perf_counter.c 76.5 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

41 42 43 44
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

T
Thomas Gleixner 已提交
45 46 47 48 49 50 51 52
/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
53
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
54
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
55
{
56
	return NULL;
T
Thomas Gleixner 已提交
57 58
}

59
u64 __weak hw_perf_save_disable(void)		{ return 0; }
60
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
61
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
62 63 64 65 66 67
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
68

69 70
void __weak perf_counter_print_debug(void)	{ }

71 72 73 74 75 76 77 78 79 80 81 82
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
83
	else {
84
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
85 86
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
87 88

	list_add_rcu(&counter->event_entry, &ctx->event_list);
89 90 91 92 93 94 95 96
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
97
	list_del_rcu(&counter->event_entry);
98

P
Peter Zijlstra 已提交
99 100 101
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

102 103 104 105 106 107 108 109
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

110
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
111 112 113 114
		sibling->group_leader = sibling;
	}
}

115 116 117 118 119 120 121 122 123
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
124
	counter->tstamp_stopped = ctx->time;
125 126 127 128 129 130 131 132 133 134
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
157 158 159 160 161 162
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
163
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
164 165 166 167
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
168
	unsigned long flags;
169
	u64 perf_flags;
T
Thomas Gleixner 已提交
170 171 172 173 174 175 176 177 178

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

179
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
180

181 182 183
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
184 185 186 187 188 189
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
190
	perf_flags = hw_perf_save_disable();
191
	list_del_counter(counter, ctx);
192
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
193 194 195 196 197 198 199 200 201 202 203

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

204
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
205 206 207 208 209 210
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
211
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
212 213 214 215
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
216
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
217 218 219 220 221 222 223 224 225 226
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
227
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
228 229 230 231 232
					 counter, 1);
		return;
	}

retry:
233
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
234 235 236 237 238 239
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
240
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
241 242 243 244 245 246
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
247
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
248 249
	 * succeed.
	 */
250
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
251
		ctx->nr_counters--;
252
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
253 254 255 256 257
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

258
static inline u64 perf_clock(void)
259
{
260
	return cpu_clock(smp_processor_id());
261 262 263 264 265
}

/*
 * Update the record of the current time in a context.
 */
266
static void update_context_time(struct perf_counter_context *ctx)
267
{
268 269 270 271
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
272 273 274 275 276 277 278 279 280 281
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

282 283 284 285 286 287 288 289 290 291 292
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

324
	spin_lock_irqsave(&ctx->lock, flags);
325 326 327 328 329 330

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
331
		update_context_time(ctx);
332
		update_counter_times(counter);
333 334 335 336 337 338 339
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

340
	spin_unlock_irqrestore(&ctx->lock, flags);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
376 377
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
378
		counter->state = PERF_COUNTER_STATE_OFF;
379
	}
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

402 403 404 405 406 407
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
408
	if (counter->state <= PERF_COUNTER_STATE_OFF)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

424
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
425

426 427
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
428 429
	ctx->nr_active++;

430 431 432
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

433 434 435
	return 0;
}

436 437 438 439 440 441 442 443 444 445
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
446

447 448 449
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

485 486 487 488 489 490
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
491 492 493
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
494 495
}

T
Thomas Gleixner 已提交
496
/*
497
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
498 499 500 501 502 503
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
504
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
505
	int cpu = smp_processor_id();
506
	unsigned long flags;
507
	u64 perf_flags;
508
	int err;
T
Thomas Gleixner 已提交
509 510 511 512 513 514 515 516 517

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

518
	spin_lock_irqsave(&ctx->lock, flags);
519
	update_context_time(ctx);
T
Thomas Gleixner 已提交
520 521 522 523 524

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
525
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
526

527
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
528

529 530 531 532 533 534 535 536
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

537 538 539 540 541
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
542
	if (!group_can_go_on(counter, cpuctx, 1))
543 544 545 546
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

547 548 549 550 551 552 553 554
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
555 556
		if (leader->hw_event.pinned) {
			update_group_times(leader);
557
			leader->state = PERF_COUNTER_STATE_ERROR;
558
		}
559
	}
T
Thomas Gleixner 已提交
560

561
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
562 563
		cpuctx->max_pertask--;

564
 unlock:
565 566
	hw_perf_restore(perf_flags);

567
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
568 569 570 571 572 573 574 575 576 577 578
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
579 580
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
608
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
609 610 611 612 613 614 615 616 617
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
618 619
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
620 621 622
	spin_unlock_irq(&ctx->lock);
}

623 624 625 626
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
627
{
628 629 630 631 632 633
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
634

635 636 637 638 639
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
640 641
		return;

642
	spin_lock_irqsave(&ctx->lock, flags);
643
	update_context_time(ctx);
644

645
	counter->prev_state = counter->state;
646 647 648
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
649
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
650 651

	/*
652 653
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
654
	 */
655 656
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
657

658 659 660 661 662 663 664 665 666 667 668 669 670
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
671 672
		if (leader->hw_event.pinned) {
			update_group_times(leader);
673
			leader->state = PERF_COUNTER_STATE_ERROR;
674
		}
675 676 677
	}

 unlock:
678
	spin_unlock_irqrestore(&ctx->lock, flags);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
729
	if (counter->state == PERF_COUNTER_STATE_OFF) {
730
		counter->state = PERF_COUNTER_STATE_INACTIVE;
731 732
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
733
	}
734 735 736 737
 out:
	spin_unlock_irq(&ctx->lock);
}

738 739 740 741 742 743
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
760 761
}

762 763 764 765
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
766
	u64 flags;
767

768 769
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
770
	if (likely(!ctx->nr_counters))
771
		goto out;
772
	update_context_time(ctx);
773

774
	flags = hw_perf_save_disable();
775 776 777 778
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
779
	hw_perf_restore(flags);
780
 out:
781 782 783
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
784 785 786 787 788 789
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
790
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
791 792 793 794 795 796 797 798
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
799
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
800 801 802 803

	if (likely(!cpuctx->task_ctx))
		return;

804 805
	update_context_time(ctx);

806
	regs = task_pt_regs(task);
807
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
808 809
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
810 811 812
	cpuctx->task_ctx = NULL;
}

813
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
814
{
815
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
816 817
}

I
Ingo Molnar 已提交
818
static int
819 820 821 822 823
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
824
	struct perf_counter *counter, *partial_group;
825 826 827 828 829 830 831 832
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
833

834
	group_counter->prev_state = group_counter->state;
835 836
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
837 838 839 840

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
841
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842
		counter->prev_state = counter->state;
843 844 845 846 847 848
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

849
	return 0;
850 851 852 853 854 855 856 857 858 859

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
860
	}
861
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862

863
	return -EAGAIN;
864 865
}

866 867 868
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
869 870
{
	struct perf_counter *counter;
871
	u64 flags;
872
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
873

874 875
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
876
	if (likely(!ctx->nr_counters))
877
		goto out;
T
Thomas Gleixner 已提交
878

879
	ctx->timestamp = perf_clock();
880

881
	flags = hw_perf_save_disable();
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
901 902
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
903
			counter->state = PERF_COUNTER_STATE_ERROR;
904
		}
905 906
	}

907
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
908 909 910 911 912 913 914 915
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

916 917 918 919
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
920 921 922
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

923
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
924 925
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
926
		}
T
Thomas Gleixner 已提交
927
	}
928
	hw_perf_restore(flags);
929
 out:
T
Thomas Gleixner 已提交
930
	spin_unlock(&ctx->lock);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
948

949
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
950 951 952
	cpuctx->task_ctx = ctx;
}

953 954 955 956 957 958 959
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

960 961 962 963 964
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
965
	unsigned long flags;
966 967 968 969 970 971
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

972
	local_irq_save(flags);
973 974 975 976 977 978 979 980 981 982 983
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

984
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
985 986
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
987
			counter->state = PERF_COUNTER_STATE_OFF;
988
		}
989
	}
990

991 992
	hw_perf_restore(perf_flags);

993
	spin_unlock_irqrestore(&ctx->lock, flags);
994 995 996 997 998 999 1000 1001 1002

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1003
	unsigned long flags;
1004 1005 1006 1007 1008 1009
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1010
	local_irq_save(flags);
1011 1012
	cpu = smp_processor_id();

1013 1014
	perf_counter_task_sched_out(curr, cpu);

1015 1016 1017 1018 1019 1020 1021 1022
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1023
		if (counter->state > PERF_COUNTER_STATE_OFF)
1024
			continue;
1025
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1026 1027
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1028
		counter->hw_event.disabled = 0;
1029 1030 1031 1032 1033 1034 1035
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1036
	local_irq_restore(flags);
1037 1038 1039 1040

	return 0;
}

1041 1042 1043 1044
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1045 1046
{
	struct perf_counter *counter;
1047
	u64 perf_flags;
T
Thomas Gleixner 已提交
1048

1049
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1050 1051 1052 1053
		return;

	spin_lock(&ctx->lock);
	/*
1054
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1055
	 */
1056
	perf_flags = hw_perf_save_disable();
1057
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1058
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1059 1060
		break;
	}
1061
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1062 1063

	spin_unlock(&ctx->lock);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1075

1076 1077 1078 1079 1080 1081
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1082 1083 1084 1085 1086 1087
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1088
static void __read(void *info)
T
Thomas Gleixner 已提交
1089
{
I
Ingo Molnar 已提交
1090
	struct perf_counter *counter = info;
1091
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1092
	unsigned long flags;
I
Ingo Molnar 已提交
1093

1094
	local_irq_save(flags);
1095
	if (ctx->is_active)
1096
		update_context_time(ctx);
I
Ingo Molnar 已提交
1097
	counter->hw_ops->read(counter);
1098
	update_counter_times(counter);
1099
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1100 1101
}

1102
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1103 1104 1105 1106 1107
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1108
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1109
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1110
					 __read, counter, 1);
1111 1112
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1113 1114
	}

1115
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1179 1180 1181 1182 1183 1184 1185 1186
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1187 1188
static void perf_pending_sync(struct perf_counter *counter);

1189 1190
static void free_counter(struct perf_counter *counter)
{
1191 1192
	perf_pending_sync(counter);

1193 1194 1195 1196 1197 1198 1199
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1200 1201 1202
	if (counter->destroy)
		counter->destroy(counter);

1203 1204 1205
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1216
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1217 1218
	mutex_lock(&counter->mutex);

1219
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1220 1221

	mutex_unlock(&counter->mutex);
1222
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1223

1224
	free_counter(counter);
1225
	put_context(ctx);
T
Thomas Gleixner 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1236 1237
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1238

1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1247
	mutex_lock(&counter->mutex);
1248 1249 1250 1251 1252 1253 1254 1255
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1256 1257
	mutex_unlock(&counter->mutex);

1258 1259 1260 1261 1262 1263 1264 1265
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1266 1267 1268 1269 1270 1271 1272
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1273
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1274 1275 1276 1277 1278
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1289 1290 1291 1292 1293 1294

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1307 1308 1309
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1310 1311 1312 1313 1314 1315
	default:
		err = -ENOTTY;
	}
	return err;
}

1316 1317 1318 1319 1320 1321
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1322
{
1323 1324 1325 1326 1327 1328 1329 1330 1331
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1332

1333 1334 1335 1336 1337
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1338
	++userpg->lock;
1339
	barrier();
1340 1341 1342 1343
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1344

1345
	barrier();
1346
	++userpg->lock;
1347
	preempt_enable();
1348
unlock:
1349
	rcu_read_unlock();
1350 1351 1352 1353 1354
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1367

1368 1369
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1370

1371 1372
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1373
	get_page(vmf->page);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1410
	return 0;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1460
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1461 1462 1463
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1464 1465 1466
}

static struct vm_operations_struct perf_mmap_vmops = {
1467
	.open  = perf_mmap_open,
1468
	.close = perf_mmap_close,
1469 1470 1471 1472 1473 1474
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1475 1476 1477 1478
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1479 1480 1481

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1482 1483 1484 1485

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1486 1487 1488 1489 1490
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1491 1492
		return -EINVAL;

1493
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1494 1495
		return -EINVAL;

1496 1497
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1508 1509 1510 1511

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1512 1513 1514 1515
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1516 1517 1518

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1519 1520 1521 1522 1523 1524
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1525
	mutex_unlock(&counter->mmap_mutex);
1526 1527 1528 1529

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1530 1531

	return ret;
1532 1533
}

P
Peter Zijlstra 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1550 1551 1552 1553
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1554 1555
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1556
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1557
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1558 1559
};

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1574
		atomic_set(&data->wakeup, POLL_IN);
1575 1576 1577 1578 1579 1580 1581
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1582 1583 1584 1585
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
1586 1587 1588 1589 1590

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1618
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1619

1620
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1621 1622 1623
	PENDING_TAIL,
};

1624 1625
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1626
{
1627
	struct perf_pending_entry **head;
1628

1629
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1630 1631
		return;

1632 1633 1634
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1635 1636

	do {
1637 1638
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1639 1640 1641

	set_perf_counter_pending();

1642
	put_cpu_var(perf_pending_head);
1643 1644 1645 1646
}

static int __perf_pending_run(void)
{
1647
	struct perf_pending_entry *list;
1648 1649
	int nr = 0;

1650
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1651
	while (list != PENDING_TAIL) {
1652 1653
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1654 1655 1656

		list = list->next;

1657 1658
		func = entry->func;
		entry->next = NULL;
1659 1660 1661 1662 1663 1664 1665
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1666
		func(entry);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1688
	return counter->pending.next == NULL;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1701 1702 1703 1704
/*
 * Callchain support -- arch specific
 */

1705
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1706 1707 1708 1709
{
	return NULL;
}

1710 1711 1712 1713
/*
 * Output
 */

1714 1715 1716 1717
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1718
	unsigned int		head;
1719
	int			wakeup;
1720
	int			nmi;
1721
	int			overflow;
1722 1723
};

1724 1725
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1726
	if (handle->nmi) {
1727
		handle->counter->pending_wakeup = 1;
1728
		perf_pending_queue(&handle->counter->pending,
1729
				   perf_pending_counter);
1730
	} else
1731 1732 1733
		perf_counter_wakeup(handle->counter);
}

1734
static int perf_output_begin(struct perf_output_handle *handle,
1735
			     struct perf_counter *counter, unsigned int size,
1736
			     int nmi, int overflow)
1737
{
1738
	struct perf_mmap_data *data;
1739
	unsigned int offset, head;
1740

1741 1742 1743 1744 1745
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1746 1747 1748
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1749

1750
	if (!data->nr_pages)
1751
		goto fail;
1752 1753 1754

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1755
		head += size;
1756 1757
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1758 1759
	handle->data	= data;
	handle->offset	= offset;
1760
	handle->head	= head;
1761
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1762

1763
	return 0;
1764

1765 1766
fail:
	__perf_output_wakeup(handle);
1767 1768
out:
	rcu_read_unlock();
1769

1770 1771
	return -ENOSPC;
}
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1801 1802

	WARN_ON_ONCE(handle->offset > handle->head);
1803 1804
}

P
Peter Zijlstra 已提交
1805 1806 1807
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1808
static void perf_output_end(struct perf_output_handle *handle)
1809
{
P
Peter Zijlstra 已提交
1810 1811
	int wakeup_events = handle->counter->hw_event.wakeup_events;

1812
	if (handle->overflow && wakeup_events) {
P
Peter Zijlstra 已提交
1813 1814 1815 1816 1817 1818
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1819
		__perf_output_wakeup(handle);
1820
	rcu_read_unlock();
1821 1822
}

1823
static void perf_counter_output(struct perf_counter *counter,
1824
				int nmi, struct pt_regs *regs, u64 addr)
1825
{
1826
	int ret;
1827
	u64 record_type = counter->hw_event.record_type;
1828 1829 1830
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1831
	struct {
1832
		u32 pid, tid;
1833
	} tid_entry;
1834 1835 1836 1837
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1838 1839
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1840
	u64 time;
1841

1842
	header.type = 0;
1843
	header.size = sizeof(header);
1844

1845 1846
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1847 1848
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1849 1850
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1851
		header.type |= PERF_RECORD_IP;
1852 1853
		header.size += sizeof(ip);
	}
1854

1855
	if (record_type & PERF_RECORD_TID) {
1856
		/* namespace issues */
1857 1858 1859
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1860
		header.type |= PERF_RECORD_TID;
1861 1862 1863
		header.size += sizeof(tid_entry);
	}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

1874 1875 1876 1877 1878
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

1879
	if (record_type & PERF_RECORD_GROUP) {
1880
		header.type |= PERF_RECORD_GROUP;
1881 1882 1883 1884 1885
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1886 1887 1888
		callchain = perf_callchain(regs);

		if (callchain) {
1889
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1890

1891
			header.type |= PERF_RECORD_CALLCHAIN;
1892 1893 1894 1895
			header.size += callchain_size;
		}
	}

1896
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1897 1898
	if (ret)
		return;
1899

1900
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1901

1902 1903
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1904

1905 1906
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1907

1908 1909 1910
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1911 1912 1913
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

1914 1915 1916
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1917

1918
		perf_output_put(&handle, nr);
1919

1920 1921 1922 1923
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1924

1925 1926
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1927

1928 1929
			perf_output_put(&handle, group_entry);
		}
1930
	}
P
Peter Zijlstra 已提交
1931

1932 1933
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1934

1935
	perf_output_end(&handle);
1936 1937
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2003
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2019 2020 2021 2022 2023 2024
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2061
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2062 2063 2064 2065 2066 2067 2068

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2069
	perf_output_end(&handle);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
		name = dentry_path(file->f_dentry, buf, PATH_MAX);
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2128
	size = ALIGN(strlen(name)+1, sizeof(u64));
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2147 2148 2149 2150 2151 2152
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2170 2171 2172 2173 2174 2175
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2190 2191 2192 2193 2194
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2195
			  int nmi, struct pt_regs *regs, u64 addr)
2196
{
2197 2198 2199
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2200
	counter->pending_kill = POLL_IN;
2201 2202
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2203
		counter->pending_kill = POLL_HUP;
2204 2205 2206 2207 2208 2209 2210 2211
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2212
	perf_counter_output(counter, nmi, regs, addr);
2213
	return ret;
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2258 2259
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2260
	enum hrtimer_restart ret = HRTIMER_RESTART;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2276
	if (regs) {
2277
		if (perf_counter_overflow(counter, 0, regs, 0))
2278 2279
			ret = HRTIMER_NORESTART;
	}
2280 2281 2282

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2283
	return ret;
2284 2285 2286
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2287
				    int nmi, struct pt_regs *regs, u64 addr)
2288
{
2289 2290
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2291
	if (perf_counter_overflow(counter, nmi, regs, addr))
2292 2293 2294
		/* soft-disable the counter */
		;

2295 2296
}

2297
static int perf_swcounter_match(struct perf_counter *counter,
2298 2299
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2300 2301 2302 2303
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2304
	if (perf_event_raw(&counter->hw_event))
2305 2306
		return 0;

2307
	if (perf_event_type(&counter->hw_event) != type)
2308 2309
		return 0;

2310
	if (perf_event_id(&counter->hw_event) != event)
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2322
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2323
			       int nmi, struct pt_regs *regs, u64 addr)
2324 2325 2326
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2327
		perf_swcounter_overflow(counter, nmi, regs, addr);
2328 2329
}

2330
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2331
				     enum perf_event_types type, u32 event,
2332 2333
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2334 2335 2336
{
	struct perf_counter *counter;

2337
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2338 2339
		return;

P
Peter Zijlstra 已提交
2340 2341
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2342
		if (perf_swcounter_match(counter, type, event, regs))
2343
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2344
	}
P
Peter Zijlstra 已提交
2345
	rcu_read_unlock();
2346 2347
}

P
Peter Zijlstra 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2362
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2363 2364
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2365 2366
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2367 2368 2369 2370 2371 2372 2373
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2374

2375 2376
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2377 2378
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2379
					 nr, nmi, regs, addr);
2380
	}
2381

P
Peter Zijlstra 已提交
2382 2383 2384 2385
	barrier();
	(*recursion)--;

out:
2386 2387 2388
	put_cpu_var(perf_cpu_context);
}

2389 2390
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2391
{
2392
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2411 2412 2413 2414 2415 2416
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2417 2418 2419 2420
/*
 * Software counter: cpu wall time clock
 */

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2433 2434 2435 2436 2437 2438
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2439 2440
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2441 2442 2443 2444 2445 2446 2447 2448 2449
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2450 2451
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2452
	hrtimer_cancel(&counter->hw.hrtimer);
2453
	cpu_clock_perf_counter_update(counter);
2454 2455 2456 2457
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2458
	cpu_clock_perf_counter_update(counter);
2459 2460 2461
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2462 2463 2464
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2465 2466
};

2467 2468 2469 2470
/*
 * Software counter: task time clock
 */

2471
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2472
{
2473
	u64 prev;
I
Ingo Molnar 已提交
2474 2475
	s64 delta;

2476
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2477 2478
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2479 2480
}

2481
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2482
{
2483
	struct hw_perf_counter *hwc = &counter->hw;
2484 2485 2486
	u64 now;

	now = counter->ctx->time;
2487

2488
	atomic64_set(&hwc->prev_count, now);
2489 2490
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2491 2492 2493 2494 2495
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2496 2497

	return 0;
I
Ingo Molnar 已提交
2498 2499 2500
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2501
{
2502
	hrtimer_cancel(&counter->hw.hrtimer);
2503 2504
	task_clock_perf_counter_update(counter, counter->ctx->time);

2505
}
I
Ingo Molnar 已提交
2506

2507 2508
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2521 2522 2523
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2524 2525 2526
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2527 2528
};

2529 2530 2531 2532
/*
 * Software counter: cpu migrations
 */

2533
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2534
{
2535 2536 2537 2538 2539
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2540 2541 2542 2543 2544 2545 2546 2547
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2548
	now = get_cpu_migrations(counter);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2562
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2563
{
2564 2565 2566
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2567
	return 0;
2568 2569 2570 2571 2572 2573 2574 2575
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2576 2577 2578
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2579 2580
};

2581 2582 2583
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2584 2585 2586 2587 2588
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2589
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2590 2591 2592 2593 2594 2595 2596
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2597
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2598 2599 2600 2601 2602
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2603
	int event_id = perf_event_id(&counter->hw_event);
2604 2605 2606 2607 2608 2609 2610
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2611
	counter->hw.irq_period = counter->hw_event.irq_period;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2623 2624 2625
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2626
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2627
	const struct hw_perf_counter_ops *hw_ops = NULL;
2628
	struct hw_perf_counter *hwc = &counter->hw;
2629

2630 2631 2632 2633 2634 2635 2636
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2637
	switch (perf_event_id(&counter->hw_event)) {
2638
	case PERF_COUNT_CPU_CLOCK:
2639 2640 2641 2642
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2643
		break;
2644
	case PERF_COUNT_TASK_CLOCK:
2645 2646 2647 2648 2649 2650 2651 2652
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2653 2654 2655

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2656
		break;
2657
	case PERF_COUNT_PAGE_FAULTS:
2658 2659
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2660
	case PERF_COUNT_CONTEXT_SWITCHES:
2661
		hw_ops = &perf_ops_generic;
2662
		break;
2663
	case PERF_COUNT_CPU_MIGRATIONS:
2664 2665
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2666
		break;
2667
	}
2668 2669 2670 2671

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2672 2673 2674
	return hw_ops;
}

T
Thomas Gleixner 已提交
2675 2676 2677 2678
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2679 2680
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2681
		   struct perf_counter_context *ctx,
2682 2683
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2684
{
2685
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2686
	struct perf_counter *counter;
2687
	long err;
T
Thomas Gleixner 已提交
2688

2689
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2690
	if (!counter)
2691
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2692

2693 2694 2695 2696 2697 2698 2699
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2700
	mutex_init(&counter->mutex);
2701
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2702
	INIT_LIST_HEAD(&counter->event_entry);
2703
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2704 2705
	init_waitqueue_head(&counter->waitq);

2706 2707
	mutex_init(&counter->mmap_mutex);

2708 2709
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2710 2711
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2712
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2713
	counter->hw_ops			= NULL;
2714
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2715

2716
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2717 2718 2719
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2720
	hw_ops = NULL;
2721

2722
	if (perf_event_raw(hw_event)) {
2723
		hw_ops = hw_perf_counter_init(counter);
2724 2725 2726 2727
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2728
	case PERF_TYPE_HARDWARE:
2729
		hw_ops = hw_perf_counter_init(counter);
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2740 2741 2742 2743 2744 2745
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2746

2747
	if (err) {
I
Ingo Molnar 已提交
2748
		kfree(counter);
2749
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2750
	}
2751

I
Ingo Molnar 已提交
2752
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2753

2754 2755 2756 2757 2758 2759 2760
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2761 2762 2763 2764
	return counter;
}

/**
2765
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2766 2767
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2768
 * @pid:		target pid
I
Ingo Molnar 已提交
2769 2770
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2771
 */
2772
SYSCALL_DEFINE5(perf_counter_open,
2773
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2774
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2775
{
2776
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2777
	struct perf_counter_hw_event hw_event;
2778
	struct perf_counter_context *ctx;
2779
	struct file *counter_file = NULL;
2780 2781
	struct file *group_file = NULL;
	int fput_needed = 0;
2782
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2783 2784
	int ret;

2785 2786 2787 2788
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2789
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2790 2791
		return -EFAULT;

2792
	/*
I
Ingo Molnar 已提交
2793 2794 2795 2796 2797 2798 2799 2800
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2801 2802 2803 2804 2805 2806
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2807
			goto err_put_context;
2808
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2809
			goto err_put_context;
2810 2811 2812

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2813 2814 2815 2816 2817 2818 2819 2820
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2821
		 */
I
Ingo Molnar 已提交
2822 2823
		if (group_leader->ctx != ctx)
			goto err_put_context;
2824 2825 2826 2827 2828
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2829 2830
	}

2831 2832
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2833 2834
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2835 2836 2837 2838
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2839 2840 2841 2842 2843 2844 2845
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2846
	mutex_lock(&ctx->mutex);
2847
	perf_install_in_context(ctx, counter, cpu);
2848
	mutex_unlock(&ctx->mutex);
2849 2850

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2851

2852 2853 2854
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2855 2856
	return ret;

2857
err_free_put_context:
T
Thomas Gleixner 已提交
2858 2859 2860 2861 2862
	kfree(counter);

err_put_context:
	put_context(ctx);

2863
	goto out_fput;
T
Thomas Gleixner 已提交
2864 2865
}

2866 2867 2868 2869 2870 2871 2872 2873 2874
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2875
	mutex_init(&ctx->mutex);
2876
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2877
	INIT_LIST_HEAD(&ctx->event_list);
2878 2879 2880 2881 2882 2883
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2884
static struct perf_counter *
2885 2886 2887 2888
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2889
	      struct perf_counter *group_leader,
2890 2891 2892 2893
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2894 2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2903
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2904 2905
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2906 2907
	if (IS_ERR(child_counter))
		return child_counter;
2908 2909 2910 2911 2912

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2913
	add_counter_to_ctx(child_counter, child_ctx);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2958
	struct perf_counter *child_ctr;
2959 2960 2961

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2962 2963
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2964
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2965 2966 2967 2968
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2969
	}
2970 2971 2972
	return 0;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2985 2986 2987 2988
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3004 3005 3006 3007 3008 3009
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
3010
	struct perf_counter *sub, *tmp;
3011 3012

	/*
3013 3014 3015 3016 3017 3018
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3019
	 */
3020 3021 3022
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
3023
		update_counter_times(child_counter);
3024
	} else {
3025
		struct perf_cpu_context *cpuctx;
3026 3027 3028 3029 3030 3031 3032 3033 3034
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3035
		local_irq_save(flags);
3036
		perf_flags = hw_perf_save_disable();
3037 3038 3039

		cpuctx = &__get_cpu_var(perf_cpu_context);

3040
		group_sched_out(child_counter, cpuctx, child_ctx);
3041
		update_counter_times(child_counter);
3042

3043
		list_del_init(&child_counter->list_entry);
3044

3045
		child_ctx->nr_counters--;
3046

3047
		hw_perf_restore(perf_flags);
3048
		local_irq_restore(flags);
3049
	}
3050 3051 3052 3053 3054 3055 3056

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3057 3058 3059 3060
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3061
			if (sub->parent) {
3062
				sync_child_counter(sub, sub->parent);
3063
				free_counter(sub);
3064
			}
3065
		}
3066
		free_counter(child_counter);
3067
	}
3068 3069 3070
}

/*
3071
 * When a child task exits, feed back counter values to parent counters.
3072
 *
3073
 * Note: we may be running in child context, but the PID is not hashed
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3097
	struct perf_counter *counter;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3117
	mutex_lock(&parent_ctx->mutex);
3118 3119 3120 3121 3122 3123

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3124
		if (!counter->hw_event.inherit)
3125 3126
			continue;

3127
		if (inherit_group(counter, parent,
3128 3129 3130 3131
				  parent_ctx, child, child_ctx))
			break;
	}

3132
	mutex_unlock(&parent_ctx->mutex);
3133 3134
}

3135
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3136
{
3137
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3138

3139 3140
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3141 3142

	mutex_lock(&perf_resource_mutex);
3143
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3144
	mutex_unlock(&perf_resource_mutex);
3145

3146
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3147 3148 3149
}

#ifdef CONFIG_HOTPLUG_CPU
3150
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3151 3152 3153 3154 3155
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3156 3157
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3158
}
3159
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3160
{
3161 3162 3163 3164
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3165
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3166
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3167 3168
}
#else
3169
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3181
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3182 3183 3184 3185
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3186
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);