perf_counter.c 61.7 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27 28
#include <linux/perf_counter.h>

29 30
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
31 32 33 34 35
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

36
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
37 38 39 40 41 42 43 44 45 46 47
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
48
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
49
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
50
{
51
	return NULL;
T
Thomas Gleixner 已提交
52 53
}

54
u64 __weak hw_perf_save_disable(void)		{ return 0; }
55
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
56
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
57 58 59 60 61 62
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
63

64 65
void __weak perf_counter_print_debug(void)	{ }

66 67 68 69 70 71 72 73 74 75 76 77
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
78
	else {
79
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
80 81
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
82 83

	list_add_rcu(&counter->event_entry, &ctx->event_list);
84 85 86 87 88 89 90 91
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
92
	list_del_rcu(&counter->event_entry);
93

P
Peter Zijlstra 已提交
94 95 96
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

97 98 99 100 101 102 103 104
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

105
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
106 107 108 109
		sibling->group_leader = sibling;
	}
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
151 152 153 154 155 156
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
157
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
158 159 160 161
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
162
	unsigned long flags;
163
	u64 perf_flags;
T
Thomas Gleixner 已提交
164 165 166 167 168 169 170 171 172

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
173 174
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
175

176 177 178
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
179 180 181 182 183 184
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
185
	perf_flags = hw_perf_save_disable();
186
	list_del_counter(counter, ctx);
187
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
188 189 190 191 192 193 194 195 196 197 198

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
199 200
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
201 202 203 204 205 206
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
207
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
208 209 210 211
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
212
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
213 214 215 216 217 218 219 220 221 222
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
223
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
224 225 226 227 228
					 counter, 1);
		return;
	}

retry:
229
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
230 231 232 233 234 235
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
236
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
237 238 239 240 241 242
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
243
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
244 245
	 * succeed.
	 */
246
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
247
		ctx->nr_counters--;
248
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
249 250 251 252 253
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

347 348 349 350 351 352
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
353
	if (counter->state <= PERF_COUNTER_STATE_OFF)
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

369 370
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
371 372
	ctx->nr_active++;

373 374 375
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

376 377 378
	return 0;
}

379 380 381 382 383 384 385 386 387 388
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
389

390 391 392
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
428
/*
429
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
430 431 432 433 434 435
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
436
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
437
	int cpu = smp_processor_id();
438
	unsigned long flags;
439
	u64 perf_flags;
440
	int err;
T
Thomas Gleixner 已提交
441 442 443 444 445 446 447 448 449

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
450 451
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
452 453 454 455 456

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
457
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
458

459
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
460
	ctx->nr_counters++;
461
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
462

463 464 465 466 467 468 469 470
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

471 472 473 474 475
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
476
	if (!group_can_go_on(counter, cpuctx, 1))
477 478 479 480
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

481 482 483 484 485 486 487 488 489 490 491
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
492

493
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
494 495
		cpuctx->max_pertask--;

496
 unlock:
497 498
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
499 500
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
501 502 503 504 505 506 507 508 509 510 511
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
512 513
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
541
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
542 543 544 545 546 547 548 549 550
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
551 552
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
553 554 555 556 557
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

558 559 560 561
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
562
{
563 564 565 566 567 568
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
569

570 571 572 573 574
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
575 576
		return;

577 578 579
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

580
	counter->prev_state = counter->state;
581 582 583
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
584 585

	/*
586 587
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
588
	 */
589 590
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
684 685
}

686 687 688 689
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
690
	u64 flags;
691

692 693
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
694
	if (likely(!ctx->nr_counters))
695
		goto out;
696

697
	flags = hw_perf_save_disable();
698 699 700 701
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
702
	hw_perf_restore(flags);
703
 out:
704 705 706
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
707 708 709 710 711 712
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
713
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
714 715 716 717 718 719 720 721
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
722
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
723 724 725 726

	if (likely(!cpuctx->task_ctx))
		return;

727 728
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
729 730
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
731 732 733
	cpuctx->task_ctx = NULL;
}

734
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
735
{
736
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
737 738
}

I
Ingo Molnar 已提交
739
static int
740 741 742 743 744
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
745
	struct perf_counter *counter, *partial_group;
746 747 748 749 750 751 752 753
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
754

755
	group_counter->prev_state = group_counter->state;
756 757
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
758 759 760 761

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
762
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
763
		counter->prev_state = counter->state;
764 765 766 767 768 769
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

770
	return 0;
771 772 773 774 775 776 777 778 779 780

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
781
	}
782
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
783

784
	return -EAGAIN;
785 786
}

787 788 789
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
790 791
{
	struct perf_counter *counter;
792
	u64 flags;
793
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
794

795 796
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
797
	if (likely(!ctx->nr_counters))
798
		goto out;
T
Thomas Gleixner 已提交
799

800
	flags = hw_perf_save_disable();
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

824
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
825 826 827 828 829 830 831 832
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

833 834 835 836
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
837 838 839
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

840
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
841 842
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
843
		}
T
Thomas Gleixner 已提交
844
	}
845
	hw_perf_restore(flags);
846
 out:
T
Thomas Gleixner 已提交
847
	spin_unlock(&ctx->lock);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
865

866
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
867 868 869
	cpuctx->task_ctx = ctx;
}

870 871 872 873 874 875 876
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

877 878 879 880 881
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
882
	unsigned long flags;
883 884 885 886 887 888
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
889
	curr_rq_lock_irq_save(&flags);
890 891
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
892 893 894
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

895 896 897 898 899 900 901 902 903
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

904 905 906 907
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
908

909 910 911 912
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
913
	curr_rq_unlock_irq_restore(&flags);
914 915 916 917 918 919 920 921 922

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
923
	unsigned long flags;
924 925 926 927 928 929
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
930
	curr_rq_lock_irq_save(&flags);
931 932
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
933 934 935
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

936 937
	perf_counter_task_sched_out(curr, cpu);

938 939 940 941 942 943 944 945
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
946
		if (counter->state > PERF_COUNTER_STATE_OFF)
947
			continue;
948
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
949
		counter->hw_event.disabled = 0;
950 951 952 953 954 955 956
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
957
	curr_rq_unlock_irq_restore(&flags);
958 959 960 961

	return 0;
}

962 963 964 965
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
966 967
{
	struct perf_counter *counter;
968
	u64 perf_flags;
T
Thomas Gleixner 已提交
969

970
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
971 972 973 974
		return;

	spin_lock(&ctx->lock);
	/*
975
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
976
	 */
977
	perf_flags = hw_perf_save_disable();
978
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
980 981
		break;
	}
982
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
983 984

	spin_unlock(&ctx->lock);
985 986 987 988 989 990 991 992 993 994 995
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
996

997 998 999 1000 1001 1002
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1003 1004 1005 1006 1007 1008
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1009
static void __read(void *info)
T
Thomas Gleixner 已提交
1010
{
I
Ingo Molnar 已提交
1011
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
1012
	unsigned long flags;
I
Ingo Molnar 已提交
1013

I
Ingo Molnar 已提交
1014
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
1015
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1016
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1017 1018
}

1019
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1020 1021 1022 1023 1024
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1025
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1026
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1027
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1028 1029
	}

1030
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1094 1095 1096 1097 1098 1099 1100 1101
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1102 1103
static void free_counter(struct perf_counter *counter)
{
1104 1105 1106
	if (counter->destroy)
		counter->destroy(counter);

1107 1108 1109
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1120
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1121 1122
	mutex_lock(&counter->mutex);

1123
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1124 1125

	mutex_unlock(&counter->mutex);
1126
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1127

1128
	free_counter(counter);
1129
	put_context(ctx);
T
Thomas Gleixner 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

1142
	if (count < sizeof(cntval))
T
Thomas Gleixner 已提交
1143 1144
		return -EINVAL;

1145 1146 1147 1148 1149 1150 1151 1152
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1153
	mutex_lock(&counter->mutex);
1154
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1165
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1166 1167 1168 1169 1170
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1181 1182 1183 1184 1185 1186

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1205 1206
static void __perf_counter_update_userpage(struct perf_counter *counter,
					   struct perf_mmap_data *data)
1207
{
1208
	struct perf_counter_mmap_page *userpg = data->user_page;
1209

1210 1211 1212 1213 1214
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1215 1216 1217 1218 1219 1220
	++userpg->lock;
	smp_wmb();
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1221 1222

	userpg->data_head = atomic_read(&data->head);
1223 1224
	smp_wmb();
	++userpg->lock;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	preempt_enable();
}

void perf_counter_update_userpage(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		__perf_counter_update_userpage(counter, data);
	rcu_read_unlock();
1237 1238 1239 1240 1241
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1254

1255 1256
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1257

1258 1259
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1260
	get_page(vmf->page);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1297
	return 0;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1350 1351 1352
}

static struct vm_operations_struct perf_mmap_vmops = {
1353 1354
	.open = perf_mmap_open,
	.close = perf_mmap_close,
1355 1356 1357 1358 1359 1360
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1361 1362 1363 1364
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1365 1366 1367

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1368 1369 1370 1371 1372

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

	if (nr_pages == 0 || !is_power_of_2(nr_pages))
1373 1374
		return -EINVAL;

1375
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1376 1377
		return -EINVAL;

1378 1379
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	locked = vma_size >>  PAGE_SHIFT;
	locked += vma->vm_mm->locked_vm;

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
		return -EPERM;

	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count))
		goto out;

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
	if (!ret)
		atomic_set(&counter->mmap_count, 1);
out:
	mutex_unlock(&counter->mmap_mutex);
1400 1401 1402 1403

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1404 1405

	return ret;
1406 1407
}

T
Thomas Gleixner 已提交
1408 1409 1410 1411
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1412 1413
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1414
	.mmap			= perf_mmap,
T
Thomas Gleixner 已提交
1415 1416
};

1417 1418 1419 1420
/*
 * Output
 */

1421 1422 1423 1424
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1425
	unsigned int		head;
1426 1427 1428 1429 1430
	int			wakeup;
};

static int perf_output_begin(struct perf_output_handle *handle,
			     struct perf_counter *counter, unsigned int size)
1431
{
1432
	struct perf_mmap_data *data;
1433
	unsigned int offset, head;
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

	if (!data->nr_pages)
		goto out;

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1445
		head += size;
1446 1447
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1448 1449 1450
	handle->counter	= counter;
	handle->data	= data;
	handle->offset	= offset;
1451
	handle->head	= head;
1452
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1453

1454
	return 0;
1455

1456 1457
out:
	rcu_read_unlock();
1458

1459 1460
	return -ENOSPC;
}
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1490 1491

	WARN_ON_ONCE(handle->offset > handle->head);
1492 1493
}

P
Peter Zijlstra 已提交
1494 1495 1496
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1497 1498 1499 1500 1501
static void perf_output_end(struct perf_output_handle *handle, int nmi)
{
	if (handle->wakeup) {
		(void)atomic_xchg(&handle->data->wakeup, POLL_IN);
		__perf_counter_update_userpage(handle->counter, handle->data);
1502
		if (nmi) {
1503
			handle->counter->wakeup_pending = 1;
1504 1505
			set_perf_counter_pending();
		} else
1506
			wake_up(&handle->counter->waitq);
1507
	}
1508
	rcu_read_unlock();
1509 1510 1511 1512 1513 1514 1515
}

static int perf_output_write(struct perf_counter *counter, int nmi,
			     void *buf, ssize_t size)
{
	struct perf_output_handle handle;
	int ret;
1516

1517 1518 1519 1520 1521 1522 1523 1524
	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		goto out;

	perf_output_copy(&handle, buf, size);
	perf_output_end(&handle, nmi);

out:
1525 1526 1527 1528 1529 1530
	return ret;
}

static void perf_output_simple(struct perf_counter *counter,
			       int nmi, struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
1531 1532 1533 1534
	struct {
		struct perf_event_header header;
		u64 ip;
	} event;
1535

P
Peter Zijlstra 已提交
1536 1537 1538
	event.header.type = PERF_EVENT_IP;
	event.header.size = sizeof(event);
	event.ip = instruction_pointer(regs);
1539

P
Peter Zijlstra 已提交
1540
	perf_output_write(counter, nmi, &event, sizeof(event));
1541 1542
}

1543
static void perf_output_group(struct perf_counter *counter, int nmi)
1544
{
P
Peter Zijlstra 已提交
1545 1546
	struct perf_output_handle handle;
	struct perf_event_header header;
1547
	struct perf_counter *leader, *sub;
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	unsigned int size;
	struct {
		u64 event;
		u64 counter;
	} entry;
	int ret;

	size = sizeof(header) + counter->nr_siblings * sizeof(entry);

	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		return;

	header.type = PERF_EVENT_GROUP;
	header.size = size;

	perf_output_put(&handle, header);
1565 1566 1567 1568 1569

	leader = counter->group_leader;
	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		if (sub != counter)
			sub->hw_ops->read(sub);
1570 1571 1572 1573

		entry.event = sub->hw_event.config;
		entry.counter = atomic64_read(&sub->count);

P
Peter Zijlstra 已提交
1574
		perf_output_put(&handle, entry);
1575
	}
P
Peter Zijlstra 已提交
1576 1577

	perf_output_end(&handle, nmi);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

void perf_counter_output(struct perf_counter *counter,
			 int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		return;

	case PERF_RECORD_IRQ:
1588
		perf_output_simple(counter, nmi, regs);
1589 1590 1591
		break;

	case PERF_RECORD_GROUP:
1592
		perf_output_group(counter, nmi);
1593 1594 1595 1596
		break;
	}
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
1657
		perf_counter_output(counter, 0, regs);
1658 1659 1660 1661 1662 1663 1664 1665 1666

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
1667 1668
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
1669
	perf_counter_output(counter, nmi, regs);
1670 1671
}

1672
static int perf_swcounter_match(struct perf_counter *counter,
1673 1674
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
1675 1676 1677 1678
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

1679
	if (perf_event_raw(&counter->hw_event))
1680 1681
		return 0;

1682
	if (perf_event_type(&counter->hw_event) != type)
1683 1684
		return 0;

1685
	if (perf_event_id(&counter->hw_event) != event)
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1697 1698 1699 1700 1701 1702 1703 1704
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1705
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1706 1707
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
1708 1709 1710
{
	struct perf_counter *counter;

1711
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1712 1713
		return;

P
Peter Zijlstra 已提交
1714 1715
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1716
		if (perf_swcounter_match(counter, type, event, regs))
1717
			perf_swcounter_add(counter, nr, nmi, regs);
1718
	}
P
Peter Zijlstra 已提交
1719
	rcu_read_unlock();
1720 1721
}

P
Peter Zijlstra 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

1736 1737
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
1738 1739
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
1740 1741 1742 1743 1744 1745 1746
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
1747

1748 1749 1750 1751 1752
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
1753

P
Peter Zijlstra 已提交
1754 1755 1756 1757
	barrier();
	(*recursion)--;

out:
1758 1759 1760
	put_cpu_var(perf_cpu_context);
}

1761 1762 1763 1764 1765
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1782 1783 1784 1785 1786 1787
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1788 1789 1790 1791
/*
 * Software counter: cpu wall time clock
 */

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1804 1805 1806 1807 1808 1809
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1810 1811
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1821 1822
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1823
	hrtimer_cancel(&counter->hw.hrtimer);
1824
	cpu_clock_perf_counter_update(counter);
1825 1826 1827 1828
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1829
	cpu_clock_perf_counter_update(counter);
1830 1831 1832
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1833 1834 1835
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1836 1837
};

1838 1839 1840 1841
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1842 1843 1844 1845
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1846
{
I
Ingo Molnar 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1867 1868
}

1869
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1870
{
1871 1872 1873
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1874 1875
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1876 1877 1878 1879 1880
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
1881 1882

	return 0;
I
Ingo Molnar 已提交
1883 1884 1885
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1886
{
1887 1888 1889 1890
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
1891

1892 1893 1894 1895
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
1896 1897 1898
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1899 1900 1901
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1902 1903
};

1904 1905 1906 1907
/*
 * Software counter: cpu migrations
 */

1908
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1909
{
1910 1911 1912 1913 1914
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1915 1916 1917 1918 1919 1920 1921 1922
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1923
	now = get_cpu_migrations(counter);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1937
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1938
{
1939 1940 1941
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1942
	return 0;
1943 1944 1945 1946 1947 1948 1949 1950
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1951 1952 1953
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1954 1955
};

1956 1957 1958
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
1959 1960 1961 1962 1963 1964
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1965 1966 1967 1968 1969 1970 1971
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
1972
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
1973 1974 1975 1976 1977
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
1978
	int event_id = perf_event_id(&counter->hw_event);
1979 1980 1981 1982 1983 1984 1985
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
1986
	counter->hw.irq_period = counter->hw_event.irq_period;
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

1998 1999 2000
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2001
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2002
	const struct hw_perf_counter_ops *hw_ops = NULL;
2003
	struct hw_perf_counter *hwc = &counter->hw;
2004

2005 2006 2007 2008 2009 2010 2011
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2012
	switch (perf_event_id(&counter->hw_event)) {
2013
	case PERF_COUNT_CPU_CLOCK:
2014 2015 2016 2017
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2018
		break;
2019
	case PERF_COUNT_TASK_CLOCK:
2020 2021 2022 2023 2024 2025 2026 2027
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2028 2029 2030

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2031
		break;
2032
	case PERF_COUNT_PAGE_FAULTS:
2033 2034
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2035
	case PERF_COUNT_CONTEXT_SWITCHES:
2036
		hw_ops = &perf_ops_generic;
2037
		break;
2038
	case PERF_COUNT_CPU_MIGRATIONS:
2039 2040
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2041
		break;
2042
	}
2043 2044 2045 2046

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2047 2048 2049
	return hw_ops;
}

T
Thomas Gleixner 已提交
2050 2051 2052 2053
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2054 2055
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2056
		   struct perf_counter_context *ctx,
2057 2058
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2059
{
2060
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2061
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
2062

2063
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2064 2065 2066
	if (!counter)
		return NULL;

2067 2068 2069 2070 2071 2072 2073
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2074
	mutex_init(&counter->mutex);
2075
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2076
	INIT_LIST_HEAD(&counter->event_entry);
2077
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2078 2079
	init_waitqueue_head(&counter->waitq);

2080 2081
	mutex_init(&counter->mmap_mutex);

2082 2083
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2084 2085 2086
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
2087
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2088
	counter->hw_ops			= NULL;
2089
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2090

2091
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2092 2093 2094
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2095
	hw_ops = NULL;
2096

2097
	if (perf_event_raw(hw_event)) {
2098
		hw_ops = hw_perf_counter_init(counter);
2099 2100 2101 2102
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2103
	case PERF_TYPE_HARDWARE:
2104
		hw_ops = hw_perf_counter_init(counter);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2115

I
Ingo Molnar 已提交
2116 2117 2118 2119
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
2120
done:
I
Ingo Molnar 已提交
2121
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2122 2123 2124 2125 2126

	return counter;
}

/**
2127
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2128 2129
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2130
 * @pid:		target pid
I
Ingo Molnar 已提交
2131 2132
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2133
 */
2134
SYSCALL_DEFINE5(perf_counter_open,
2135
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2136
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2137
{
2138
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2139
	struct perf_counter_hw_event hw_event;
2140
	struct perf_counter_context *ctx;
2141
	struct file *counter_file = NULL;
2142 2143
	struct file *group_file = NULL;
	int fput_needed = 0;
2144
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2145 2146
	int ret;

2147 2148 2149 2150
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2151
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2152 2153
		return -EFAULT;

2154
	/*
I
Ingo Molnar 已提交
2155 2156 2157 2158 2159 2160 2161 2162
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2163 2164 2165 2166 2167 2168
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2169
			goto err_put_context;
2170
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2171
			goto err_put_context;
2172 2173 2174

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2175 2176 2177 2178 2179 2180 2181 2182
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2183
		 */
I
Ingo Molnar 已提交
2184 2185
		if (group_leader->ctx != ctx)
			goto err_put_context;
2186 2187 2188 2189 2190
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2191 2192
	}

2193
	ret = -EINVAL;
2194 2195
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
2196 2197 2198 2199 2200
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2201 2202 2203 2204 2205 2206 2207
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2208
	mutex_lock(&ctx->mutex);
2209
	perf_install_in_context(ctx, counter, cpu);
2210
	mutex_unlock(&ctx->mutex);
2211 2212

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2213

2214 2215 2216
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2217 2218
	return ret;

2219
err_free_put_context:
T
Thomas Gleixner 已提交
2220 2221 2222 2223 2224
	kfree(counter);

err_put_context:
	put_context(ctx);

2225
	goto out_fput;
T
Thomas Gleixner 已提交
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2237
	mutex_init(&ctx->mutex);
2238
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2239
	INIT_LIST_HEAD(&ctx->event_list);
2240 2241 2242 2243 2244 2245
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2246
static struct perf_counter *
2247 2248 2249 2250
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2251
	      struct perf_counter *group_leader,
2252 2253 2254 2255
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2256 2257 2258 2259 2260 2261 2262 2263 2264
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2265
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2266 2267
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2268
	if (!child_counter)
2269
		return NULL;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2331 2332 2333
	return 0;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2361 2362 2363 2364 2365 2366
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2367
	struct perf_counter *sub, *tmp;
2368 2369

	/*
2370 2371 2372 2373 2374 2375
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2376
	 */
2377 2378 2379 2380
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2381
		struct perf_cpu_context *cpuctx;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2393 2394 2395

		cpuctx = &__get_cpu_var(perf_cpu_context);

2396
		group_sched_out(child_counter, cpuctx, child_ctx);
2397

2398
		list_del_init(&child_counter->list_entry);
2399

2400
		child_ctx->nr_counters--;
2401

2402 2403 2404
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2405 2406 2407 2408 2409 2410 2411

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2412 2413 2414 2415
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2416
			if (sub->parent) {
2417
				sync_child_counter(sub, sub->parent);
2418
				free_counter(sub);
2419
			}
2420
		}
2421
		free_counter(child_counter);
2422
	}
2423 2424 2425
}

/*
2426
 * When a child task exits, feed back counter values to parent counters.
2427
 *
2428
 * Note: we may be running in child context, but the PID is not hashed
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2452
	struct perf_counter *counter;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2472
	mutex_lock(&parent_ctx->mutex);
2473 2474 2475 2476 2477 2478

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2479
		if (!counter->hw_event.inherit)
2480 2481
			continue;

2482
		if (inherit_group(counter, parent,
2483 2484 2485 2486
				  parent_ctx, child, child_ctx))
			break;
	}

2487
	mutex_unlock(&parent_ctx->mutex);
2488 2489
}

2490
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2491
{
2492
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2493

2494 2495
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2496 2497

	mutex_lock(&perf_resource_mutex);
2498
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2499
	mutex_unlock(&perf_resource_mutex);
2500

2501
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2502 2503 2504
}

#ifdef CONFIG_HOTPLUG_CPU
2505
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2506 2507 2508 2509 2510
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2511 2512
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2513
}
2514
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2515
{
2516 2517 2518 2519
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2520
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2521
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2522 2523
}
#else
2524
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2536
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2537 2538 2539 2540
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2541
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);