perf_counter.c 57.5 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
25
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28 29 30 31

/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

32
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
33 34 35 36 37 38 39 40 41 42 43
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
44
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
45
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
46
{
47
	return NULL;
T
Thomas Gleixner 已提交
48 49
}

50
u64 __weak hw_perf_save_disable(void)		{ return 0; }
51
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
52
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
53 54 55 56 57 58
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
59

60 61
void __weak perf_counter_print_debug(void)	{ }

62 63 64 65 66 67 68 69 70 71 72 73 74 75
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
76 77

	list_add_rcu(&counter->event_entry, &ctx->event_list);
78 79 80 81 82 83 84 85
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
86
	list_del_rcu(&counter->event_entry);
87 88 89 90 91 92 93 94 95

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

96
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
97 98 99 100
		sibling->group_leader = sibling;
	}
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
142 143 144 145 146 147
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
148
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
149 150 151 152
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
153
	unsigned long flags;
154
	u64 perf_flags;
T
Thomas Gleixner 已提交
155 156 157 158 159 160 161 162 163

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
164 165
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
166

167 168 169
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
170 171 172 173 174 175
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
176
	perf_flags = hw_perf_save_disable();
177
	list_del_counter(counter, ctx);
178
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
179 180 181 182 183 184 185 186 187 188 189

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
190 191
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
192 193 194 195 196 197
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
198
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
199 200 201 202
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
203
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
204 205 206 207 208 209 210 211 212 213
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
214
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
215 216 217 218 219
					 counter, 1);
		return;
	}

retry:
220
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
221 222 223 224 225 226
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
227
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
228 229 230 231 232 233
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
234
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
235 236
	 * succeed.
	 */
237
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
238
		ctx->nr_counters--;
239
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
240 241 242 243 244
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

338 339 340 341 342 343
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
344
	if (counter->state <= PERF_COUNTER_STATE_OFF)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

360 361
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
362 363
	ctx->nr_active++;

364 365 366
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

367 368 369
	return 0;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
417
/*
418
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
419 420 421 422 423 424
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
425
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
426
	int cpu = smp_processor_id();
427
	unsigned long flags;
428
	u64 perf_flags;
429
	int err;
T
Thomas Gleixner 已提交
430 431 432 433 434 435 436 437 438

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
439 440
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
441 442 443 444 445

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
446
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
447

448
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
449
	ctx->nr_counters++;
450
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
451

452 453 454 455 456 457 458 459
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

460 461 462 463 464
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
465
	if (!group_can_go_on(counter, cpuctx, 1))
466 467 468 469
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

470 471 472 473 474 475 476 477 478 479 480
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
481

482
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
483 484
		cpuctx->max_pertask--;

485
 unlock:
486 487
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
488 489
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
490 491 492 493 494 495 496 497 498 499 500
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
501 502
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
530
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
531 532 533 534 535 536 537 538 539
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
540 541
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
542 543 544 545 546
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

547 548 549 550
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
551
{
552 553 554 555 556 557
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
558

559 560 561 562 563
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
564 565
		return;

566 567 568
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

569
	counter->prev_state = counter->state;
570 571 572
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
573 574

	/*
575 576
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
577
	 */
578 579
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
673 674
}

675 676 677 678
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
679
	u64 flags;
680

681 682
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
683
	if (likely(!ctx->nr_counters))
684
		goto out;
685

686
	flags = hw_perf_save_disable();
687 688 689 690
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
691
	hw_perf_restore(flags);
692
 out:
693 694 695
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
696 697 698 699 700 701
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
702
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
703 704 705 706 707 708 709 710 711 712 713 714
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;

	if (likely(!cpuctx->task_ctx))
		return;

715 716
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
717 718 719
	cpuctx->task_ctx = NULL;
}

720
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
721
{
722
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
723 724
}

I
Ingo Molnar 已提交
725
static int
726 727 728 729 730
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
731
	struct perf_counter *counter, *partial_group;
732 733 734 735 736 737 738 739
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
740

741
	group_counter->prev_state = group_counter->state;
742 743
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
744 745 746 747

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
748
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
749
		counter->prev_state = counter->state;
750 751 752 753 754 755
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

756
	return 0;
757 758 759 760 761 762 763 764 765 766

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
767
	}
768
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
769

770
	return -EAGAIN;
771 772
}

773 774 775
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
776 777
{
	struct perf_counter *counter;
778
	u64 flags;
779
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
780

781 782
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
783
	if (likely(!ctx->nr_counters))
784
		goto out;
T
Thomas Gleixner 已提交
785

786
	flags = hw_perf_save_disable();
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

810
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
811 812 813 814 815 816 817 818
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

819 820 821 822
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
823 824 825
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

826
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
827 828
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
829
		}
T
Thomas Gleixner 已提交
830
	}
831
	hw_perf_restore(flags);
832
 out:
T
Thomas Gleixner 已提交
833
	spin_unlock(&ctx->lock);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
851

852
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
853 854 855
	cpuctx->task_ctx = ctx;
}

856 857 858 859 860 861 862
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

863 864 865 866 867
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
868
	unsigned long flags;
869 870 871 872 873 874
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
875
	curr_rq_lock_irq_save(&flags);
876 877
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
878 879 880
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

881 882 883 884 885 886 887 888 889
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

890 891 892 893
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
894

895 896 897 898
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
899
	curr_rq_unlock_irq_restore(&flags);
900 901 902 903 904 905 906 907 908

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
909
	unsigned long flags;
910 911 912 913 914 915
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
916
	curr_rq_lock_irq_save(&flags);
917 918
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
919 920 921
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

922 923
	perf_counter_task_sched_out(curr, cpu);

924 925 926 927 928 929 930 931
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
932
		if (counter->state > PERF_COUNTER_STATE_OFF)
933
			continue;
934
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
935
		counter->hw_event.disabled = 0;
936 937 938 939 940 941 942
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
943
	curr_rq_unlock_irq_restore(&flags);
944 945 946 947

	return 0;
}

948 949 950 951
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
952 953
{
	struct perf_counter *counter;
954
	u64 perf_flags;
T
Thomas Gleixner 已提交
955

956
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
957 958 959 960
		return;

	spin_lock(&ctx->lock);
	/*
961
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
962
	 */
963
	perf_flags = hw_perf_save_disable();
964
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
965
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
966 967
		break;
	}
968
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
969 970

	spin_unlock(&ctx->lock);
971 972 973 974 975 976 977 978 979 980 981
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
982

983 984 985 986 987 988
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
989 990 991 992 993 994
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
995
static void __read(void *info)
T
Thomas Gleixner 已提交
996
{
I
Ingo Molnar 已提交
997
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
998
	unsigned long flags;
I
Ingo Molnar 已提交
999

I
Ingo Molnar 已提交
1000
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
1001
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1002
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1003 1004
}

1005
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1006 1007 1008 1009 1010
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1011
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1012
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1013
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1014 1015
	}

1016
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1064
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

T
Thomas Gleixner 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1158
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1159 1160
	mutex_lock(&counter->mutex);

1161
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1162 1163

	mutex_unlock(&counter->mutex);
1164
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1165

P
Peter Zijlstra 已提交
1166
	call_rcu(&counter->rcu_head, free_counter_rcu);
1167
	put_context(ctx);
T
Thomas Gleixner 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1183 1184 1185 1186 1187 1188 1189 1190
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1191
	mutex_lock(&counter->mutex);
1192
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1226
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1247 1248 1249
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1250 1251 1252 1253 1254 1255 1256 1257
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1258 1259
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1271 1272
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1273 1274 1275
		if (!res)
			res = -EFAULT;
	} else {
1276
		res += res2;
T
Thomas Gleixner 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1289
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1335 1336 1337 1338
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1339 1340
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1341 1342
};

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

static void perf_swcounter_save_and_restart(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
}

static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
{
	struct perf_data *irqdata = counter->irqdata;

	if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
		irqdata->overrun++;
	} else {
		u64 *p = (u64 *) &irqdata->data[irqdata->len];

		*p = data;
		irqdata->len += sizeof(u64);
	}
}

static void perf_swcounter_handle_group(struct perf_counter *sibling)
{
	struct perf_counter *counter, *group_leader = sibling->group_leader;

	list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1410
		counter->hw_ops->read(counter);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		perf_swcounter_store_irq(sibling, counter->hw_event.type);
		perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
	}
}

static void perf_swcounter_interrupt(struct perf_counter *counter,
				     int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		break;

	case PERF_RECORD_IRQ:
		perf_swcounter_store_irq(counter, instruction_pointer(regs));
		break;

	case PERF_RECORD_GROUP:
		perf_swcounter_handle_group(counter);
		break;
	}

	if (nmi) {
		counter->wakeup_pending = 1;
		set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
	} else
		wake_up(&counter->waitq);
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
		perf_swcounter_interrupt(counter, 0, regs);

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
	perf_swcounter_save_and_restart(counter);
	perf_swcounter_interrupt(counter, nmi, regs);
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static int perf_swcounter_match(struct perf_counter *counter,
				enum hw_event_types event,
				struct pt_regs *regs)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	if (counter->hw_event.raw)
		return 0;

	if (counter->hw_event.type != event)
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1493 1494 1495 1496 1497 1498 1499 1500
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1501 1502 1503 1504 1505 1506
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
				     enum hw_event_types event, u64 nr,
				     int nmi, struct pt_regs *regs)
{
	struct perf_counter *counter;

P
Peter Zijlstra 已提交
1507
	if (list_empty(&ctx->event_list))
1508 1509
		return;

P
Peter Zijlstra 已提交
1510 1511
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1512 1513
		if (perf_swcounter_match(counter, event, regs))
			perf_swcounter_add(counter, nr, nmi, regs);
1514
	}
P
Peter Zijlstra 已提交
1515
	rcu_read_unlock();
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
}

void perf_swcounter_event(enum hw_event_types event, u64 nr,
			  int nmi, struct pt_regs *regs)
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);

	perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
	if (cpuctx->task_ctx)
		perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);

	put_cpu_var(perf_cpu_context);
}

static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1546 1547 1548 1549 1550 1551
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1552 1553 1554 1555
/*
 * Software counter: cpu wall time clock
 */

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
	if (hwc->irq_period) {
		hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		hwc->hrtimer.function = perf_swcounter_hrtimer;
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1585 1586
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1587
	hrtimer_cancel(&counter->hw.hrtimer);
1588
	cpu_clock_perf_counter_update(counter);
1589 1590 1591 1592
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1593
	cpu_clock_perf_counter_update(counter);
1594 1595 1596
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1597 1598 1599
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1600 1601
};

1602 1603 1604 1605
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1606 1607 1608 1609
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1610
{
I
Ingo Molnar 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1631 1632
}

1633
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1634
{
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
	if (hwc->irq_period) {
		hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		hwc->hrtimer.function = perf_swcounter_hrtimer;
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
1645 1646

	return 0;
I
Ingo Molnar 已提交
1647 1648 1649
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1650
{
1651 1652 1653 1654
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
1655

1656 1657 1658 1659
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
1660 1661 1662
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1663 1664 1665
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1666 1667
};

1668 1669 1670 1671
/*
 * Software counter: context switches
 */

1672
static u64 get_context_switches(struct perf_counter *counter)
1673
{
1674
	struct task_struct *curr = counter->ctx->task;
1675

1676 1677 1678
	if (curr)
		return curr->nvcsw + curr->nivcsw;
	return cpu_nr_switches(smp_processor_id());
1679 1680 1681 1682 1683 1684 1685 1686
}

static void context_switches_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1687
	now = get_context_switches(counter);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void context_switches_perf_counter_read(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

1701
static int context_switches_perf_counter_enable(struct perf_counter *counter)
1702
{
1703 1704 1705
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_context_switches(counter));
1706
	return 0;
1707 1708 1709 1710 1711 1712 1713 1714
}

static void context_switches_perf_counter_disable(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_context_switches = {
I
Ingo Molnar 已提交
1715 1716 1717
	.enable		= context_switches_perf_counter_enable,
	.disable	= context_switches_perf_counter_disable,
	.read		= context_switches_perf_counter_read,
1718 1719
};

1720 1721 1722 1723
/*
 * Software counter: cpu migrations
 */

1724
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1725
{
1726 1727 1728 1729 1730
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1731 1732 1733 1734 1735 1736 1737 1738
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1739
	now = get_cpu_migrations(counter);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1753
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1754
{
1755 1756 1757
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1758
	return 0;
1759 1760 1761 1762 1763 1764 1765 1766
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1767 1768 1769
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1770 1771
};

1772 1773 1774
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
1775
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776
	const struct hw_perf_counter_ops *hw_ops = NULL;
1777
	struct hw_perf_counter *hwc = &counter->hw;
1778

1779 1780 1781 1782 1783 1784 1785
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1786 1787
	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
1788 1789 1790 1791
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1792
		break;
1793
	case PERF_COUNT_TASK_CLOCK:
1794 1795 1796 1797 1798 1799 1800 1801
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1802 1803 1804

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1805
		break;
1806
	case PERF_COUNT_PAGE_FAULTS:
1807 1808 1809
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
		hw_ops = &perf_ops_generic;
1810
		break;
1811
	case PERF_COUNT_CONTEXT_SWITCHES:
1812 1813
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_context_switches;
1814
		break;
1815
	case PERF_COUNT_CPU_MIGRATIONS:
1816 1817
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1818
		break;
1819 1820 1821
	default:
		break;
	}
1822 1823 1824 1825

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

1826 1827 1828
	return hw_ops;
}

T
Thomas Gleixner 已提交
1829 1830 1831 1832
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1833 1834
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1835
		   struct perf_counter_context *ctx,
1836 1837
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1838
{
1839
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1840
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1841

1842
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1843 1844 1845
	if (!counter)
		return NULL;

1846 1847 1848 1849 1850 1851 1852
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1853
	mutex_init(&counter->mutex);
1854
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
1855
	INIT_LIST_HEAD(&counter->event_entry);
1856
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1857 1858
	init_waitqueue_head(&counter->waitq);

1859 1860
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1861 1862 1863 1864 1865
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1866
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1867
	counter->hw_ops			= NULL;
1868
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1869

1870
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1871 1872 1873
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1874 1875 1876
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1877
	else
1878 1879
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1880 1881 1882 1883 1884
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1885 1886 1887 1888 1889

	return counter;
}

/**
1890
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
1891 1892
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1893
 * @pid:		target pid
I
Ingo Molnar 已提交
1894 1895
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1896
 */
1897
SYSCALL_DEFINE5(perf_counter_open,
1898
		const struct perf_counter_hw_event __user *, hw_event_uptr,
1899
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
1900
{
1901
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1902
	struct perf_counter_hw_event hw_event;
1903
	struct perf_counter_context *ctx;
1904
	struct file *counter_file = NULL;
1905 1906
	struct file *group_file = NULL;
	int fput_needed = 0;
1907
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1908 1909
	int ret;

1910 1911 1912 1913
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
1914
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1915 1916
		return -EFAULT;

1917
	/*
I
Ingo Molnar 已提交
1918 1919 1920 1921 1922 1923 1924 1925
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1926 1927 1928 1929 1930 1931
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1932
			goto err_put_context;
1933
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1934
			goto err_put_context;
1935 1936 1937

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1938 1939 1940 1941 1942 1943 1944 1945
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1946
		 */
I
Ingo Molnar 已提交
1947 1948
		if (group_leader->ctx != ctx)
			goto err_put_context;
1949 1950 1951 1952 1953
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1954 1955
	}

1956
	ret = -EINVAL;
1957 1958
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
1959 1960 1961 1962 1963
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1964 1965 1966 1967 1968 1969 1970
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1971
	mutex_lock(&ctx->mutex);
1972
	perf_install_in_context(ctx, counter, cpu);
1973
	mutex_unlock(&ctx->mutex);
1974 1975

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1976

1977 1978 1979
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1980 1981
	return ret;

1982
err_free_put_context:
T
Thomas Gleixner 已提交
1983 1984 1985 1986 1987
	kfree(counter);

err_put_context:
	put_context(ctx);

1988
	goto out_fput;
T
Thomas Gleixner 已提交
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2000
	mutex_init(&ctx->mutex);
2001
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2002
	INIT_LIST_HEAD(&ctx->event_list);
2003 2004 2005 2006 2007 2008
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2009
static struct perf_counter *
2010 2011 2012 2013
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2014
	      struct perf_counter *group_leader,
2015 2016 2017 2018
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2019 2020 2021 2022 2023 2024 2025 2026 2027
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2028
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2029 2030
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2031
	if (!child_counter)
2032
		return NULL;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2094 2095 2096
	return 0;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2124 2125 2126 2127 2128 2129
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2130
	struct perf_counter *sub, *tmp;
2131 2132

	/*
2133 2134 2135 2136 2137 2138
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2139
	 */
2140 2141 2142 2143
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2144
		struct perf_cpu_context *cpuctx;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2156 2157 2158

		cpuctx = &__get_cpu_var(perf_cpu_context);

2159
		group_sched_out(child_counter, cpuctx, child_ctx);
2160

2161
		list_del_init(&child_counter->list_entry);
2162

2163
		child_ctx->nr_counters--;
2164

2165 2166 2167
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2168 2169 2170 2171 2172 2173 2174

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2175 2176 2177 2178
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2179
			if (sub->parent) {
2180
				sync_child_counter(sub, sub->parent);
2181 2182
				kfree(sub);
			}
2183
		}
2184
		kfree(child_counter);
2185
	}
2186 2187 2188
}

/*
2189
 * When a child task exits, feed back counter values to parent counters.
2190
 *
2191
 * Note: we may be running in child context, but the PID is not hashed
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2215
	struct perf_counter *counter;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2235
	mutex_lock(&parent_ctx->mutex);
2236 2237 2238 2239 2240 2241

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2242
		if (!counter->hw_event.inherit)
2243 2244
			continue;

2245
		if (inherit_group(counter, parent,
2246 2247 2248 2249
				  parent_ctx, child, child_ctx))
			break;
	}

2250
	mutex_unlock(&parent_ctx->mutex);
2251 2252
}

2253
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2254
{
2255
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2256

2257 2258
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2259 2260

	mutex_lock(&perf_resource_mutex);
2261
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2262
	mutex_unlock(&perf_resource_mutex);
2263

2264
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2265 2266 2267
}

#ifdef CONFIG_HOTPLUG_CPU
2268
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2269 2270 2271 2272 2273
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2274 2275
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2276
}
2277
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2278
{
2279 2280 2281 2282
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2283
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2284
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2285 2286
}
#else
2287
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2299
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2300 2301 2302 2303
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2304
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);