perf_counter.c 73.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40 41 42 43 44 45 46 47 48
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
49
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
50
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
51
{
52
	return NULL;
T
Thomas Gleixner 已提交
53 54
}

55
u64 __weak hw_perf_save_disable(void)		{ return 0; }
56
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
57
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
58 59 60 61 62 63
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
64

65 66
void __weak perf_counter_print_debug(void)	{ }

67 68 69 70 71 72 73 74 75 76 77 78
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
79
	else {
80
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
81 82
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
83 84

	list_add_rcu(&counter->event_entry, &ctx->event_list);
85 86 87 88 89 90 91 92
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
93
	list_del_rcu(&counter->event_entry);
94

P
Peter Zijlstra 已提交
95 96 97
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

98 99 100 101 102 103 104 105
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

106
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 108 109 110
		sibling->group_leader = sibling;
	}
}

111 112 113 114 115 116 117 118 119
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
120
	counter->tstamp_stopped = ctx->time_now;
121 122 123 124 125 126 127 128 129 130
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
153 154 155 156 157 158
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
159
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
160 161 162 163
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
164
	unsigned long flags;
165
	u64 perf_flags;
T
Thomas Gleixner 已提交
166 167 168 169 170 171 172 173 174

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
175 176
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
177

178 179 180
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
181 182 183 184 185 186
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
187
	perf_flags = hw_perf_save_disable();
188
	list_del_counter(counter, ctx);
189
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
190 191 192 193 194 195 196 197 198 199 200

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
201 202
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
203 204 205 206 207 208
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
209
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
210 211 212 213
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
214
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
215 216 217 218 219 220 221 222 223 224
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
225
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
226 227 228 229 230
					 counter, 1);
		return;
	}

retry:
231
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
232 233 234 235 236 237
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
238
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
239 240 241 242 243 244
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
245
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
246 247
	 * succeed.
	 */
248
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
249
		ctx->nr_counters--;
250
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
251 252 253 254 255
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Get the current time for this context.
 * If this is a task context, we use the task's task clock,
 * or for a per-cpu context, we use the cpu clock.
 */
static u64 get_context_time(struct perf_counter_context *ctx, int update)
{
	struct task_struct *curr = ctx->task;

	if (!curr)
		return cpu_clock(smp_processor_id());

	return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_counter_context *ctx, int update)
{
	ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		counter->total_time_enabled = ctx->time_now -
			counter->tstamp_enabled;
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			run_end = counter->tstamp_stopped;
		else
			run_end = ctx->time_now;
		counter->total_time_running = run_end - counter->tstamp_running;
	}
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 336
		update_context_time(ctx, 1);
		update_counter_times(counter);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
381 382
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
383
		counter->state = PERF_COUNTER_STATE_OFF;
384
	}
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

407 408 409 410 411 412
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
413
	if (counter->state <= PERF_COUNTER_STATE_OFF)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

429 430
	counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;

431 432
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
433 434
	ctx->nr_active++;

435 436 437
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

438 439 440
	return 0;
}

441 442 443 444 445 446 447 448 449 450
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
451

452 453 454
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

490 491 492 493 494 495 496 497 498 499 500
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
	counter->tstamp_enabled = ctx->time_now;
	counter->tstamp_running = ctx->time_now;
	counter->tstamp_stopped = ctx->time_now;
}

T
Thomas Gleixner 已提交
501
/*
502
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
503 504 505 506 507 508
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
509
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
510
	int cpu = smp_processor_id();
511
	unsigned long flags;
512
	u64 perf_flags;
513
	int err;
T
Thomas Gleixner 已提交
514 515 516 517 518 519 520 521 522

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
523 524
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
525
	update_context_time(ctx, 1);
T
Thomas Gleixner 已提交
526 527 528 529 530

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
531
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
532

533
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
534

535 536 537 538 539 540 541 542
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

543 544 545 546 547
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
548
	if (!group_can_go_on(counter, cpuctx, 1))
549 550 551 552
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

553 554 555 556 557 558 559 560
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
561 562
		if (leader->hw_event.pinned) {
			update_group_times(leader);
563
			leader->state = PERF_COUNTER_STATE_ERROR;
564
		}
565
	}
T
Thomas Gleixner 已提交
566

567
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
568 569
		cpuctx->max_pertask--;

570
 unlock:
571 572
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
573 574
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
575 576 577 578 579 580 581 582 583 584 585
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
586 587
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
615
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
616 617 618 619 620 621 622 623 624
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
625 626
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
627 628 629
	spin_unlock_irq(&ctx->lock);
}

630 631 632 633
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
634
{
635 636 637 638 639 640
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
641

642 643 644 645 646
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
647 648
		return;

649 650
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
651
	update_context_time(ctx, 1);
652

653
	counter->prev_state = counter->state;
654 655 656
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
657
	counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658 659

	/*
660 661
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
662
	 */
663 664
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
665

666 667 668 669 670 671 672 673 674 675 676 677 678
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
679 680
		if (leader->hw_event.pinned) {
			update_group_times(leader);
681
			leader->state = PERF_COUNTER_STATE_ERROR;
682
		}
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
738
	if (counter->state == PERF_COUNTER_STATE_OFF) {
739
		counter->state = PERF_COUNTER_STATE_INACTIVE;
740 741 742
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
	}
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
763 764
}

765 766 767 768
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
769
	u64 flags;
770

771 772
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
773
	if (likely(!ctx->nr_counters))
774
		goto out;
775
	update_context_time(ctx, 0);
776

777
	flags = hw_perf_save_disable();
778 779 780 781
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
782
	hw_perf_restore(flags);
783
 out:
784 785 786
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
787 788 789 790 791 792
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
793
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
794 795 796 797 798 799 800 801
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
802
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
803 804 805 806

	if (likely(!cpuctx->task_ctx))
		return;

807 808
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
809 810
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
811 812 813
	cpuctx->task_ctx = NULL;
}

814
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815
{
816
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
817 818
}

I
Ingo Molnar 已提交
819
static int
820 821 822 823 824
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
825
	struct perf_counter *counter, *partial_group;
826 827 828 829 830 831 832 833
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
834

835
	group_counter->prev_state = group_counter->state;
836 837
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
838 839 840 841

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
842
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
843
		counter->prev_state = counter->state;
844 845 846 847 848 849
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

850
	return 0;
851 852 853 854 855 856 857 858 859 860

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
861
	}
862
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
863

864
	return -EAGAIN;
865 866
}

867 868 869
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
870 871
{
	struct perf_counter *counter;
872
	u64 flags;
873
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
874

875 876
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
877
	if (likely(!ctx->nr_counters))
878
		goto out;
T
Thomas Gleixner 已提交
879

880 881 882 883 884 885 886
	/*
	 * Add any time since the last sched_out to the lost time
	 * so it doesn't get included in the total_time_enabled and
	 * total_time_running measures for counters in the context.
	 */
	ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;

887
	flags = hw_perf_save_disable();
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
907 908
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
909
			counter->state = PERF_COUNTER_STATE_ERROR;
910
		}
911 912
	}

913
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
914 915 916 917 918 919 920 921
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

922 923 924 925
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
926 927 928
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

929
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
930 931
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
932
		}
T
Thomas Gleixner 已提交
933
	}
934
	hw_perf_restore(flags);
935
 out:
T
Thomas Gleixner 已提交
936
	spin_unlock(&ctx->lock);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
954

955
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
956 957 958
	cpuctx->task_ctx = ctx;
}

959 960 961 962 963 964 965
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

966 967 968 969 970
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
971
	unsigned long flags;
972 973 974 975 976 977
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
978
	curr_rq_lock_irq_save(&flags);
979 980
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
981 982 983
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

984 985 986 987 988 989 990 991 992
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

993
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 995
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
996
			counter->state = PERF_COUNTER_STATE_OFF;
997
		}
998
	}
999

1000 1001 1002 1003
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
1004
	curr_rq_unlock_irq_restore(&flags);
1005 1006 1007 1008 1009 1010 1011 1012 1013

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1014
	unsigned long flags;
1015 1016 1017 1018 1019 1020
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
1021
	curr_rq_lock_irq_save(&flags);
1022 1023
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
1024 1025 1026
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

1027 1028
	perf_counter_task_sched_out(curr, cpu);

1029 1030 1031 1032 1033 1034 1035 1036
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037
		if (counter->state > PERF_COUNTER_STATE_OFF)
1038
			continue;
1039
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1040 1041
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
I
Ingo Molnar 已提交
1042
		counter->hw_event.disabled = 0;
1043 1044 1045 1046 1047 1048 1049
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
1050
	curr_rq_unlock_irq_restore(&flags);
1051 1052 1053 1054

	return 0;
}

1055 1056 1057 1058
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1059 1060
{
	struct perf_counter *counter;
1061
	u64 perf_flags;
T
Thomas Gleixner 已提交
1062

1063
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1064 1065 1066 1067
		return;

	spin_lock(&ctx->lock);
	/*
1068
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1069
	 */
1070
	perf_flags = hw_perf_save_disable();
1071
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1072
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1073 1074
		break;
	}
1075
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1076 1077

	spin_unlock(&ctx->lock);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1089

1090 1091 1092 1093 1094 1095
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1096 1097 1098 1099 1100 1101
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1102
static void __read(void *info)
T
Thomas Gleixner 已提交
1103
{
I
Ingo Molnar 已提交
1104
	struct perf_counter *counter = info;
1105
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1106
	unsigned long flags;
I
Ingo Molnar 已提交
1107

I
Ingo Molnar 已提交
1108
	curr_rq_lock_irq_save(&flags);
1109 1110
	if (ctx->is_active)
		update_context_time(ctx, 1);
I
Ingo Molnar 已提交
1111
	counter->hw_ops->read(counter);
1112
	update_counter_times(counter);
I
Ingo Molnar 已提交
1113
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1114 1115
}

1116
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1117 1118 1119 1120 1121
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1122
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1123
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1124
					 __read, counter, 1);
1125 1126
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1127 1128
	}

1129
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1193 1194 1195 1196 1197 1198 1199 1200
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1201 1202
static void perf_pending_sync(struct perf_counter *counter);

1203 1204
static void free_counter(struct perf_counter *counter)
{
1205 1206
	perf_pending_sync(counter);

1207 1208 1209
	if (counter->destroy)
		counter->destroy(counter);

1210 1211 1212
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1223
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1224 1225
	mutex_lock(&counter->mutex);

1226
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1227 1228

	mutex_unlock(&counter->mutex);
1229
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1230

1231
	free_counter(counter);
1232
	put_context(ctx);
T
Thomas Gleixner 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1243 1244
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1245

1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1254
	mutex_lock(&counter->mutex);
1255 1256 1257 1258 1259 1260 1261 1262
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1263 1264
	mutex_unlock(&counter->mutex);

1265 1266 1267 1268 1269 1270 1271 1272
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1273 1274 1275 1276 1277 1278 1279
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1280
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1281 1282 1283 1284 1285
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1296 1297 1298 1299 1300 1301

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1320 1321 1322 1323 1324 1325
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1326
{
1327 1328 1329 1330 1331 1332 1333 1334 1335
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1336

1337 1338 1339 1340 1341
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1342
	++userpg->lock;
1343
	barrier();
1344 1345 1346 1347
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1348

1349
	barrier();
1350
	++userpg->lock;
1351
	preempt_enable();
1352
unlock:
1353
	rcu_read_unlock();
1354 1355 1356 1357 1358
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1371

1372 1373
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1374

1375 1376
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1377
	get_page(vmf->page);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1414
	return 0;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1467 1468 1469
}

static struct vm_operations_struct perf_mmap_vmops = {
1470 1471
	.open = perf_mmap_open,
	.close = perf_mmap_close,
1472 1473 1474 1475 1476 1477
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1478 1479 1480 1481
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1482 1483 1484

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1485 1486 1487 1488

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1489 1490 1491 1492 1493
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1494 1495
		return -EINVAL;

1496
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1497 1498
		return -EINVAL;

1499 1500
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	locked = vma_size >>  PAGE_SHIFT;
	locked += vma->vm_mm->locked_vm;

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
		return -EPERM;

	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count))
		goto out;

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
	if (!ret)
		atomic_set(&counter->mmap_count, 1);
out:
	mutex_unlock(&counter->mmap_mutex);
1521 1522 1523 1524

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1525 1526

	return ret;
1527 1528
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1545 1546 1547 1548
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1549 1550
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1551
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1552
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1553 1554
};

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1569
		atomic_set(&data->wakeup, POLL_IN);
1570 1571 1572 1573 1574 1575 1576
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1577 1578 1579 1580
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
P
Peter Zijlstra 已提交
1581
	kill_fasync(&counter->fasync, SIGIO, POLL_IN);
1582 1583
}

1584 1585 1586 1587 1588 1589 1590 1591
static void perf_pending_wakeup(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	perf_counter_wakeup(counter);
}

1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1601
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1602

1603
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1604 1605 1606
	PENDING_TAIL,
};

1607 1608
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1609
{
1610
	struct perf_pending_entry **head;
1611

1612
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1613 1614
		return;

1615 1616 1617
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1618 1619

	do {
1620 1621
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1622 1623 1624

	set_perf_counter_pending();

1625
	put_cpu_var(perf_pending_head);
1626 1627 1628 1629
}

static int __perf_pending_run(void)
{
1630
	struct perf_pending_entry *list;
1631 1632
	int nr = 0;

1633
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1634
	while (list != PENDING_TAIL) {
1635 1636
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1637 1638 1639

		list = list->next;

1640 1641
		func = entry->func;
		entry->next = NULL;
1642 1643 1644 1645 1646 1647 1648
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1649
		func(entry);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1671
	return counter->pending.next == NULL;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1684 1685 1686 1687
/*
 * Callchain support -- arch specific
 */

1688
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1689 1690 1691 1692
{
	return NULL;
}

1693 1694 1695 1696
/*
 * Output
 */

1697 1698 1699 1700
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1701
	unsigned int		head;
1702
	int			wakeup;
1703
	int			nmi;
1704 1705
};

1706 1707
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1708 1709 1710 1711
	if (handle->nmi) {
		perf_pending_queue(&handle->counter->pending,
				   perf_pending_wakeup);
	} else
1712 1713 1714
		perf_counter_wakeup(handle->counter);
}

1715
static int perf_output_begin(struct perf_output_handle *handle,
1716 1717
			     struct perf_counter *counter, unsigned int size,
			     int nmi)
1718
{
1719
	struct perf_mmap_data *data;
1720
	unsigned int offset, head;
1721

1722 1723 1724 1725 1726
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1727 1728 1729
	handle->counter	= counter;
	handle->nmi	= nmi;

1730
	if (!data->nr_pages)
1731
		goto fail;
1732 1733 1734

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1735
		head += size;
1736 1737
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1738 1739
	handle->data	= data;
	handle->offset	= offset;
1740
	handle->head	= head;
1741
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1742

1743
	return 0;
1744

1745 1746
fail:
	__perf_output_wakeup(handle);
1747 1748
out:
	rcu_read_unlock();
1749

1750 1751
	return -ENOSPC;
}
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1781 1782

	WARN_ON_ONCE(handle->offset > handle->head);
1783 1784
}

P
Peter Zijlstra 已提交
1785 1786 1787
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1788
static void perf_output_end(struct perf_output_handle *handle)
1789
{
P
Peter Zijlstra 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798
	int wakeup_events = handle->counter->hw_event.wakeup_events;

	if (wakeup_events) {
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1799
		__perf_output_wakeup(handle);
1800
	rcu_read_unlock();
1801 1802
}

1803 1804
static void perf_counter_output(struct perf_counter *counter,
				int nmi, struct pt_regs *regs)
1805
{
1806
	int ret;
1807
	u64 record_type = counter->hw_event.record_type;
1808 1809 1810
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1811
	struct {
1812
		u32 pid, tid;
1813
	} tid_entry;
1814 1815 1816 1817
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1818 1819
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
1820

1821
	header.type = PERF_EVENT_COUNTER_OVERFLOW;
1822
	header.size = sizeof(header);
1823

1824 1825 1826 1827 1828
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
		header.type |= __PERF_EVENT_IP;
		header.size += sizeof(ip);
	}
1829

1830
	if (record_type & PERF_RECORD_TID) {
1831
		/* namespace issues */
1832 1833 1834 1835 1836 1837 1838
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

		header.type |= __PERF_EVENT_TID;
		header.size += sizeof(tid_entry);
	}

1839 1840 1841 1842 1843 1844 1845
	if (record_type & PERF_RECORD_GROUP) {
		header.type |= __PERF_EVENT_GROUP;
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1846 1847 1848
		callchain = perf_callchain(regs);

		if (callchain) {
1849
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1850 1851 1852 1853 1854 1855

			header.type |= __PERF_EVENT_CALLCHAIN;
			header.size += callchain_size;
		}
	}

1856 1857 1858
	ret = perf_output_begin(&handle, counter, header.size, nmi);
	if (ret)
		return;
1859

1860
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1861

1862 1863
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1864

1865 1866
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1867

1868 1869 1870
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1871

1872
		perf_output_put(&handle, nr);
1873

1874 1875 1876 1877
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1878

1879 1880
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1881

1882 1883
			perf_output_put(&handle, group_entry);
		}
1884
	}
P
Peter Zijlstra 已提交
1885

1886 1887
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1888

1889
	perf_output_end(&handle);
1890 1891
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
1917
	int ret = perf_output_begin(&handle, counter, size, 0);
1918 1919 1920 1921 1922 1923 1924

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
1925
	perf_output_end(&handle);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
		name = dentry_path(file->f_dentry, buf, PATH_MAX);
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
	size = ALIGN(strlen(name), sizeof(u64));

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
			  int nmi, struct pt_regs *regs)
{
	perf_counter_output(counter, nmi, regs);
	return 0;
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2089 2090
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2091
	enum hrtimer_restart ret = HRTIMER_RESTART;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2107 2108 2109 2110
	if (regs) {
		if (perf_counter_overflow(counter, 0, regs))
			ret = HRTIMER_NORESTART;
	}
2111 2112 2113

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2114
	return ret;
2115 2116 2117 2118 2119
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
2120 2121
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2122 2123 2124 2125
	if (perf_counter_overflow(counter, nmi, regs))
		/* soft-disable the counter */
		;

2126 2127
}

2128
static int perf_swcounter_match(struct perf_counter *counter,
2129 2130
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2131 2132 2133 2134
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2135
	if (perf_event_raw(&counter->hw_event))
2136 2137
		return 0;

2138
	if (perf_event_type(&counter->hw_event) != type)
2139 2140
		return 0;

2141
	if (perf_event_id(&counter->hw_event) != event)
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2153 2154 2155 2156 2157 2158 2159 2160
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

2161
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2162 2163
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
2164 2165 2166
{
	struct perf_counter *counter;

2167
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2168 2169
		return;

P
Peter Zijlstra 已提交
2170 2171
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2172
		if (perf_swcounter_match(counter, type, event, regs))
2173
			perf_swcounter_add(counter, nr, nmi, regs);
2174
	}
P
Peter Zijlstra 已提交
2175
	rcu_read_unlock();
2176 2177
}

P
Peter Zijlstra 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2192 2193
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
2194 2195
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2196 2197 2198 2199 2200 2201 2202
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2203

2204 2205 2206 2207 2208
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
2209

P
Peter Zijlstra 已提交
2210 2211 2212 2213
	barrier();
	(*recursion)--;

out:
2214 2215 2216
	put_cpu_var(perf_cpu_context);
}

2217 2218 2219 2220 2221
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2238 2239 2240 2241 2242 2243
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2244 2245 2246 2247
/*
 * Software counter: cpu wall time clock
 */

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2260 2261 2262 2263 2264 2265
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2266 2267
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2268 2269 2270 2271 2272 2273 2274 2275 2276
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2277 2278
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2279
	hrtimer_cancel(&counter->hw.hrtimer);
2280
	cpu_clock_perf_counter_update(counter);
2281 2282 2283 2284
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2285
	cpu_clock_perf_counter_update(counter);
2286 2287 2288
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2289 2290 2291
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2292 2293
};

2294 2295 2296 2297
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
2298 2299 2300 2301
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2302
{
I
Ingo Molnar 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
2323 2324
}

2325
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2326
{
2327 2328 2329
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2330 2331
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2332 2333 2334 2335 2336
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2337 2338

	return 0;
I
Ingo Molnar 已提交
2339 2340 2341
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2342
{
2343 2344 2345 2346
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
2347

2348 2349 2350 2351
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
2352 2353 2354
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2355 2356 2357
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2358 2359
};

2360 2361 2362 2363
/*
 * Software counter: cpu migrations
 */

2364
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2365
{
2366 2367 2368 2369 2370
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2371 2372 2373 2374 2375 2376 2377 2378
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2379
	now = get_cpu_migrations(counter);
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2393
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2394
{
2395 2396 2397
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2398
	return 0;
2399 2400 2401 2402 2403 2404 2405 2406
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2407 2408 2409
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2410 2411
};

2412 2413 2414
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2415 2416 2417 2418 2419 2420
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2421 2422 2423 2424 2425 2426 2427
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2428
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2429 2430 2431 2432 2433
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2434
	int event_id = perf_event_id(&counter->hw_event);
2435 2436 2437 2438 2439 2440 2441
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2442
	counter->hw.irq_period = counter->hw_event.irq_period;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2454 2455 2456
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2457
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2458
	const struct hw_perf_counter_ops *hw_ops = NULL;
2459
	struct hw_perf_counter *hwc = &counter->hw;
2460

2461 2462 2463 2464 2465 2466 2467
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2468
	switch (perf_event_id(&counter->hw_event)) {
2469
	case PERF_COUNT_CPU_CLOCK:
2470 2471 2472 2473
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2474
		break;
2475
	case PERF_COUNT_TASK_CLOCK:
2476 2477 2478 2479 2480 2481 2482 2483
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2484 2485 2486

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2487
		break;
2488
	case PERF_COUNT_PAGE_FAULTS:
2489 2490
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2491
	case PERF_COUNT_CONTEXT_SWITCHES:
2492
		hw_ops = &perf_ops_generic;
2493
		break;
2494
	case PERF_COUNT_CPU_MIGRATIONS:
2495 2496
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2497
		break;
2498
	}
2499 2500 2501 2502

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2503 2504 2505
	return hw_ops;
}

T
Thomas Gleixner 已提交
2506 2507 2508 2509
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2510 2511
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2512
		   struct perf_counter_context *ctx,
2513 2514
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2515
{
2516
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2517
	struct perf_counter *counter;
2518
	long err;
T
Thomas Gleixner 已提交
2519

2520
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2521
	if (!counter)
2522
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2523

2524 2525 2526 2527 2528 2529 2530
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2531
	mutex_init(&counter->mutex);
2532
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2533
	INIT_LIST_HEAD(&counter->event_entry);
2534
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2535 2536
	init_waitqueue_head(&counter->waitq);

2537 2538
	mutex_init(&counter->mmap_mutex);

2539 2540
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2541 2542
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2543
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2544
	counter->hw_ops			= NULL;
2545
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2546

2547
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2548 2549 2550
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2551
	hw_ops = NULL;
2552

2553
	if (perf_event_raw(hw_event)) {
2554
		hw_ops = hw_perf_counter_init(counter);
2555 2556 2557 2558
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2559
	case PERF_TYPE_HARDWARE:
2560
		hw_ops = hw_perf_counter_init(counter);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2571 2572 2573 2574 2575 2576
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2577

2578
	if (err) {
I
Ingo Molnar 已提交
2579
		kfree(counter);
2580
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2581
	}
2582

I
Ingo Molnar 已提交
2583
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2584 2585 2586 2587 2588

	return counter;
}

/**
2589
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2590 2591
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2592
 * @pid:		target pid
I
Ingo Molnar 已提交
2593 2594
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2595
 */
2596
SYSCALL_DEFINE5(perf_counter_open,
2597
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2598
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2599
{
2600
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2601
	struct perf_counter_hw_event hw_event;
2602
	struct perf_counter_context *ctx;
2603
	struct file *counter_file = NULL;
2604 2605
	struct file *group_file = NULL;
	int fput_needed = 0;
2606
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2607 2608
	int ret;

2609 2610 2611 2612
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2613
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2614 2615
		return -EFAULT;

2616
	/*
I
Ingo Molnar 已提交
2617 2618 2619 2620 2621 2622 2623 2624
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2625 2626 2627 2628 2629 2630
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2631
			goto err_put_context;
2632
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2633
			goto err_put_context;
2634 2635 2636

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2637 2638 2639 2640 2641 2642 2643 2644
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2645
		 */
I
Ingo Molnar 已提交
2646 2647
		if (group_leader->ctx != ctx)
			goto err_put_context;
2648 2649 2650 2651 2652
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2653 2654
	}

2655 2656
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2657 2658
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2659 2660 2661 2662
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2663 2664 2665 2666 2667 2668 2669
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2670
	mutex_lock(&ctx->mutex);
2671
	perf_install_in_context(ctx, counter, cpu);
2672
	mutex_unlock(&ctx->mutex);
2673 2674

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2675

2676 2677 2678
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2679 2680
	return ret;

2681
err_free_put_context:
T
Thomas Gleixner 已提交
2682 2683 2684 2685 2686
	kfree(counter);

err_put_context:
	put_context(ctx);

2687
	goto out_fput;
T
Thomas Gleixner 已提交
2688 2689
}

2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2699
	mutex_init(&ctx->mutex);
2700
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2701
	INIT_LIST_HEAD(&ctx->event_list);
2702 2703 2704 2705 2706 2707
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2708
static struct perf_counter *
2709 2710 2711 2712
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2713
	      struct perf_counter *group_leader,
2714 2715 2716 2717
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2727
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2728 2729
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2730 2731
	if (IS_ERR(child_counter))
		return child_counter;
2732 2733 2734 2735 2736

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2737
	add_counter_to_ctx(child_counter, child_ctx);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2782
	struct perf_counter *child_ctr;
2783 2784 2785

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2786 2787
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2788
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2789 2790 2791 2792
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2793
	}
2794 2795 2796
	return 0;
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2809 2810 2811 2812
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2828 2829 2830 2831 2832 2833
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2834
	struct perf_counter *sub, *tmp;
2835 2836

	/*
2837 2838 2839 2840 2841 2842
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2843
	 */
2844 2845 2846
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2847
		update_counter_times(child_counter);
2848
	} else {
2849
		struct perf_cpu_context *cpuctx;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2861 2862 2863

		cpuctx = &__get_cpu_var(perf_cpu_context);

2864
		group_sched_out(child_counter, cpuctx, child_ctx);
2865
		update_counter_times(child_counter);
2866

2867
		list_del_init(&child_counter->list_entry);
2868

2869
		child_ctx->nr_counters--;
2870

2871 2872 2873
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2874 2875 2876 2877 2878 2879 2880

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2881 2882 2883 2884
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2885
			if (sub->parent) {
2886
				sync_child_counter(sub, sub->parent);
2887
				free_counter(sub);
2888
			}
2889
		}
2890
		free_counter(child_counter);
2891
	}
2892 2893 2894
}

/*
2895
 * When a child task exits, feed back counter values to parent counters.
2896
 *
2897
 * Note: we may be running in child context, but the PID is not hashed
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2921
	struct perf_counter *counter;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2941
	mutex_lock(&parent_ctx->mutex);
2942 2943 2944 2945 2946 2947

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2948
		if (!counter->hw_event.inherit)
2949 2950
			continue;

2951
		if (inherit_group(counter, parent,
2952 2953 2954 2955
				  parent_ctx, child, child_ctx))
			break;
	}

2956
	mutex_unlock(&parent_ctx->mutex);
2957 2958
}

2959
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2960
{
2961
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2962

2963 2964
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2965 2966

	mutex_lock(&perf_resource_mutex);
2967
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2968
	mutex_unlock(&perf_resource_mutex);
2969

2970
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2971 2972 2973
}

#ifdef CONFIG_HOTPLUG_CPU
2974
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2975 2976 2977 2978 2979
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2980 2981
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2982
}
2983
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2984
{
2985 2986 2987 2988
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2989
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2990
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2991 2992
}
#else
2993
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3005
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3006 3007 3008 3009
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3010
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);