

T
Thomas Gleixner 已提交
492
/*
493
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
494 495 496 497 498 499
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
500
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
501
	int cpu = smp_processor_id();
502
	unsigned long flags;
503
	u64 perf_flags;
504
	int err;
T
Thomas Gleixner 已提交
505 506 507 508 509 510 511 512 513

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

514
	spin_lock_irqsave(&ctx->lock, flags);
515
	update_context_time(ctx);
T
Thomas Gleixner 已提交
516 517 518 519 520

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
521
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
522

523
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
524

525 526 527 528 529 530 531 532
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

533 534 535 536 537
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
538
	if (!group_can_go_on(counter, cpuctx, 1))
539 540 541 542
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

543 544 545 546 547 548 549 550
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
551 552
		if (leader->hw_event.pinned) {
			update_group_times(leader);
553
			leader->state = PERF_COUNTER_STATE_ERROR;
554
		}
555
	}
T
Thomas Gleixner 已提交
556

557
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
558 559
		cpuctx->max_pertask--;

560
 unlock:
561 562
	hw_perf_restore(perf_flags);

563
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
564 565 566 567 568 569 570 571 572 573 574
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
575 576
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
604
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
605 606 607 608 609 610 611 612 613
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
614 615
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
616 617 618
	spin_unlock_irq(&ctx->lock);
}

619 620 621 622
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
623
{
624 625 626 627 628 629
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
630

631 632 633 634 635
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
636 637
		return;

638
	spin_lock_irqsave(&ctx->lock, flags);
639
	update_context_time(ctx);
640

641
	counter->prev_state = counter->state;
642 643 644
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
645
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
646 647

	/*
648 649
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
650
	 */
651 652
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
653

654 655 656 657 658 659 660 661 662 663 664 665 666
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
667 668
		if (leader->hw_event.pinned) {
			update_group_times(leader);
669
			leader->state = PERF_COUNTER_STATE_ERROR;
670
		}
671 672 673
	}

 unlock:
674
	spin_unlock_irqrestore(&ctx->lock, flags);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
725
	if (counter->state == PERF_COUNTER_STATE_OFF) {
726
		counter->state = PERF_COUNTER_STATE_INACTIVE;
727 728
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
729
	}
730 731 732 733
 out:
	spin_unlock_irq(&ctx->lock);
}

734 735 736 737 738 739
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
756 757
}

758 759 760 761
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
762
	u64 flags;
763

764 765
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
766
	if (likely(!ctx->nr_counters))
767
		goto out;
768
	update_context_time(ctx);
769

770
	flags = hw_perf_save_disable();
771 772 773 774
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
775
	hw_perf_restore(flags);
776
 out:
777 778 779
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
780 781 782 783 784 785
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
786
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
787 788 789 790 791 792 793 794
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
795
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
796 797 798 799

	if (likely(!cpuctx->task_ctx))
		return;

800 801
	update_context_time(ctx);

802 803
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
804 805
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
806 807 808
	cpuctx->task_ctx = NULL;
}

809
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
810
{
811
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
812 813
}

I
Ingo Molnar 已提交
814
static int
815 816 817 818 819
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
820
	struct perf_counter *counter, *partial_group;
821 822 823 824 825 826 827 828
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
829

830
	group_counter->prev_state = group_counter->state;
831 832
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
833 834 835 836

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
837
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
838
		counter->prev_state = counter->state;
839 840 841 842 843 844
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

845
	return 0;
846 847 848 849 850 851 852 853 854 855

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
856
	}
857
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
858

859
	return -EAGAIN;
860 861
}

862 863 864
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
865 866
{
	struct perf_counter *counter;
867
	u64 flags;
868
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
869

870 871
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
872
	if (likely(!ctx->nr_counters))
873
		goto out;
T
Thomas Gleixner 已提交
874

875
	ctx->timestamp = perf_clock();
876

877
	flags = hw_perf_save_disable();
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
897 898
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
899
			counter->state = PERF_COUNTER_STATE_ERROR;
900
		}
901 902
	}

903
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
904 905 906 907 908 909 910 911
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

912 913 914 915
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
916 917 918
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

919
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
920 921
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
922
		}
T
Thomas Gleixner 已提交
923
	}
924
	hw_perf_restore(flags);
925
 out:
T
Thomas Gleixner 已提交
926
	spin_unlock(&ctx->lock);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
944

945
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
946 947 948
	cpuctx->task_ctx = ctx;
}

949 950 951 952 953 954 955
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

956 957 958 959 960
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
961
	unsigned long flags;
962 963 964 965 966 967
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

968
	local_irq_save(flags);
969 970 971 972 973 974 975 976 977 978 979
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

980
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
981 982
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
983
			counter->state = PERF_COUNTER_STATE_OFF;
984
		}
985
	}
986

987 988
	hw_perf_restore(perf_flags);

989
	spin_unlock_irqrestore(&ctx->lock, flags);
990 991 992 993 994 995 996 997 998

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
999
	unsigned long flags;
1000 1001 1002 1003 1004 1005
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1006
	local_irq_save(flags);
1007 1008
	cpu = smp_processor_id();

1009 1010
	perf_counter_task_sched_out(curr, cpu);

1011 1012 1013 1014 1015 1016 1017 1018
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1019
		if (counter->state > PERF_COUNTER_STATE_OFF)
1020
			continue;
1021
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1022 1023
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1024
		counter->hw_event.disabled = 0;
1025 1026 1027 1028 1029 1030 1031
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1032
	local_irq_restore(flags);
1033 1034 1035 1036

	return 0;
}

1037 1038 1039 1040
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1041 1042
{
	struct perf_counter *counter;
1043
	u64 perf_flags;
T
Thomas Gleixner 已提交
1044

1045
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1046 1047 1048 1049
		return;

	spin_lock(&ctx->lock);
	/*
1050
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1051
	 */
1052
	perf_flags = hw_perf_save_disable();
1053
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1054
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1055 1056
		break;
	}
1057
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1058 1059

	spin_unlock(&ctx->lock);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1071

1072 1073 1074 1075 1076 1077
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1078 1079 1080 1081 1082 1083
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1084
static void __read(void *info)
T
Thomas Gleixner 已提交
1085
{
I
Ingo Molnar 已提交
1086
	struct perf_counter *counter = info;
1087
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1088
	unsigned long flags;
I
Ingo Molnar 已提交
1089

1090
	local_irq_save(flags);
1091
	if (ctx->is_active)
1092
		update_context_time(ctx);
I
Ingo Molnar 已提交
1093
	counter->hw_ops->read(counter);
1094
	update_counter_times(counter);
1095
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1096 1097
}

1098
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1099 1100 1101 1102 1103
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1104
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1105
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1106
					 __read, counter, 1);
1107 1108
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1109 1110
	}

1111
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1175 1176 1177 1178 1179 1180 1181 1182
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1183 1184
static void perf_pending_sync(struct perf_counter *counter);

1185 1186
static void free_counter(struct perf_counter *counter)
{
1187 1188
	perf_pending_sync(counter);

1189 1190 1191
	if (counter->destroy)
		counter->destroy(counter);

1192 1193 1194
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1205
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1206 1207
	mutex_lock(&counter->mutex);

1208
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1209 1210

	mutex_unlock(&counter->mutex);
1211
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1212

1213
	free_counter(counter);
1214
	put_context(ctx);
T
Thomas Gleixner 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1225 1226
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1227

1228 1229 1230 1231 1232 1233 1234 1235
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1236
	mutex_lock(&counter->mutex);
1237 1238 1239 1240 1241 1242 1243 1244
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1245 1246
	mutex_unlock(&counter->mutex);

1247 1248 1249 1250 1251 1252 1253 1254
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1255 1256 1257 1258 1259 1260 1261
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1262
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1263 1264 1265 1266 1267
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1278 1279 1280 1281 1282 1283

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1296 1297 1298
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1299 1300 1301 1302 1303 1304
	default:
		err = -ENOTTY;
	}
	return err;
}

1305 1306 1307 1308 1309 1310
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1311
{
1312 1313 1314 1315 1316 1317 1318 1319 1320
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1321

1322 1323 1324 1325 1326
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1327
	++userpg->lock;
1328
	barrier();
1329 1330 1331 1332
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1333

1334
	barrier();
1335
	++userpg->lock;
1336
	preempt_enable();
1337
unlock:
1338
	rcu_read_unlock();
1339 1340 1341 1342 1343
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1356

1357 1358
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1359

1360 1361
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1362
	get_page(vmf->page);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1399
	return 0;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1449
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1450 1451 1452
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1453 1454 1455
}

static struct vm_operations_struct perf_mmap_vmops = {
1456
	.open  = perf_mmap_open,
1457
	.close = perf_mmap_close,
1458 1459 1460 1461 1462 1463
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1464 1465 1466 1467
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1468 1469 1470

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1471 1472 1473 1474

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1475 1476 1477 1478 1479
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1480 1481
		return -EINVAL;

1482
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1483 1484
		return -EINVAL;

1485 1486
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1497 1498 1499 1500

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1501 1502 1503 1504
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1505 1506 1507

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1508 1509 1510 1511 1512 1513
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1514
	mutex_unlock(&counter->mmap_mutex);
1515 1516 1517 1518

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1519 1520

	return ret;
1521 1522
}

P
Peter Zijlstra 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1539 1540 1541 1542
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1543 1544
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1545
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1546
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1547 1548
};

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1563
		atomic_set(&data->wakeup, POLL_IN);
1564 1565 1566 1567 1568 1569 1570
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1571 1572 1573 1574
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
1575 1576 1577 1578 1579

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1607
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1608

1609
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1610 1611 1612
	PENDING_TAIL,
};

1613 1614
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1615
{
1616
	struct perf_pending_entry **head;
1617

1618
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1619 1620
		return;

1621 1622 1623
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1624 1625

	do {
1626 1627
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1628 1629 1630

	set_perf_counter_pending();

1631
	put_cpu_var(perf_pending_head);
1632 1633 1634 1635
}

static int __perf_pending_run(void)
{
1636
	struct perf_pending_entry *list;
1637 1638
	int nr = 0;

1639
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1640
	while (list != PENDING_TAIL) {
1641 1642
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1643 1644 1645

		list = list->next;

1646 1647
		func = entry->func;
		entry->next = NULL;
1648 1649 1650 1651 1652 1653 1654
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1655
		func(entry);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1677
	return counter->pending.next == NULL;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1690 1691 1692 1693
/*
 * Callchain support -- arch specific
 */

1694
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1695 1696 1697 1698
{
	return NULL;
}

1699 1700 1701 1702
/*
 * Output
 */

1703 1704 1705 1706
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1707
	unsigned int		head;
1708
	int			wakeup;
1709
	int			nmi;
1710
	int			overflow;
1711 1712
};

1713 1714
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1715
	if (handle->nmi) {
1716
		handle->counter->pending_wakeup = 1;
1717
		perf_pending_queue(&handle->counter->pending,
1718
				   perf_pending_counter);
1719
	} else
1720 1721 1722
		perf_counter_wakeup(handle->counter);
}

1723
static int perf_output_begin(struct perf_output_handle *handle,
1724
			     struct perf_counter *counter, unsigned int size,
1725
			     int nmi, int overflow)
1726
{
1727
	struct perf_mmap_data *data;
1728
	unsigned int offset, head;
1729

1730 1731 1732 1733 1734
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1735 1736 1737
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1738

1739
	if (!data->nr_pages)
1740
		goto fail;
1741 1742 1743

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1744
		head += size;
1745 1746
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1747 1748
	handle->data	= data;
	handle->offset	= offset;
1749
	handle->head	= head;
1750
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1751

1752
	return 0;
1753

1754 1755
fail:
	__perf_output_wakeup(handle);
1756 1757
out:
	rcu_read_unlock();
1758

1759 1760
	return -ENOSPC;
}
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1790 1791

	WARN_ON_ONCE(handle->offset > handle->head);
1792 1793
}

P
Peter Zijlstra 已提交
1794 1795 1796
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1797
static void perf_output_end(struct perf_output_handle *handle)
1798
{
P
Peter Zijlstra 已提交
1799 1800
	int wakeup_events = handle->counter->hw_event.wakeup_events;

1801
	if (handle->overflow && wakeup_events) {
P
Peter Zijlstra 已提交
1802 1803 1804 1805 1806 1807
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1808
		__perf_output_wakeup(handle);
1809
	rcu_read_unlock();
1810 1811
}

1812 1813
static void perf_counter_output(struct perf_counter *counter,
				int nmi, struct pt_regs *regs)
1814
{
1815
	int ret;
1816
	u64 record_type = counter->hw_event.record_type;
1817 1818 1819
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1820
	struct {
1821
		u32 pid, tid;
1822
	} tid_entry;
1823 1824 1825 1826
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1827 1828
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1829
	u64 time;
1830

1831
	header.type = 0;
1832
	header.size = sizeof(header);
1833

1834 1835
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1836 1837
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1838 1839
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1840
		header.type |= PERF_RECORD_IP;
1841 1842
		header.size += sizeof(ip);
	}
1843

1844
	if (record_type & PERF_RECORD_TID) {
1845
		/* namespace issues */
1846 1847 1848
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1849
		header.type |= PERF_RECORD_TID;
1850 1851 1852
		header.size += sizeof(tid_entry);
	}

1853
	if (record_type & PERF_RECORD_GROUP) {
1854
		header.type |= PERF_RECORD_GROUP;
1855 1856 1857 1858 1859
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1860 1861 1862
		callchain = perf_callchain(regs);

		if (callchain) {
1863
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1864

1865
			header.type |= PERF_RECORD_CALLCHAIN;
1866 1867 1868 1869
			header.size += callchain_size;
		}
	}

P
Peter Zijlstra 已提交
1870 1871 1872 1873 1874 1875
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

1876
		header.type |= PERF_RECORD_TIME;
P
Peter Zijlstra 已提交
1877 1878 1879
		header.size += sizeof(u64);
	}

1880
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1881 1882
	if (ret)
		return;
1883

1884
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1885

1886 1887
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1888

1889 1890
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1891

1892 1893 1894
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1895

1896
		perf_output_put(&handle, nr);
1897

1898 1899 1900 1901
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1902

1903 1904
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1905

1906 1907
			perf_output_put(&handle, group_entry);
		}
1908
	}
P
Peter Zijlstra 已提交
1909

1910 1911
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1912

P
Peter Zijlstra 已提交
1913 1914 1915
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1916
	perf_output_end(&handle);
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

	size = ALIGN(strlen(comm), sizeof(u64));

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
	struct perf_comm_event comm_event = {
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2037
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2038 2039 2040 2041 2042 2043 2044

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2045
	perf_output_end(&handle);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
		name = dentry_path(file->f_dentry, buf, PATH_MAX);
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
	size = ALIGN(strlen(name), sizeof(u64));

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2156 2157 2158 2159 2160 2161 2162
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
			  int nmi, struct pt_regs *regs)
{
2163 2164 2165
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2166
	counter->pending_kill = POLL_IN;
2167 2168
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2169
		counter->pending_kill = POLL_HUP;
2170 2171 2172 2173 2174 2175 2176 2177
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2178
	perf_counter_output(counter, nmi, regs);
2179
	return ret;
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2224 2225
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2226
	enum hrtimer_restart ret = HRTIMER_RESTART;
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2242 2243 2244 2245
	if (regs) {
		if (perf_counter_overflow(counter, 0, regs))
			ret = HRTIMER_NORESTART;
	}
2246 2247 2248

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2249
	return ret;
2250 2251 2252 2253 2254
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
2255 2256
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2257 2258 2259 2260
	if (perf_counter_overflow(counter, nmi, regs))
		/* soft-disable the counter */
		;

2261 2262
}

2263
static int perf_swcounter_match(struct perf_counter *counter,
2264 2265
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2266 2267 2268 2269
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2270
	if (perf_event_raw(&counter->hw_event))
2271 2272
		return 0;

2273
	if (perf_event_type(&counter->hw_event) != type)
2274 2275
		return 0;

2276
	if (perf_event_id(&counter->hw_event) != event)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2288 2289 2290 2291 2292 2293 2294 2295
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

2296
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2297 2298
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
2299 2300 2301
{
	struct perf_counter *counter;

2302
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2303 2304
		return;

P
Peter Zijlstra 已提交
2305 2306
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2307
		if (perf_swcounter_match(counter, type, event, regs))
2308
			perf_swcounter_add(counter, nr, nmi, regs);
2309
	}
P
Peter Zijlstra 已提交
2310
	rcu_read_unlock();
2311 2312
}

P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2327 2328
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
2329 2330
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2331 2332 2333 2334 2335 2336 2337
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2338

2339 2340 2341 2342 2343
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
2344

P
Peter Zijlstra 已提交
2345 2346 2347 2348
	barrier();
	(*recursion)--;

out:
2349 2350 2351
	put_cpu_var(perf_cpu_context);
}

2352 2353 2354 2355 2356
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2373 2374 2375 2376 2377 2378
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2379 2380 2381 2382
/*
 * Software counter: cpu wall time clock
 */

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2395 2396 2397 2398 2399 2400
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2401 2402
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2403 2404 2405 2406 2407 2408 2409 2410 2411
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2412 2413
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2414
	hrtimer_cancel(&counter->hw.hrtimer);
2415
	cpu_clock_perf_counter_update(counter);
2416 2417 2418 2419
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2420
	cpu_clock_perf_counter_update(counter);
2421 2422 2423
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2424 2425 2426
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2427 2428
};

2429 2430 2431 2432
/*
 * Software counter: task time clock
 */

2433
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2434
{
2435
	u64 prev;
I
Ingo Molnar 已提交
2436 2437
	s64 delta;

2438
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2439 2440
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2441 2442
}

2443
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2444
{
2445
	struct hw_perf_counter *hwc = &counter->hw;
2446 2447 2448
	u64 now;

	now = counter->ctx->time;
2449

2450
	atomic64_set(&hwc->prev_count, now);
2451 2452
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2453 2454 2455 2456 2457
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2458 2459

	return 0;
I
Ingo Molnar 已提交
2460 2461 2462
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2463
{
2464
	hrtimer_cancel(&counter->hw.hrtimer);
2465 2466
	task_clock_perf_counter_update(counter, counter->ctx->time);

2467
}
I
Ingo Molnar 已提交
2468

2469 2470
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2483 2484 2485
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2486 2487 2488
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2489 2490
};

2491 2492 2493 2494
/*
 * Software counter: cpu migrations
 */

2495
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2496
{
2497 2498 2499 2500 2501
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2502 2503 2504 2505 2506 2507 2508 2509
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2510
	now = get_cpu_migrations(counter);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2524
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2525
{
2526 2527 2528
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2529
	return 0;
2530 2531 2532 2533 2534 2535 2536 2537
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2538 2539 2540
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2541 2542
};

2543 2544 2545
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2546 2547 2548 2549 2550 2551
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2552 2553 2554 2555 2556 2557 2558
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2559
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2560 2561 2562 2563 2564
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2565
	int event_id = perf_event_id(&counter->hw_event);
2566 2567 2568 2569 2570 2571 2572
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2573
	counter->hw.irq_period = counter->hw_event.irq_period;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2585 2586 2587
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2588
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2589
	const struct hw_perf_counter_ops *hw_ops = NULL;
2590
	struct hw_perf_counter *hwc = &counter->hw;
2591

2592 2593 2594 2595 2596 2597 2598
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2599
	switch (perf_event_id(&counter->hw_event)) {
2600
	case PERF_COUNT_CPU_CLOCK:
2601 2602 2603 2604
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2605
		break;
2606
	case PERF_COUNT_TASK_CLOCK:
2607 2608 2609 2610 2611 2612 2613 2614
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2615 2616 2617

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2618
		break;
2619
	case PERF_COUNT_PAGE_FAULTS:
2620 2621
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2622
	case PERF_COUNT_CONTEXT_SWITCHES:
2623
		hw_ops = &perf_ops_generic;
2624
		break;
2625
	case PERF_COUNT_CPU_MIGRATIONS:
2626 2627
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2628
		break;
2629
	}
2630 2631 2632 2633

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2634 2635 2636
	return hw_ops;
}

T
Thomas Gleixner 已提交
2637 2638 2639 2640
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2641 2642
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2643
		   struct perf_counter_context *ctx,
2644 2645
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2646
{
2647
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2648
	struct perf_counter *counter;
2649
	long err;
T
Thomas Gleixner 已提交
2650

2651
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2652
	if (!counter)
2653
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2654

2655 2656 2657 2658 2659 2660 2661
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2662
	mutex_init(&counter->mutex);
2663
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2664
	INIT_LIST_HEAD(&counter->event_entry);
2665
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2666 2667
	init_waitqueue_head(&counter->waitq);

2668 2669
	mutex_init(&counter->mmap_mutex);

2670 2671
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2672 2673
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2674
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2675
	counter->hw_ops			= NULL;
2676
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2677

2678
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2679 2680 2681
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2682
	hw_ops = NULL;
2683

2684
	if (perf_event_raw(hw_event)) {
2685
		hw_ops = hw_perf_counter_init(counter);
2686 2687 2688 2689
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2690
	case PERF_TYPE_HARDWARE:
2691
		hw_ops = hw_perf_counter_init(counter);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2702 2703 2704 2705 2706 2707
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2708

2709
	if (err) {
I
Ingo Molnar 已提交
2710
		kfree(counter);
2711
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2712
	}
2713

I
Ingo Molnar 已提交
2714
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2715 2716 2717 2718 2719

	return counter;
}

/**
2720
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2721 2722
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2723
 * @pid:		target pid
I
Ingo Molnar 已提交
2724 2725
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2726
 */
2727
SYSCALL_DEFINE5(perf_counter_open,
2728
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2729
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2730
{
2731
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2732
	struct perf_counter_hw_event hw_event;
2733
	struct perf_counter_context *ctx;
2734
	struct file *counter_file = NULL;
2735 2736
	struct file *group_file = NULL;
	int fput_needed = 0;
2737
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2738 2739
	int ret;

2740 2741 2742 2743
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2744
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2745 2746
		return -EFAULT;

2747
	/*
I
Ingo Molnar 已提交
2748 2749 2750 2751 2752 2753 2754 2755
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2756 2757 2758 2759 2760 2761
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2762
			goto err_put_context;
2763
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2764
			goto err_put_context;
2765 2766 2767

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2768 2769 2770 2771 2772 2773 2774 2775
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2776
		 */
I
Ingo Molnar 已提交
2777 2778
		if (group_leader->ctx != ctx)
			goto err_put_context;
2779 2780 2781 2782 2783
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2784 2785
	}

2786 2787
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2788 2789
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2790 2791 2792 2793
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2794 2795 2796 2797 2798 2799 2800
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2801
	mutex_lock(&ctx->mutex);
2802
	perf_install_in_context(ctx, counter, cpu);
2803
	mutex_unlock(&ctx->mutex);
2804 2805

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2806

2807 2808 2809
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2810 2811
	return ret;

2812
err_free_put_context:
T
Thomas Gleixner 已提交
2813 2814 2815 2816 2817
	kfree(counter);

err_put_context:
	put_context(ctx);

2818
	goto out_fput;
T
Thomas Gleixner 已提交
2819 2820
}

2821 2822 2823 2824 2825 2826 2827 2828 2829
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2830
	mutex_init(&ctx->mutex);
2831
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2832
	INIT_LIST_HEAD(&ctx->event_list);
2833 2834 2835 2836 2837 2838
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2839
static struct perf_counter *
2840 2841 2842 2843
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2844
	      struct perf_counter *group_leader,
2845 2846 2847 2848
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2858
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2859 2860
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2861 2862
	if (IS_ERR(child_counter))
		return child_counter;
2863 2864 2865 2866 2867

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2868
	add_counter_to_ctx(child_counter, child_ctx);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2913
	struct perf_counter *child_ctr;
2914 2915 2916

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2917 2918
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2919
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2920 2921 2922 2923
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2924
	}
2925 2926 2927
	return 0;
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2940 2941 2942 2943
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2959 2960 2961 2962 2963 2964
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2965
	struct perf_counter *sub, *tmp;
2966 2967

	/*
2968 2969 2970 2971 2972 2973
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2974
	 */
2975 2976 2977
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2978
		update_counter_times(child_counter);
2979
	} else {
2980
		struct perf_cpu_context *cpuctx;
2981 2982 2983 2984 2985 2986 2987 2988 2989
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
2990
		local_irq_save(flags);
2991
		perf_flags = hw_perf_save_disable();
2992 2993 2994

		cpuctx = &__get_cpu_var(perf_cpu_context);

2995
		group_sched_out(child_counter, cpuctx, child_ctx);
2996
		update_counter_times(child_counter);
2997

2998
		list_del_init(&child_counter->list_entry);
2999

3000
		child_ctx->nr_counters--;
3001

3002
		hw_perf_restore(perf_flags);
3003
		local_irq_restore(flags);
3004
	}
3005 3006 3007 3008 3009 3010 3011

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3012 3013 3014 3015
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3016
			if (sub->parent) {
3017
				sync_child_counter(sub, sub->parent);
3018
				free_counter(sub);
3019
			}
3020
		}
3021
		free_counter(child_counter);
3022
	}
3023 3024 3025
}

/*
3026
 * When a child task exits, feed back counter values to parent counters.
3027
 *
3028
 * Note: we may be running in child context, but the PID is not hashed
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3052
	struct perf_counter *counter;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3072
	mutex_lock(&parent_ctx->mutex);
3073 3074 3075 3076 3077 3078

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3079
		if (!counter->hw_event.inherit)
3080 3081
			continue;

3082
		if (inherit_group(counter, parent,
3083 3084 3085 3086
				  parent_ctx, child, child_ctx))
			break;
	}

3087
	mutex_unlock(&parent_ctx->mutex);
3088 3089
}

3090
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3091
{
3092
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3093

3094 3095
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3096 3097

	mutex_lock(&perf_resource_mutex);
3098
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3099
	mutex_unlock(&perf_resource_mutex);
3100

3101
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3102 3103 3104
}

#ifdef CONFIG_HOTPLUG_CPU
3105
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3106 3107 3108 3109 3110
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3111 3112
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3113
}
3114
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3115
{
3116 3117 3118 3119
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3120
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3121
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3122 3123
}
#else
3124
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3136
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3137 3138 3139 3140
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3141
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);