perf_counter.c 65.5 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27 28
#include <linux/perf_counter.h>

29 30
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
31 32 33 34 35
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

36
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
37 38 39 40 41 42 43 44 45 46 47
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
48
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
49
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
50
{
51
	return NULL;
T
Thomas Gleixner 已提交
52 53
}

54
u64 __weak hw_perf_save_disable(void)		{ return 0; }
55
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
56
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
57 58 59 60 61 62
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
63

64 65
void __weak perf_counter_print_debug(void)	{ }

66 67 68 69 70 71 72 73 74 75 76 77
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
78
	else {
79
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
80 81
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
82 83

	list_add_rcu(&counter->event_entry, &ctx->event_list);
84 85 86 87 88 89 90 91
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
92
	list_del_rcu(&counter->event_entry);
93

P
Peter Zijlstra 已提交
94 95 96
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

97 98 99 100 101 102 103 104
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

105
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
106 107 108 109
		sibling->group_leader = sibling;
	}
}

110 111 112 113 114 115 116 117 118
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
119
	counter->tstamp_stopped = ctx->time_now;
120 121 122 123 124 125 126 127 128 129
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
152 153 154 155 156 157
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
158
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
159 160 161 162
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
163
	unsigned long flags;
164
	u64 perf_flags;
T
Thomas Gleixner 已提交
165 166 167 168 169 170 171 172 173

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
174 175
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
176

177 178 179
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
180 181 182 183 184 185
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
186
	perf_flags = hw_perf_save_disable();
187
	list_del_counter(counter, ctx);
188
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
189 190 191 192 193 194 195 196 197 198 199

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
200 201
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
202 203 204 205 206 207
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
208
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
209 210 211 212
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
213
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
214 215 216 217 218 219 220 221 222 223
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
224
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
225 226 227 228 229
					 counter, 1);
		return;
	}

retry:
230
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
231 232 233 234 235 236
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
237
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
238 239 240 241 242 243
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
244
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
245 246
	 * succeed.
	 */
247
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
248
		ctx->nr_counters--;
249
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
250 251 252 253 254
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Get the current time for this context.
 * If this is a task context, we use the task's task clock,
 * or for a per-cpu context, we use the cpu clock.
 */
static u64 get_context_time(struct perf_counter_context *ctx, int update)
{
	struct task_struct *curr = ctx->task;

	if (!curr)
		return cpu_clock(smp_processor_id());

	return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_counter_context *ctx, int update)
{
	ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		counter->total_time_enabled = ctx->time_now -
			counter->tstamp_enabled;
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			run_end = counter->tstamp_stopped;
		else
			run_end = ctx->time_now;
		counter->total_time_running = run_end - counter->tstamp_running;
	}
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334 335
		update_context_time(ctx, 1);
		update_counter_times(counter);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
380 381
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
382
		counter->state = PERF_COUNTER_STATE_OFF;
383
	}
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

406 407 408 409 410 411
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
412
	if (counter->state <= PERF_COUNTER_STATE_OFF)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

428 429
	counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;

430 431
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
432 433
	ctx->nr_active++;

434 435 436
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

437 438 439
	return 0;
}

440 441 442 443 444 445 446 447 448 449
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
450

451 452 453
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

489 490 491 492 493 494 495 496 497 498 499
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
	counter->tstamp_enabled = ctx->time_now;
	counter->tstamp_running = ctx->time_now;
	counter->tstamp_stopped = ctx->time_now;
}

T
Thomas Gleixner 已提交
500
/*
501
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
502 503 504 505 506 507
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
508
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
509
	int cpu = smp_processor_id();
510
	unsigned long flags;
511
	u64 perf_flags;
512
	int err;
T
Thomas Gleixner 已提交
513 514 515 516 517 518 519 520 521

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
522 523
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
524
	update_context_time(ctx, 1);
T
Thomas Gleixner 已提交
525 526 527 528 529

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
530
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
531

532
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
533

534 535 536 537 538 539 540 541
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

542 543 544 545 546
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
547
	if (!group_can_go_on(counter, cpuctx, 1))
548 549 550 551
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

552 553 554 555 556 557 558 559
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
560 561
		if (leader->hw_event.pinned) {
			update_group_times(leader);
562
			leader->state = PERF_COUNTER_STATE_ERROR;
563
		}
564
	}
T
Thomas Gleixner 已提交
565

566
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
567 568
		cpuctx->max_pertask--;

569
 unlock:
570 571
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
572 573
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
574 575 576 577 578 579 580 581 582 583 584
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
585 586
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
614
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
615 616 617 618 619 620 621 622 623
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
624 625
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
626 627 628
	spin_unlock_irq(&ctx->lock);
}

629 630 631 632
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
633
{
634 635 636 637 638 639
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
640

641 642 643 644 645
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
646 647
		return;

648 649
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
650
	update_context_time(ctx, 1);
651

652
	counter->prev_state = counter->state;
653 654 655
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
656
	counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
657 658

	/*
659 660
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
661
	 */
662 663
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
664

665 666 667 668 669 670 671 672 673 674 675 676 677
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
678 679
		if (leader->hw_event.pinned) {
			update_group_times(leader);
680
			leader->state = PERF_COUNTER_STATE_ERROR;
681
		}
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
737
	if (counter->state == PERF_COUNTER_STATE_OFF) {
738
		counter->state = PERF_COUNTER_STATE_INACTIVE;
739 740 741
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
	}
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
762 763
}

764 765 766 767
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
768
	u64 flags;
769

770 771
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
772
	if (likely(!ctx->nr_counters))
773
		goto out;
774
	update_context_time(ctx, 0);
775

776
	flags = hw_perf_save_disable();
777 778 779 780
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
781
	hw_perf_restore(flags);
782
 out:
783 784 785
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
786 787 788 789 790 791
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
792
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
793 794 795 796 797 798 799 800
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
801
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
802 803 804 805

	if (likely(!cpuctx->task_ctx))
		return;

806 807
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
808 809
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
810 811 812
	cpuctx->task_ctx = NULL;
}

813
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
814
{
815
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
816 817
}

I
Ingo Molnar 已提交
818
static int
819 820 821 822 823
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
824
	struct perf_counter *counter, *partial_group;
825 826 827 828 829 830 831 832
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
833

834
	group_counter->prev_state = group_counter->state;
835 836
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
837 838 839 840

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
841
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842
		counter->prev_state = counter->state;
843 844 845 846 847 848
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

849
	return 0;
850 851 852 853 854 855 856 857 858 859

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
860
	}
861
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862

863
	return -EAGAIN;
864 865
}

866 867 868
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
869 870
{
	struct perf_counter *counter;
871
	u64 flags;
872
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
873

874 875
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
876
	if (likely(!ctx->nr_counters))
877
		goto out;
T
Thomas Gleixner 已提交
878

879 880 881 882 883 884 885
	/*
	 * Add any time since the last sched_out to the lost time
	 * so it doesn't get included in the total_time_enabled and
	 * total_time_running measures for counters in the context.
	 */
	ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;

886
	flags = hw_perf_save_disable();
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
906 907
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
908
			counter->state = PERF_COUNTER_STATE_ERROR;
909
		}
910 911
	}

912
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
913 914 915 916 917 918 919 920
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

921 922 923 924
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
925 926 927
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

928
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
929 930
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
931
		}
T
Thomas Gleixner 已提交
932
	}
933
	hw_perf_restore(flags);
934
 out:
T
Thomas Gleixner 已提交
935
	spin_unlock(&ctx->lock);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
953

954
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
955 956 957
	cpuctx->task_ctx = ctx;
}

958 959 960 961 962 963 964
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

965 966 967 968 969
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
970
	unsigned long flags;
971 972 973 974 975 976
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
977
	curr_rq_lock_irq_save(&flags);
978 979
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
980 981 982
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

983 984 985 986 987 988 989 990 991
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

992
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
993 994
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
995
			counter->state = PERF_COUNTER_STATE_OFF;
996
		}
997
	}
998

999 1000 1001 1002
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
1003
	curr_rq_unlock_irq_restore(&flags);
1004 1005 1006 1007 1008 1009 1010 1011 1012

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1013
	unsigned long flags;
1014 1015 1016 1017 1018 1019
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
1020
	curr_rq_lock_irq_save(&flags);
1021 1022
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
1023 1024 1025
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

1026 1027
	perf_counter_task_sched_out(curr, cpu);

1028 1029 1030 1031 1032 1033 1034 1035
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036
		if (counter->state > PERF_COUNTER_STATE_OFF)
1037
			continue;
1038
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1039 1040
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
I
Ingo Molnar 已提交
1041
		counter->hw_event.disabled = 0;
1042 1043 1044 1045 1046 1047 1048
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
1049
	curr_rq_unlock_irq_restore(&flags);
1050 1051 1052 1053

	return 0;
}

1054 1055 1056 1057
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1058 1059
{
	struct perf_counter *counter;
1060
	u64 perf_flags;
T
Thomas Gleixner 已提交
1061

1062
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1063 1064 1065 1066
		return;

	spin_lock(&ctx->lock);
	/*
1067
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1068
	 */
1069
	perf_flags = hw_perf_save_disable();
1070
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1071
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1072 1073
		break;
	}
1074
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1075 1076

	spin_unlock(&ctx->lock);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1088

1089 1090 1091 1092 1093 1094
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1095 1096 1097 1098 1099 1100
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1101
static void __read(void *info)
T
Thomas Gleixner 已提交
1102
{
I
Ingo Molnar 已提交
1103
	struct perf_counter *counter = info;
1104
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1105
	unsigned long flags;
I
Ingo Molnar 已提交
1106

I
Ingo Molnar 已提交
1107
	curr_rq_lock_irq_save(&flags);
1108 1109
	if (ctx->is_active)
		update_context_time(ctx, 1);
I
Ingo Molnar 已提交
1110
	counter->hw_ops->read(counter);
1111
	update_counter_times(counter);
I
Ingo Molnar 已提交
1112
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1113 1114
}

1115
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1116 1117 1118 1119 1120
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1121
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1122
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1123
					 __read, counter, 1);
1124 1125
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1126 1127
	}

1128
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1192 1193 1194 1195 1196 1197 1198 1199
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1200 1201
static void free_counter(struct perf_counter *counter)
{
1202 1203 1204
	if (counter->destroy)
		counter->destroy(counter);

1205 1206 1207
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1218
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1219 1220
	mutex_lock(&counter->mutex);

1221
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1222 1223

	mutex_unlock(&counter->mutex);
1224
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1225

1226
	free_counter(counter);
1227
	put_context(ctx);
T
Thomas Gleixner 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1238 1239
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1240

1241 1242 1243 1244 1245 1246 1247 1248
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1249
	mutex_lock(&counter->mutex);
1250 1251 1252 1253 1254 1255 1256 1257
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1258 1259
	mutex_unlock(&counter->mutex);

1260 1261 1262 1263 1264 1265 1266 1267
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1268 1269 1270 1271 1272 1273 1274
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1275
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1276 1277 1278 1279 1280
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1291 1292 1293 1294 1295 1296

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1315 1316
static void __perf_counter_update_userpage(struct perf_counter *counter,
					   struct perf_mmap_data *data)
1317
{
1318
	struct perf_counter_mmap_page *userpg = data->user_page;
1319

1320 1321 1322 1323 1324
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1325 1326 1327 1328 1329 1330
	++userpg->lock;
	smp_wmb();
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1331 1332

	userpg->data_head = atomic_read(&data->head);
1333 1334
	smp_wmb();
	++userpg->lock;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	preempt_enable();
}

void perf_counter_update_userpage(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		__perf_counter_update_userpage(counter, data);
	rcu_read_unlock();
1347 1348 1349 1350 1351
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1364

1365 1366
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1367

1368 1369
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1370
	get_page(vmf->page);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1407
	return 0;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1460 1461 1462
}

static struct vm_operations_struct perf_mmap_vmops = {
1463 1464
	.open = perf_mmap_open,
	.close = perf_mmap_close,
1465 1466 1467 1468 1469 1470
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1471 1472 1473 1474
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1475 1476 1477

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1478 1479 1480 1481

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1482 1483 1484 1485 1486
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1487 1488
		return -EINVAL;

1489
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1490 1491
		return -EINVAL;

1492 1493
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	locked = vma_size >>  PAGE_SHIFT;
	locked += vma->vm_mm->locked_vm;

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
		return -EPERM;

	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count))
		goto out;

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
	if (!ret)
		atomic_set(&counter->mmap_count, 1);
out:
	mutex_unlock(&counter->mmap_mutex);
1514 1515 1516 1517

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1518 1519

	return ret;
1520 1521
}

T
Thomas Gleixner 已提交
1522 1523 1524 1525
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1526 1527
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1528
	.mmap			= perf_mmap,
T
Thomas Gleixner 已提交
1529 1530
};

1531 1532 1533 1534
/*
 * Output
 */

1535 1536 1537 1538
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1539
	unsigned int		head;
1540 1541 1542 1543 1544
	int			wakeup;
};

static int perf_output_begin(struct perf_output_handle *handle,
			     struct perf_counter *counter, unsigned int size)
1545
{
1546
	struct perf_mmap_data *data;
1547
	unsigned int offset, head;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

	if (!data->nr_pages)
		goto out;

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1559
		head += size;
1560 1561
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1562 1563 1564
	handle->counter	= counter;
	handle->data	= data;
	handle->offset	= offset;
1565
	handle->head	= head;
1566
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1567

1568
	return 0;
1569

1570 1571
out:
	rcu_read_unlock();
1572

1573 1574
	return -ENOSPC;
}
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1604 1605

	WARN_ON_ONCE(handle->offset > handle->head);
1606 1607
}

P
Peter Zijlstra 已提交
1608 1609 1610
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1611 1612 1613 1614 1615
static void perf_output_end(struct perf_output_handle *handle, int nmi)
{
	if (handle->wakeup) {
		(void)atomic_xchg(&handle->data->wakeup, POLL_IN);
		__perf_counter_update_userpage(handle->counter, handle->data);
1616
		if (nmi) {
1617
			handle->counter->wakeup_pending = 1;
1618 1619
			set_perf_counter_pending();
		} else
1620
			wake_up(&handle->counter->waitq);
1621
	}
1622
	rcu_read_unlock();
1623 1624 1625 1626 1627 1628 1629
}

static int perf_output_write(struct perf_counter *counter, int nmi,
			     void *buf, ssize_t size)
{
	struct perf_output_handle handle;
	int ret;
1630

1631 1632 1633 1634 1635 1636 1637 1638
	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		goto out;

	perf_output_copy(&handle, buf, size);
	perf_output_end(&handle, nmi);

out:
1639 1640 1641 1642 1643 1644
	return ret;
}

static void perf_output_simple(struct perf_counter *counter,
			       int nmi, struct pt_regs *regs)
{
1645
	unsigned int size;
P
Peter Zijlstra 已提交
1646 1647 1648
	struct {
		struct perf_event_header header;
		u64 ip;
1649
		u32 pid, tid;
P
Peter Zijlstra 已提交
1650
	} event;
1651

P
Peter Zijlstra 已提交
1652 1653
	event.header.type = PERF_EVENT_IP;
	event.ip = instruction_pointer(regs);
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	size = sizeof(event);

	if (counter->hw_event.include_tid) {
		/* namespace issues */
		event.pid = current->group_leader->pid;
		event.tid = current->pid;

		event.header.type |= __PERF_EVENT_TID;
	} else
		size -= sizeof(u64);

	event.header.size = size;

	perf_output_write(counter, nmi, &event, size);
1669 1670
}

1671
static void perf_output_group(struct perf_counter *counter, int nmi)
1672
{
P
Peter Zijlstra 已提交
1673 1674
	struct perf_output_handle handle;
	struct perf_event_header header;
1675
	struct perf_counter *leader, *sub;
P
Peter Zijlstra 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	unsigned int size;
	struct {
		u64 event;
		u64 counter;
	} entry;
	int ret;

	size = sizeof(header) + counter->nr_siblings * sizeof(entry);

	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		return;

	header.type = PERF_EVENT_GROUP;
	header.size = size;

	perf_output_put(&handle, header);
1693 1694 1695 1696 1697

	leader = counter->group_leader;
	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		if (sub != counter)
			sub->hw_ops->read(sub);
1698 1699 1700 1701

		entry.event = sub->hw_event.config;
		entry.counter = atomic64_read(&sub->count);

P
Peter Zijlstra 已提交
1702
		perf_output_put(&handle, entry);
1703
	}
P
Peter Zijlstra 已提交
1704 1705

	perf_output_end(&handle, nmi);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

void perf_counter_output(struct perf_counter *counter,
			 int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		return;

	case PERF_RECORD_IRQ:
1716
		perf_output_simple(counter, nmi, regs);
1717 1718 1719
		break;

	case PERF_RECORD_GROUP:
1720
		perf_output_group(counter, nmi);
1721 1722 1723 1724
		break;
	}
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
1785
		perf_counter_output(counter, 0, regs);
1786 1787 1788 1789 1790 1791 1792 1793 1794

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
1795 1796
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
1797
	perf_counter_output(counter, nmi, regs);
1798 1799
}

1800
static int perf_swcounter_match(struct perf_counter *counter,
1801 1802
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
1803 1804 1805 1806
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

1807
	if (perf_event_raw(&counter->hw_event))
1808 1809
		return 0;

1810
	if (perf_event_type(&counter->hw_event) != type)
1811 1812
		return 0;

1813
	if (perf_event_id(&counter->hw_event) != event)
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1825 1826 1827 1828 1829 1830 1831 1832
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1833
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1834 1835
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
1836 1837 1838
{
	struct perf_counter *counter;

1839
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1840 1841
		return;

P
Peter Zijlstra 已提交
1842 1843
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1844
		if (perf_swcounter_match(counter, type, event, regs))
1845
			perf_swcounter_add(counter, nr, nmi, regs);
1846
	}
P
Peter Zijlstra 已提交
1847
	rcu_read_unlock();
1848 1849
}

P
Peter Zijlstra 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

1864 1865
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
1866 1867
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
1868 1869 1870 1871 1872 1873 1874
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
1875

1876 1877 1878 1879 1880
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
1881

P
Peter Zijlstra 已提交
1882 1883 1884 1885
	barrier();
	(*recursion)--;

out:
1886 1887 1888
	put_cpu_var(perf_cpu_context);
}

1889 1890 1891 1892 1893
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1910 1911 1912 1913 1914 1915
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1916 1917 1918 1919
/*
 * Software counter: cpu wall time clock
 */

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1932 1933 1934 1935 1936 1937
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1938 1939
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1940 1941 1942 1943 1944 1945 1946 1947 1948
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1949 1950
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1951
	hrtimer_cancel(&counter->hw.hrtimer);
1952
	cpu_clock_perf_counter_update(counter);
1953 1954 1955 1956
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1957
	cpu_clock_perf_counter_update(counter);
1958 1959 1960
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1961 1962 1963
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1964 1965
};

1966 1967 1968 1969
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1970 1971 1972 1973
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1974
{
I
Ingo Molnar 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1995 1996
}

1997
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1998
{
1999 2000 2001
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2002 2003
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2004 2005 2006 2007 2008
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2009 2010

	return 0;
I
Ingo Molnar 已提交
2011 2012 2013
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2014
{
2015 2016 2017 2018
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
2019

2020 2021 2022 2023
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
2024 2025 2026
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2027 2028 2029
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2030 2031
};

2032 2033 2034 2035
/*
 * Software counter: cpu migrations
 */

2036
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2037
{
2038 2039 2040 2041 2042
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2043 2044 2045 2046 2047 2048 2049 2050
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2051
	now = get_cpu_migrations(counter);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2065
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2066
{
2067 2068 2069
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2070
	return 0;
2071 2072 2073 2074 2075 2076 2077 2078
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2079 2080 2081
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2082 2083
};

2084 2085 2086
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2087 2088 2089 2090 2091 2092
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2093 2094 2095 2096 2097 2098 2099
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2100
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2101 2102 2103 2104 2105
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2106
	int event_id = perf_event_id(&counter->hw_event);
2107 2108 2109 2110 2111 2112 2113
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2114
	counter->hw.irq_period = counter->hw_event.irq_period;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2126 2127 2128
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2129
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2130
	const struct hw_perf_counter_ops *hw_ops = NULL;
2131
	struct hw_perf_counter *hwc = &counter->hw;
2132

2133 2134 2135 2136 2137 2138 2139
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2140
	switch (perf_event_id(&counter->hw_event)) {
2141
	case PERF_COUNT_CPU_CLOCK:
2142 2143 2144 2145
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2146
		break;
2147
	case PERF_COUNT_TASK_CLOCK:
2148 2149 2150 2151 2152 2153 2154 2155
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2156 2157 2158

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2159
		break;
2160
	case PERF_COUNT_PAGE_FAULTS:
2161 2162
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2163
	case PERF_COUNT_CONTEXT_SWITCHES:
2164
		hw_ops = &perf_ops_generic;
2165
		break;
2166
	case PERF_COUNT_CPU_MIGRATIONS:
2167 2168
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2169
		break;
2170
	}
2171 2172 2173 2174

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2175 2176 2177
	return hw_ops;
}

T
Thomas Gleixner 已提交
2178 2179 2180 2181
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2182 2183
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2184
		   struct perf_counter_context *ctx,
2185 2186
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2187
{
2188
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2189
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
2190

2191
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2192 2193 2194
	if (!counter)
		return NULL;

2195 2196 2197 2198 2199 2200 2201
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2202
	mutex_init(&counter->mutex);
2203
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2204
	INIT_LIST_HEAD(&counter->event_entry);
2205
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2206 2207
	init_waitqueue_head(&counter->waitq);

2208 2209
	mutex_init(&counter->mmap_mutex);

2210 2211
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2212 2213 2214
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
2215
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2216
	counter->hw_ops			= NULL;
2217
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2218

2219
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2220 2221 2222
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2223
	hw_ops = NULL;
2224

2225
	if (perf_event_raw(hw_event)) {
2226
		hw_ops = hw_perf_counter_init(counter);
2227 2228 2229 2230
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2231
	case PERF_TYPE_HARDWARE:
2232
		hw_ops = hw_perf_counter_init(counter);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2243

I
Ingo Molnar 已提交
2244 2245 2246 2247
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
2248
done:
I
Ingo Molnar 已提交
2249
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2250 2251 2252 2253 2254

	return counter;
}

/**
2255
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2256 2257
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2258
 * @pid:		target pid
I
Ingo Molnar 已提交
2259 2260
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2261
 */
2262
SYSCALL_DEFINE5(perf_counter_open,
2263
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2264
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2265
{
2266
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2267
	struct perf_counter_hw_event hw_event;
2268
	struct perf_counter_context *ctx;
2269
	struct file *counter_file = NULL;
2270 2271
	struct file *group_file = NULL;
	int fput_needed = 0;
2272
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2273 2274
	int ret;

2275 2276 2277 2278
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2279
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2280 2281
		return -EFAULT;

2282
	/*
I
Ingo Molnar 已提交
2283 2284 2285 2286 2287 2288 2289 2290
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2291 2292 2293 2294 2295 2296
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2297
			goto err_put_context;
2298
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2299
			goto err_put_context;
2300 2301 2302

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2303 2304 2305 2306 2307 2308 2309 2310
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2311
		 */
I
Ingo Molnar 已提交
2312 2313
		if (group_leader->ctx != ctx)
			goto err_put_context;
2314 2315 2316 2317 2318
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2319 2320
	}

2321
	ret = -EINVAL;
2322 2323
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
2324 2325 2326 2327 2328
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2329 2330 2331 2332 2333 2334 2335
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2336
	mutex_lock(&ctx->mutex);
2337
	perf_install_in_context(ctx, counter, cpu);
2338
	mutex_unlock(&ctx->mutex);
2339 2340

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2341

2342 2343 2344
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2345 2346
	return ret;

2347
err_free_put_context:
T
Thomas Gleixner 已提交
2348 2349 2350 2351 2352
	kfree(counter);

err_put_context:
	put_context(ctx);

2353
	goto out_fput;
T
Thomas Gleixner 已提交
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2365
	mutex_init(&ctx->mutex);
2366
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2367
	INIT_LIST_HEAD(&ctx->event_list);
2368 2369 2370 2371 2372 2373
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2374
static struct perf_counter *
2375 2376 2377 2378
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2379
	      struct perf_counter *group_leader,
2380 2381 2382 2383
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2393
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2394 2395
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2396
	if (!child_counter)
2397
		return NULL;
2398 2399 2400 2401 2402

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2403
	add_counter_to_ctx(child_counter, child_ctx);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2458 2459 2460
	return 0;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2473 2474 2475 2476
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2492 2493 2494 2495 2496 2497
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2498
	struct perf_counter *sub, *tmp;
2499 2500

	/*
2501 2502 2503 2504 2505 2506
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2507
	 */
2508 2509 2510
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2511
		update_counter_times(child_counter);
2512
	} else {
2513
		struct perf_cpu_context *cpuctx;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2525 2526 2527

		cpuctx = &__get_cpu_var(perf_cpu_context);

2528
		group_sched_out(child_counter, cpuctx, child_ctx);
2529
		update_counter_times(child_counter);
2530

2531
		list_del_init(&child_counter->list_entry);
2532

2533
		child_ctx->nr_counters--;
2534

2535 2536 2537
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2538 2539 2540 2541 2542 2543 2544

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2545 2546 2547 2548
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2549
			if (sub->parent) {
2550
				sync_child_counter(sub, sub->parent);
2551
				free_counter(sub);
2552
			}
2553
		}
2554
		free_counter(child_counter);
2555
	}
2556 2557 2558
}

/*
2559
 * When a child task exits, feed back counter values to parent counters.
2560
 *
2561
 * Note: we may be running in child context, but the PID is not hashed
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2585
	struct perf_counter *counter;
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2605
	mutex_lock(&parent_ctx->mutex);
2606 2607 2608 2609 2610 2611

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2612
		if (!counter->hw_event.inherit)
2613 2614
			continue;

2615
		if (inherit_group(counter, parent,
2616 2617 2618 2619
				  parent_ctx, child, child_ctx))
			break;
	}

2620
	mutex_unlock(&parent_ctx->mutex);
2621 2622
}

2623
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2624
{
2625
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2626

2627 2628
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2629 2630

	mutex_lock(&perf_resource_mutex);
2631
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2632
	mutex_unlock(&perf_resource_mutex);
2633

2634
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2635 2636 2637
}

#ifdef CONFIG_HOTPLUG_CPU
2638
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2639 2640 2641 2642 2643
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2644 2645
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2646
}
2647
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2648
{
2649 2650 2651 2652
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2653
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2654
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2655 2656
}
#else
2657
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2669
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2670 2671 2672 2673
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2674
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);