perf_counter.c 78.3 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42 43 44 45
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

46
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
48

T
Thomas Gleixner 已提交
49
/*
50
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
51
 */
52
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
53 54 55 56

/*
 * Architecture provided APIs - weak aliases:
 */
57
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
58
{
59
	return NULL;
T
Thomas Gleixner 已提交
60 61
}

62
u64 __weak hw_perf_save_disable(void)		{ return 0; }
63
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
64
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
65 66 67 68 69 70
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
71

72 73
void __weak perf_counter_print_debug(void)	{ }

74 75 76 77 78 79 80 81 82 83 84 85
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
86
	else {
87
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
88 89
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
90 91

	list_add_rcu(&counter->event_entry, &ctx->event_list);
92 93 94 95 96 97 98 99
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
100
	list_del_rcu(&counter->event_entry);
101

P
Peter Zijlstra 已提交
102 103 104
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

105 106 107 108 109 110 111 112
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

113
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
114 115 116 117
		sibling->group_leader = sibling;
	}
}

118 119 120 121 122 123 124 125 126
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
127
	counter->tstamp_stopped = ctx->time;
128
	counter->pmu->disable(counter);
129 130 131 132 133 134 135 136 137
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
160 161 162 163 164 165
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
166
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
167 168 169 170
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
171
	unsigned long flags;
172
	u64 perf_flags;
T
Thomas Gleixner 已提交
173 174 175 176 177 178 179 180 181

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

182
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
183

184 185 186
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
187 188 189 190 191 192
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
193
	perf_flags = hw_perf_save_disable();
194
	list_del_counter(counter, ctx);
195
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
196 197 198 199 200 201 202 203 204 205 206

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

207
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
208 209 210 211 212 213
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
214
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
215 216 217 218
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
219
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
220 221 222 223 224 225 226 227 228 229
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
230
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
231 232 233 234 235
					 counter, 1);
		return;
	}

retry:
236
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
237 238 239 240 241 242
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
243
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
244 245 246 247 248 249
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
250
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
251 252
	 * succeed.
	 */
253
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
254
		ctx->nr_counters--;
255
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
256 257 258 259 260
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

261
static inline u64 perf_clock(void)
262
{
263
	return cpu_clock(smp_processor_id());
264 265 266 267 268
}

/*
 * Update the record of the current time in a context.
 */
269
static void update_context_time(struct perf_counter_context *ctx)
270
{
271 272 273 274
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
275 276 277 278 279 280 281 282 283 284
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

285 286 287 288 289 290 291 292 293 294 295
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

327
	spin_lock_irqsave(&ctx->lock, flags);
328 329 330 331 332 333

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334
		update_context_time(ctx);
335
		update_counter_times(counter);
336 337 338 339 340 341 342
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

343
	spin_unlock_irqrestore(&ctx->lock, flags);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
379 380
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
381
		counter->state = PERF_COUNTER_STATE_OFF;
382
	}
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

405 406 407 408 409 410
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
411
	if (counter->state <= PERF_COUNTER_STATE_OFF)
412 413 414 415 416 417 418 419 420
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

421
	if (counter->pmu->enable(counter)) {
422 423 424 425 426
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

427
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
428

429 430
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
431 432
	ctx->nr_active++;

433 434 435
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

436 437 438
	return 0;
}

439 440 441 442 443 444 445 446 447 448
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
449

450 451 452
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

488 489 490 491 492 493
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
494 495 496
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
497 498
}

T
Thomas Gleixner 已提交
499
/*
500
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
501 502 503 504 505 506
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
507
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
508
	int cpu = smp_processor_id();
509
	unsigned long flags;
510
	u64 perf_flags;
511
	int err;
T
Thomas Gleixner 已提交
512 513 514 515 516 517 518 519 520

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

521
	spin_lock_irqsave(&ctx->lock, flags);
522
	update_context_time(ctx);
T
Thomas Gleixner 已提交
523 524 525 526 527

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
528
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
529

530
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
531

532 533 534 535 536 537 538 539
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

540 541 542 543 544
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
545
	if (!group_can_go_on(counter, cpuctx, 1))
546 547 548 549
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

550 551 552 553 554 555 556 557
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
558 559
		if (leader->hw_event.pinned) {
			update_group_times(leader);
560
			leader->state = PERF_COUNTER_STATE_ERROR;
561
		}
562
	}
T
Thomas Gleixner 已提交
563

564
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
565 566
		cpuctx->max_pertask--;

567
 unlock:
568 569
	hw_perf_restore(perf_flags);

570
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
571 572 573 574 575 576 577 578 579 580 581
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
582 583
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
611
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
612 613 614 615 616 617 618 619 620
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
621 622
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
623 624 625
	spin_unlock_irq(&ctx->lock);
}

626 627 628 629
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
630
{
631 632 633 634 635 636
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
637

638 639 640 641 642
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
643 644
		return;

645
	spin_lock_irqsave(&ctx->lock, flags);
646
	update_context_time(ctx);
647

648
	counter->prev_state = counter->state;
649 650 651
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
652
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653 654

	/*
655 656
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
657
	 */
658 659
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
660

661 662 663 664 665 666 667 668 669 670 671 672 673
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
674 675
		if (leader->hw_event.pinned) {
			update_group_times(leader);
676
			leader->state = PERF_COUNTER_STATE_ERROR;
677
		}
678 679 680
	}

 unlock:
681
	spin_unlock_irqrestore(&ctx->lock, flags);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
732
	if (counter->state == PERF_COUNTER_STATE_OFF) {
733
		counter->state = PERF_COUNTER_STATE_INACTIVE;
734 735
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
736
	}
737 738 739 740
 out:
	spin_unlock_irq(&ctx->lock);
}

741 742 743 744 745 746
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
763 764
}

765 766 767 768
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
769
	u64 flags;
770

771 772
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
773
	if (likely(!ctx->nr_counters))
774
		goto out;
775
	update_context_time(ctx);
776

777
	flags = hw_perf_save_disable();
778 779 780 781
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
782
	hw_perf_restore(flags);
783
 out:
784 785 786
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
787 788 789 790 791 792
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
793
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
794 795 796 797 798 799 800 801
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
802
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
803 804 805 806

	if (likely(!cpuctx->task_ctx))
		return;

807 808
	update_context_time(ctx);

809
	regs = task_pt_regs(task);
810
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
811 812
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
813 814 815
	cpuctx->task_ctx = NULL;
}

816
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
817
{
818
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
819 820
}

I
Ingo Molnar 已提交
821
static int
822 823 824 825 826
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
827
	struct perf_counter *counter, *partial_group;
828 829 830 831 832 833 834 835
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
836

837
	group_counter->prev_state = group_counter->state;
838 839
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
840 841 842 843

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
844
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
845
		counter->prev_state = counter->state;
846 847 848 849 850 851
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

852
	return 0;
853 854 855 856 857 858 859 860 861 862

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
863
	}
864
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
865

866
	return -EAGAIN;
867 868
}

869 870 871
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
872 873
{
	struct perf_counter *counter;
874
	u64 flags;
875
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
876

877 878
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
879
	if (likely(!ctx->nr_counters))
880
		goto out;
T
Thomas Gleixner 已提交
881

882
	ctx->timestamp = perf_clock();
883

884
	flags = hw_perf_save_disable();
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
904 905
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
906
			counter->state = PERF_COUNTER_STATE_ERROR;
907
		}
908 909
	}

910
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
911 912 913 914 915 916 917 918
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

919 920 921 922
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
923 924 925
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

926
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
927 928
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
929
		}
T
Thomas Gleixner 已提交
930
	}
931
	hw_perf_restore(flags);
932
 out:
T
Thomas Gleixner 已提交
933
	spin_unlock(&ctx->lock);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
951

952
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
953 954 955
	cpuctx->task_ctx = ctx;
}

956 957 958 959 960 961 962
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

963 964 965 966 967
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
968
	unsigned long flags;
969 970 971 972 973 974
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

975
	local_irq_save(flags);
976 977 978 979 980 981 982 983 984 985 986
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

987
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
988 989
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
990
			counter->state = PERF_COUNTER_STATE_OFF;
991
		}
992
	}
993

994 995
	hw_perf_restore(perf_flags);

996
	spin_unlock_irqrestore(&ctx->lock, flags);
997 998 999 1000 1001 1002 1003 1004 1005

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1006
	unsigned long flags;
1007 1008 1009 1010 1011 1012
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1013
	local_irq_save(flags);
1014 1015
	cpu = smp_processor_id();

1016 1017
	perf_counter_task_sched_out(curr, cpu);

1018 1019 1020 1021 1022 1023 1024 1025
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1026
		if (counter->state > PERF_COUNTER_STATE_OFF)
1027
			continue;
1028
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1029 1030
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1031
		counter->hw_event.disabled = 0;
1032 1033 1034 1035 1036 1037 1038
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1039
	local_irq_restore(flags);
1040 1041 1042 1043

	return 0;
}

1044 1045 1046 1047
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1048 1049
{
	struct perf_counter *counter;
1050
	u64 perf_flags;
T
Thomas Gleixner 已提交
1051

1052
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1053 1054 1055 1056
		return;

	spin_lock(&ctx->lock);
	/*
1057
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1058
	 */
1059
	perf_flags = hw_perf_save_disable();
1060
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1061
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1062 1063
		break;
	}
1064
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1065 1066

	spin_unlock(&ctx->lock);
1067 1068 1069 1070 1071 1072 1073
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;

1074
	perf_counter_cpu_sched_out(cpuctx);
1075
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1076

1077
	rotate_ctx(&cpuctx->ctx);
1078 1079
	rotate_ctx(ctx);

1080
	perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1081 1082 1083 1084 1085 1086
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1087
static void __read(void *info)
T
Thomas Gleixner 已提交
1088
{
I
Ingo Molnar 已提交
1089
	struct perf_counter *counter = info;
1090
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1091
	unsigned long flags;
I
Ingo Molnar 已提交
1092

1093
	local_irq_save(flags);
1094
	if (ctx->is_active)
1095
		update_context_time(ctx);
1096
	counter->pmu->read(counter);
1097
	update_counter_times(counter);
1098
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1099 1100
}

1101
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1102 1103 1104 1105 1106
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1107
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1108
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1109
					 __read, counter, 1);
1110 1111
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1112 1113
	}

1114
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1134
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1178 1179 1180 1181 1182 1183 1184 1185
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1186 1187
static void perf_pending_sync(struct perf_counter *counter);

1188 1189
static void free_counter(struct perf_counter *counter)
{
1190 1191
	perf_pending_sync(counter);

1192 1193 1194 1195 1196 1197 1198
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1199 1200 1201
	if (counter->destroy)
		counter->destroy(counter);

1202 1203 1204
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1215
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1216 1217
	mutex_lock(&counter->mutex);

1218
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1219 1220

	mutex_unlock(&counter->mutex);
1221
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1222

1223
	free_counter(counter);
1224
	put_context(ctx);
T
Thomas Gleixner 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1235 1236
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1237

1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1246
	mutex_lock(&counter->mutex);
1247 1248 1249 1250 1251 1252 1253 1254
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1255 1256
	mutex_unlock(&counter->mutex);

1257 1258 1259 1260 1261 1262 1263 1264
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1265 1266 1267 1268 1269 1270 1271
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1272
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1273 1274 1275 1276 1277
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1278
	struct perf_mmap_data *data;
1279
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1280 1281 1282 1283

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1284
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1285
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1286 1287 1288 1289 1290 1291

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1292 1293 1294 1295 1296
static void perf_counter_reset(struct perf_counter *counter)
{
	atomic_set(&counter->count, 0);
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1309 1310 1311
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1312 1313 1314
	case PERF_COUNTER_IOC_RESET:
		perf_counter_reset(counter);
		break;
1315 1316 1317 1318 1319 1320
	default:
		err = -ENOTTY;
	}
	return err;
}

1321 1322 1323 1324 1325 1326
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1327
{
1328 1329 1330 1331 1332 1333 1334 1335 1336
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1337

1338 1339 1340 1341 1342
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1343
	++userpg->lock;
1344
	barrier();
1345 1346 1347 1348
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1349

1350
	barrier();
1351
	++userpg->lock;
1352
	preempt_enable();
1353
unlock:
1354
	rcu_read_unlock();
1355 1356 1357 1358 1359
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1372

1373 1374
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1375

1376 1377
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1378
	get_page(vmf->page);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1415
	return 0;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1465
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1466 1467 1468
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1469 1470 1471
}

static struct vm_operations_struct perf_mmap_vmops = {
1472
	.open  = perf_mmap_open,
1473
	.close = perf_mmap_close,
1474 1475 1476 1477 1478 1479
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1480 1481 1482 1483
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1484
	long extra;
1485 1486 1487

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1488 1489 1490 1491

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1492 1493 1494 1495 1496
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1497 1498
		return -EINVAL;

1499
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1500 1501
		return -EINVAL;

1502 1503
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1504

1505 1506 1507 1508 1509 1510 1511
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1512 1513 1514 1515 1516 1517
	extra = nr_pages /* + 1 only account the data pages */;
	extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
	if (extra < 0)
		extra = 0;

	locked = vma->vm_mm->locked_vm + extra;
1518 1519 1520 1521

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1522 1523 1524 1525
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1526 1527 1528

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1529 1530 1531 1532
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1533 1534
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1535
unlock:
1536
	mutex_unlock(&counter->mmap_mutex);
1537 1538 1539 1540

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1541 1542

	return ret;
1543 1544
}

P
Peter Zijlstra 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1561 1562 1563 1564
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1565 1566
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1567
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1568
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1569 1570
};

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1581 1582 1583 1584 1585

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1613
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1614

1615
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1616 1617 1618
	PENDING_TAIL,
};

1619 1620
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1621
{
1622
	struct perf_pending_entry **head;
1623

1624
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1625 1626
		return;

1627 1628 1629
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1630 1631

	do {
1632 1633
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1634 1635 1636

	set_perf_counter_pending();

1637
	put_cpu_var(perf_pending_head);
1638 1639 1640 1641
}

static int __perf_pending_run(void)
{
1642
	struct perf_pending_entry *list;
1643 1644
	int nr = 0;

1645
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1646
	while (list != PENDING_TAIL) {
1647 1648
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1649 1650 1651

		list = list->next;

1652 1653
		func = entry->func;
		entry->next = NULL;
1654 1655 1656 1657 1658 1659 1660
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1661
		func(entry);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1683
	return counter->pending.next == NULL;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1696 1697 1698 1699
/*
 * Callchain support -- arch specific
 */

1700
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1701 1702 1703 1704
{
	return NULL;
}

1705 1706 1707 1708
/*
 * Output
 */

1709 1710 1711 1712
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1713
	unsigned int		head;
1714
	int			nmi;
1715
	int			overflow;
1716 1717
	int			locked;
	unsigned long		flags;
1718 1719
};

1720
static void perf_output_wakeup(struct perf_output_handle *handle)
1721
{
1722 1723
	atomic_set(&handle->data->poll, POLL_IN);

1724
	if (handle->nmi) {
1725
		handle->counter->pending_wakeup = 1;
1726
		perf_pending_queue(&handle->counter->pending,
1727
				   perf_pending_counter);
1728
	} else
1729 1730 1731
		perf_counter_wakeup(handle->counter);
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

	while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

1769
	data->done_head = data->head;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
1780
	while ((head = atomic_xchg(&data->done_head, 0)))
1781 1782 1783
		data->user_page->data_head = head;

	/*
1784
	 * NMI can happen here, which means we can miss a done_head update.
1785 1786 1787 1788 1789 1790 1791 1792
	 */

	cpu = atomic_xchg(&data->lock, 0);
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
1793
	if (unlikely(atomic_read(&data->done_head))) {
1794 1795 1796 1797 1798 1799 1800 1801 1802
		/*
		 * Since we had it locked, we can lock it again.
		 */
		while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
			cpu_relax();

		goto again;
	}

1803
	if (atomic_xchg(&data->wakeup, 0))
1804 1805 1806 1807 1808
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

1809
static int perf_output_begin(struct perf_output_handle *handle,
1810
			     struct perf_counter *counter, unsigned int size,
1811
			     int nmi, int overflow)
1812
{
1813
	struct perf_mmap_data *data;
1814
	unsigned int offset, head;
1815

1816 1817 1818 1819 1820
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1821
	handle->data	 = data;
1822 1823 1824
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1825

1826
	if (!data->nr_pages)
1827
		goto fail;
1828

1829 1830
	perf_output_lock(handle);

1831 1832
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1833
		head += size;
1834 1835
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1836
	handle->offset	= offset;
1837
	handle->head	= head;
1838 1839 1840

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
1841

1842
	return 0;
1843

1844
fail:
1845
	perf_output_wakeup(handle);
1846 1847
out:
	rcu_read_unlock();
1848

1849 1850
	return -ENOSPC;
}
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1880 1881

	WARN_ON_ONCE(handle->offset > handle->head);
1882 1883
}

P
Peter Zijlstra 已提交
1884 1885 1886
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1887
static void perf_output_end(struct perf_output_handle *handle)
1888
{
1889 1890 1891 1892
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
1893

1894
	if (handle->overflow && wakeup_events) {
1895
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
1896
		if (events >= wakeup_events) {
1897
			atomic_sub(wakeup_events, &data->events);
1898
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
1899
		}
1900 1901 1902
	}

	perf_output_unlock(handle);
1903
	rcu_read_unlock();
1904 1905
}

1906
static void perf_counter_output(struct perf_counter *counter,
1907
				int nmi, struct pt_regs *regs, u64 addr)
1908
{
1909
	int ret;
1910
	u64 record_type = counter->hw_event.record_type;
1911 1912 1913
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1914
	struct {
1915
		u32 pid, tid;
1916
	} tid_entry;
1917 1918 1919 1920
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1921 1922
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1923
	u64 time;
1924

1925
	header.type = 0;
1926
	header.size = sizeof(header);
1927

1928 1929
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1930 1931
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1932 1933
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1934
		header.type |= PERF_RECORD_IP;
1935 1936
		header.size += sizeof(ip);
	}
1937

1938
	if (record_type & PERF_RECORD_TID) {
1939
		/* namespace issues */
1940 1941 1942
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1943
		header.type |= PERF_RECORD_TID;
1944 1945 1946
		header.size += sizeof(tid_entry);
	}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

1957 1958 1959 1960 1961
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

1962
	if (record_type & PERF_RECORD_GROUP) {
1963
		header.type |= PERF_RECORD_GROUP;
1964 1965 1966 1967 1968
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1969 1970 1971
		callchain = perf_callchain(regs);

		if (callchain) {
1972
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1973

1974
			header.type |= PERF_RECORD_CALLCHAIN;
1975 1976 1977 1978
			header.size += callchain_size;
		}
	}

1979
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1980 1981
	if (ret)
		return;
1982

1983
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1984

1985 1986
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1987

1988 1989
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1990

1991 1992 1993
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1994 1995 1996
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

1997 1998 1999
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2000

2001
		perf_output_put(&handle, nr);
2002

2003 2004 2005
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2006
				sub->pmu->read(sub);
2007

2008 2009
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2010

2011 2012
			perf_output_put(&handle, group_entry);
		}
2013
	}
P
Peter Zijlstra 已提交
2014

2015 2016
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2017

2018
	perf_output_end(&handle);
2019 2020
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2086
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2102 2103 2104 2105 2106 2107
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2144
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2145 2146 2147 2148 2149 2150 2151

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2152
	perf_output_end(&handle);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2200
		name = d_path(&file->f_path, buf, PATH_MAX);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2211
	size = ALIGN(strlen(name)+1, sizeof(u64));
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2230 2231 2232 2233 2234 2235
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2253 2254 2255 2256 2257 2258
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2273 2274 2275 2276 2277
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2278
			  int nmi, struct pt_regs *regs, u64 addr)
2279
{
2280 2281 2282
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2283
	counter->pending_kill = POLL_IN;
2284 2285
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2286
		counter->pending_kill = POLL_HUP;
2287 2288 2289 2290 2291 2292 2293 2294
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2295
	perf_counter_output(counter, nmi, regs, addr);
2296
	return ret;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2341 2342
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2343
	enum hrtimer_restart ret = HRTIMER_RESTART;
2344 2345 2346 2347
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2348
	counter->pmu->read(counter);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2359
	if (regs) {
2360
		if (perf_counter_overflow(counter, 0, regs, 0))
2361 2362
			ret = HRTIMER_NORESTART;
	}
2363 2364 2365

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2366
	return ret;
2367 2368 2369
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2370
				    int nmi, struct pt_regs *regs, u64 addr)
2371
{
2372 2373
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2374
	if (perf_counter_overflow(counter, nmi, regs, addr))
2375 2376 2377
		/* soft-disable the counter */
		;

2378 2379
}

2380
static int perf_swcounter_match(struct perf_counter *counter,
2381 2382
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2383 2384 2385 2386
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2387
	if (perf_event_raw(&counter->hw_event))
2388 2389
		return 0;

2390
	if (perf_event_type(&counter->hw_event) != type)
2391 2392
		return 0;

2393
	if (perf_event_id(&counter->hw_event) != event)
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2405
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2406
			       int nmi, struct pt_regs *regs, u64 addr)
2407 2408 2409
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2410
		perf_swcounter_overflow(counter, nmi, regs, addr);
2411 2412
}

2413
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2414
				     enum perf_event_types type, u32 event,
2415 2416
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2417 2418 2419
{
	struct perf_counter *counter;

2420
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2421 2422
		return;

P
Peter Zijlstra 已提交
2423 2424
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2425
		if (perf_swcounter_match(counter, type, event, regs))
2426
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2427
	}
P
Peter Zijlstra 已提交
2428
	rcu_read_unlock();
2429 2430
}

P
Peter Zijlstra 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2445
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2446 2447
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2448 2449
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2450 2451 2452 2453 2454 2455 2456
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2457

2458 2459
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2460 2461
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2462
					 nr, nmi, regs, addr);
2463
	}
2464

P
Peter Zijlstra 已提交
2465 2466 2467 2468
	barrier();
	(*recursion)--;

out:
2469 2470 2471
	put_cpu_var(perf_cpu_context);
}

2472 2473
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2474
{
2475
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2476 2477
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2494
static const struct pmu perf_ops_generic = {
2495 2496 2497 2498 2499
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2500 2501 2502 2503
/*
 * Software counter: cpu wall time clock
 */

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2516 2517 2518 2519 2520 2521
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2522 2523
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2524 2525 2526 2527 2528 2529 2530 2531 2532
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2533 2534
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2535
	hrtimer_cancel(&counter->hw.hrtimer);
2536
	cpu_clock_perf_counter_update(counter);
2537 2538 2539 2540
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2541
	cpu_clock_perf_counter_update(counter);
2542 2543
}

2544
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2545 2546 2547
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2548 2549
};

2550 2551 2552 2553
/*
 * Software counter: task time clock
 */

2554
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2555
{
2556
	u64 prev;
I
Ingo Molnar 已提交
2557 2558
	s64 delta;

2559
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2560 2561
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2562 2563
}

2564
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2565
{
2566
	struct hw_perf_counter *hwc = &counter->hw;
2567 2568 2569
	u64 now;

	now = counter->ctx->time;
2570

2571
	atomic64_set(&hwc->prev_count, now);
2572 2573
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2574 2575 2576 2577 2578
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2579 2580

	return 0;
I
Ingo Molnar 已提交
2581 2582 2583
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2584
{
2585
	hrtimer_cancel(&counter->hw.hrtimer);
2586 2587
	task_clock_perf_counter_update(counter, counter->ctx->time);

2588
}
I
Ingo Molnar 已提交
2589

2590 2591
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2604 2605
}

2606
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2607 2608 2609
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2610 2611
};

2612 2613 2614 2615
/*
 * Software counter: cpu migrations
 */

2616
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2617
{
2618 2619 2620 2621 2622
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2623 2624 2625 2626 2627 2628 2629 2630
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2631
	now = get_cpu_migrations(counter);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2645
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2646
{
2647 2648 2649
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2650
	return 0;
2651 2652 2653 2654 2655 2656 2657
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2658
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2659 2660 2661
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2662 2663
};

2664 2665 2666
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2667 2668 2669 2670 2671
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2672
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2673
}
2674
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2675 2676 2677 2678 2679 2680

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2681
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2682 2683
}

2684
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2685
{
2686
	int event_id = perf_event_id(&counter->hw_event);
2687 2688 2689 2690 2691 2692 2693
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2694
	counter->hw.irq_period = counter->hw_event.irq_period;
2695 2696 2697 2698

	return &perf_ops_generic;
}
#else
2699
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2700 2701 2702 2703 2704
{
	return NULL;
}
#endif

2705
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2706
{
2707
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2708
	const struct pmu *pmu = NULL;
2709
	struct hw_perf_counter *hwc = &counter->hw;
2710

2711 2712 2713 2714 2715 2716 2717
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2718
	switch (perf_event_id(&counter->hw_event)) {
2719
	case PERF_COUNT_CPU_CLOCK:
2720
		pmu = &perf_ops_cpu_clock;
2721 2722 2723

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2724
		break;
2725
	case PERF_COUNT_TASK_CLOCK:
2726 2727 2728 2729 2730
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
2731
			pmu = &perf_ops_task_clock;
2732
		else
2733
			pmu = &perf_ops_cpu_clock;
2734 2735 2736

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2737
		break;
2738
	case PERF_COUNT_PAGE_FAULTS:
2739 2740
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2741
	case PERF_COUNT_CONTEXT_SWITCHES:
2742
		pmu = &perf_ops_generic;
2743
		break;
2744
	case PERF_COUNT_CPU_MIGRATIONS:
2745
		if (!counter->hw_event.exclude_kernel)
2746
			pmu = &perf_ops_cpu_migrations;
2747
		break;
2748
	}
2749

2750
	if (pmu)
2751 2752
		hwc->irq_period = hw_event->irq_period;

2753
	return pmu;
2754 2755
}

T
Thomas Gleixner 已提交
2756 2757 2758 2759
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2760 2761
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2762
		   struct perf_counter_context *ctx,
2763 2764
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2765
{
2766
	const struct pmu *pmu;
I
Ingo Molnar 已提交
2767
	struct perf_counter *counter;
2768
	long err;
T
Thomas Gleixner 已提交
2769

2770
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2771
	if (!counter)
2772
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2773

2774 2775 2776 2777 2778 2779 2780
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2781
	mutex_init(&counter->mutex);
2782
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2783
	INIT_LIST_HEAD(&counter->event_entry);
2784
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2785 2786
	init_waitqueue_head(&counter->waitq);

2787 2788
	mutex_init(&counter->mmap_mutex);

2789 2790
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2791 2792
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2793
	counter->group_leader		= group_leader;
2794
	counter->pmu			= NULL;
2795
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2796

2797
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2798 2799 2800
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2801
	pmu = NULL;
2802

2803
	if (perf_event_raw(hw_event)) {
2804
		pmu = hw_perf_counter_init(counter);
2805 2806 2807 2808
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2809
	case PERF_TYPE_HARDWARE:
2810
		pmu = hw_perf_counter_init(counter);
2811 2812 2813
		break;

	case PERF_TYPE_SOFTWARE:
2814
		pmu = sw_perf_counter_init(counter);
2815 2816 2817
		break;

	case PERF_TYPE_TRACEPOINT:
2818
		pmu = tp_perf_counter_init(counter);
2819 2820
		break;
	}
2821 2822
done:
	err = 0;
2823
	if (!pmu)
2824
		err = -EINVAL;
2825 2826
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
2827

2828
	if (err) {
I
Ingo Molnar 已提交
2829
		kfree(counter);
2830
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2831
	}
2832

2833
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
2834

2835 2836 2837 2838 2839 2840 2841
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2842 2843 2844 2845
	return counter;
}

/**
2846
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2847 2848
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2849
 * @pid:		target pid
I
Ingo Molnar 已提交
2850 2851
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2852
 */
2853
SYSCALL_DEFINE5(perf_counter_open,
2854
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2855
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2856
{
2857
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2858
	struct perf_counter_hw_event hw_event;
2859
	struct perf_counter_context *ctx;
2860
	struct file *counter_file = NULL;
2861 2862
	struct file *group_file = NULL;
	int fput_needed = 0;
2863
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2864 2865
	int ret;

2866 2867 2868 2869
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2870
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2871 2872
		return -EFAULT;

2873
	/*
I
Ingo Molnar 已提交
2874 2875 2876 2877 2878 2879 2880 2881
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2882 2883 2884 2885 2886 2887
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2888
			goto err_put_context;
2889
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2890
			goto err_put_context;
2891 2892 2893

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2894 2895 2896 2897 2898 2899 2900 2901
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2902
		 */
I
Ingo Molnar 已提交
2903 2904
		if (group_leader->ctx != ctx)
			goto err_put_context;
2905 2906 2907 2908 2909
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2910 2911
	}

2912 2913
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2914 2915
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2916 2917 2918 2919
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2920 2921 2922 2923 2924 2925 2926
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2927
	mutex_lock(&ctx->mutex);
2928
	perf_install_in_context(ctx, counter, cpu);
2929
	mutex_unlock(&ctx->mutex);
2930 2931

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2932

2933 2934 2935
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2936 2937
	return ret;

2938
err_free_put_context:
T
Thomas Gleixner 已提交
2939 2940 2941 2942 2943
	kfree(counter);

err_put_context:
	put_context(ctx);

2944
	goto out_fput;
T
Thomas Gleixner 已提交
2945 2946
}

2947 2948 2949 2950 2951 2952 2953 2954 2955
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2956
	mutex_init(&ctx->mutex);
2957
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2958
	INIT_LIST_HEAD(&ctx->event_list);
2959 2960 2961 2962 2963 2964
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2965
static struct perf_counter *
2966 2967 2968 2969
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2970
	      struct perf_counter *group_leader,
2971 2972 2973 2974
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2975 2976 2977 2978 2979 2980 2981 2982 2983
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2984
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2985 2986
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2987 2988
	if (IS_ERR(child_counter))
		return child_counter;
2989 2990 2991 2992 2993

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2994
	add_counter_to_ctx(child_counter, child_ctx);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3039
	struct perf_counter *child_ctr;
3040 3041 3042

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3043 3044
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3045
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3046 3047 3048 3049
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3050
	}
3051 3052 3053
	return 0;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3066 3067 3068 3069
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3085 3086 3087 3088 3089 3090
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
3091
	struct perf_counter *sub, *tmp;
3092 3093

	/*
3094 3095 3096 3097 3098 3099
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3100
	 */
3101 3102 3103
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
3104
		update_counter_times(child_counter);
3105
	} else {
3106
		struct perf_cpu_context *cpuctx;
3107 3108 3109 3110 3111 3112 3113 3114 3115
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3116
		local_irq_save(flags);
3117
		perf_flags = hw_perf_save_disable();
3118 3119 3120

		cpuctx = &__get_cpu_var(perf_cpu_context);

3121
		group_sched_out(child_counter, cpuctx, child_ctx);
3122
		update_counter_times(child_counter);
3123

3124
		list_del_init(&child_counter->list_entry);
3125

3126
		child_ctx->nr_counters--;
3127

3128
		hw_perf_restore(perf_flags);
3129
		local_irq_restore(flags);
3130
	}
3131 3132 3133 3134 3135 3136 3137

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3138 3139 3140 3141
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3142
			if (sub->parent) {
3143
				sync_child_counter(sub, sub->parent);
3144
				free_counter(sub);
3145
			}
3146
		}
3147
		free_counter(child_counter);
3148
	}
3149 3150 3151
}

/*
3152
 * When a child task exits, feed back counter values to parent counters.
3153
 *
3154
 * Note: we may be running in child context, but the PID is not hashed
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3178
	struct perf_counter *counter;
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3198
	mutex_lock(&parent_ctx->mutex);
3199 3200 3201 3202 3203 3204

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3205
		if (!counter->hw_event.inherit)
3206 3207
			continue;

3208
		if (inherit_group(counter, parent,
3209 3210 3211 3212
				  parent_ctx, child, child_ctx))
			break;
	}

3213
	mutex_unlock(&parent_ctx->mutex);
3214 3215
}

3216
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3217
{
3218
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3219

3220 3221
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3222

3223
	spin_lock(&perf_resource_lock);
3224
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3225
	spin_unlock(&perf_resource_lock);
3226

3227
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3228 3229 3230
}

#ifdef CONFIG_HOTPLUG_CPU
3231
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3232 3233 3234 3235 3236
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3237 3238
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3239
}
3240
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3241
{
3242 3243 3244 3245
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3246
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3247
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3248 3249
}
#else
3250
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3262
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3263 3264 3265 3266
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3267
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3281
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3308
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3318
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3340
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3341
	perf_overcommit = val;
3342
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);