perf_counter.c 73.4 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40 41 42 43 44 45 46 47 48
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
49
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
50
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
51
{
52
	return NULL;
T
Thomas Gleixner 已提交
53 54
}

55
u64 __weak hw_perf_save_disable(void)		{ return 0; }
56
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
57
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
58 59 60 61 62 63
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
64

65 66
void __weak perf_counter_print_debug(void)	{ }

67 68 69 70 71 72 73 74 75 76 77 78
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
79
	else {
80
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
81 82
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
83 84

	list_add_rcu(&counter->event_entry, &ctx->event_list);
85 86 87 88 89 90 91 92
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
93
	list_del_rcu(&counter->event_entry);
94

P
Peter Zijlstra 已提交
95 96 97
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

98 99 100 101 102 103 104 105
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

106
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 108 109 110
		sibling->group_leader = sibling;
	}
}

111 112 113 114 115 116 117 118 119
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
120
	counter->tstamp_stopped = ctx->time;
121 122 123 124 125 126 127 128 129 130
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
153 154 155 156 157 158
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
159
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
160 161 162 163
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
164
	unsigned long flags;
165
	u64 perf_flags;
T
Thomas Gleixner 已提交
166 167 168 169 170 171 172 173 174

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
175 176
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
177

178 179 180
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
181 182 183 184 185 186
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
187
	perf_flags = hw_perf_save_disable();
188
	list_del_counter(counter, ctx);
189
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
190 191 192 193 194 195 196 197 198 199 200

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
201 202
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
203 204 205 206 207 208
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
209
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
210 211 212 213
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
214
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
215 216 217 218 219 220 221 222 223 224
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
225
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
226 227 228 229 230
					 counter, 1);
		return;
	}

retry:
231
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
232 233 234 235 236 237
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
238
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
239 240 241 242 243 244
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
245
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
246 247
	 * succeed.
	 */
248
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
249
		ctx->nr_counters--;
250
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
251 252 253 254 255
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

256
static inline u64 perf_clock(void)
257
{
258
	return cpu_clock(smp_processor_id());
259 260 261 262 263
}

/*
 * Update the record of the current time in a context.
 */
264
static void update_context_time(struct perf_counter_context *ctx)
265
{
266 267 268 269
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
270 271 272 273 274 275 276 277 278 279
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

280 281 282 283 284 285 286 287 288 289 290
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
291 292 293 294 295 296 297 298 299 300 301 302 303 304
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
330
		update_context_time(ctx);
331
		update_counter_times(counter);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
376 377
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
378
		counter->state = PERF_COUNTER_STATE_OFF;
379
	}
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

402 403 404 405 406 407
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
408
	if (counter->state <= PERF_COUNTER_STATE_OFF)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

424
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
425

426 427
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
428 429
	ctx->nr_active++;

430 431 432
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

433 434 435
	return 0;
}

436 437 438 439 440 441 442 443 444 445
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
446

447 448 449
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

485 486 487 488 489 490
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
491 492 493
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
494 495
}

T
Thomas Gleixner 已提交
496
/*
497
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
498 499 500 501 502 503
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
504
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
505
	int cpu = smp_processor_id();
506
	unsigned long flags;
507
	u64 perf_flags;
508
	int err;
T
Thomas Gleixner 已提交
509 510 511 512 513 514 515 516 517

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
518 519
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
520
	update_context_time(ctx);
T
Thomas Gleixner 已提交
521 522 523 524 525

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
526
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
527

528
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
529

530 531 532 533 534 535 536 537
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

538 539 540 541 542
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
543
	if (!group_can_go_on(counter, cpuctx, 1))
544 545 546 547
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

548 549 550 551 552 553 554 555
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
556 557
		if (leader->hw_event.pinned) {
			update_group_times(leader);
558
			leader->state = PERF_COUNTER_STATE_ERROR;
559
		}
560
	}
T
Thomas Gleixner 已提交
561

562
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
563 564
		cpuctx->max_pertask--;

565
 unlock:
566 567
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
568 569
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
570 571 572 573 574 575 576 577 578 579 580
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
581 582
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
610
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
611 612 613 614 615 616 617 618 619
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
620 621
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
622 623 624
	spin_unlock_irq(&ctx->lock);
}

625 626 627 628
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
629
{
630 631 632 633 634 635
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
636

637 638 639 640 641
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
642 643
		return;

644 645
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
646
	update_context_time(ctx);
647

648
	counter->prev_state = counter->state;
649 650 651
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
652
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653 654

	/*
655 656
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
657
	 */
658 659
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
660

661 662 663 664 665 666 667 668 669 670 671 672 673
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
674 675
		if (leader->hw_event.pinned) {
			update_group_times(leader);
676
			leader->state = PERF_COUNTER_STATE_ERROR;
677
		}
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
733
	if (counter->state == PERF_COUNTER_STATE_OFF) {
734
		counter->state = PERF_COUNTER_STATE_INACTIVE;
735 736
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
737
	}
738 739 740 741
 out:
	spin_unlock_irq(&ctx->lock);
}

742 743 744 745 746 747
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
764 765
}

766 767 768 769
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
770
	u64 flags;
771

772 773
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
774
	if (likely(!ctx->nr_counters))
775
		goto out;
776
	update_context_time(ctx);
777

778
	flags = hw_perf_save_disable();
779 780 781 782
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
783
	hw_perf_restore(flags);
784
 out:
785 786 787
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
788 789 790 791 792 793
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
794
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
795 796 797 798 799 800 801 802
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
803
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
804 805 806 807

	if (likely(!cpuctx->task_ctx))
		return;

808 809
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
810 811
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
812 813 814
	cpuctx->task_ctx = NULL;
}

815
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816
{
817
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 819
}

I
Ingo Molnar 已提交
820
static int
821 822 823 824 825
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
826
	struct perf_counter *counter, *partial_group;
827 828 829 830 831 832 833 834
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
835

836
	group_counter->prev_state = group_counter->state;
837 838
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
839 840 841 842

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
843
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844
		counter->prev_state = counter->state;
845 846 847 848 849 850
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

851
	return 0;
852 853 854 855 856 857 858 859 860 861

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862
	}
863
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
864

865
	return -EAGAIN;
866 867
}

868 869 870
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
871 872
{
	struct perf_counter *counter;
873
	u64 flags;
874
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
875

876 877
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
878
	if (likely(!ctx->nr_counters))
879
		goto out;
T
Thomas Gleixner 已提交
880

881
	ctx->timestamp = perf_clock();
882

883
	flags = hw_perf_save_disable();
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
903 904
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
905
			counter->state = PERF_COUNTER_STATE_ERROR;
906
		}
907 908
	}

909
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 911 912 913 914 915 916 917
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

918 919 920 921
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
922 923 924
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

925
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 927
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
928
		}
T
Thomas Gleixner 已提交
929
	}
930
	hw_perf_restore(flags);
931
 out:
T
Thomas Gleixner 已提交
932
	spin_unlock(&ctx->lock);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
950

951
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
952 953 954
	cpuctx->task_ctx = ctx;
}

955 956 957 958 959 960 961
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

962 963 964 965 966
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
967
	unsigned long flags;
968 969 970 971 972 973
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
974
	curr_rq_lock_irq_save(&flags);
975 976 977 978 979 980 981 982 983 984 985
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

986
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987 988
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
989
			counter->state = PERF_COUNTER_STATE_OFF;
990
		}
991
	}
992

993 994 995 996
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
997
	curr_rq_unlock_irq_restore(&flags);
998 999 1000 1001 1002 1003 1004 1005 1006

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1007
	unsigned long flags;
1008 1009 1010 1011 1012 1013
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
1014
	curr_rq_lock_irq_save(&flags);
1015 1016
	cpu = smp_processor_id();

1017 1018
	perf_counter_task_sched_out(curr, cpu);

1019 1020 1021 1022 1023 1024 1025 1026
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1027
		if (counter->state > PERF_COUNTER_STATE_OFF)
1028
			continue;
1029
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1030 1031
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1032
		counter->hw_event.disabled = 0;
1033 1034 1035 1036 1037 1038 1039
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
1040
	curr_rq_unlock_irq_restore(&flags);
1041 1042 1043 1044

	return 0;
}

1045 1046 1047 1048
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1049 1050
{
	struct perf_counter *counter;
1051
	u64 perf_flags;
T
Thomas Gleixner 已提交
1052

1053
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1054 1055 1056 1057
		return;

	spin_lock(&ctx->lock);
	/*
1058
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1059
	 */
1060
	perf_flags = hw_perf_save_disable();
1061
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1062
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1063 1064
		break;
	}
1065
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1066 1067

	spin_unlock(&ctx->lock);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1079

1080 1081 1082 1083 1084 1085
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1086 1087 1088 1089 1090 1091
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1092
static void __read(void *info)
T
Thomas Gleixner 已提交
1093
{
I
Ingo Molnar 已提交
1094
	struct perf_counter *counter = info;
1095
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1096
	unsigned long flags;
I
Ingo Molnar 已提交
1097

I
Ingo Molnar 已提交
1098
	curr_rq_lock_irq_save(&flags);
1099
	if (ctx->is_active)
1100
		update_context_time(ctx);
I
Ingo Molnar 已提交
1101
	counter->hw_ops->read(counter);
1102
	update_counter_times(counter);
I
Ingo Molnar 已提交
1103
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1104 1105
}

1106
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1107 1108 1109 1110 1111
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1112
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1113
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1114
					 __read, counter, 1);
1115 1116
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1117 1118
	}

1119
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188 1189 1190
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1191 1192
static void perf_pending_sync(struct perf_counter *counter);

1193 1194
static void free_counter(struct perf_counter *counter)
{
1195 1196
	perf_pending_sync(counter);

1197 1198 1199
	if (counter->destroy)
		counter->destroy(counter);

1200 1201 1202
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1213
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1214 1215
	mutex_lock(&counter->mutex);

1216
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1217 1218

	mutex_unlock(&counter->mutex);
1219
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1220

1221
	free_counter(counter);
1222
	put_context(ctx);
T
Thomas Gleixner 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1233 1234
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1235

1236 1237 1238 1239 1240 1241 1242 1243
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1244
	mutex_lock(&counter->mutex);
1245 1246 1247 1248 1249 1250 1251 1252
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1253 1254
	mutex_unlock(&counter->mutex);

1255 1256 1257 1258 1259 1260 1261 1262
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1263 1264 1265 1266 1267 1268 1269
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1270
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1271 1272 1273 1274 1275
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1286 1287 1288 1289 1290 1291

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1304 1305 1306
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1307 1308 1309 1310 1311 1312
	default:
		err = -ENOTTY;
	}
	return err;
}

1313 1314 1315 1316 1317 1318
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1319
{
1320 1321 1322 1323 1324 1325 1326 1327 1328
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1329

1330 1331 1332 1333 1334
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1335
	++userpg->lock;
1336
	barrier();
1337 1338 1339 1340
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1341

1342
	barrier();
1343
	++userpg->lock;
1344
	preempt_enable();
1345
unlock:
1346
	rcu_read_unlock();
1347 1348 1349 1350 1351
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1364

1365 1366
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1367

1368 1369
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1370
	get_page(vmf->page);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1407
	return 0;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1457
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1458 1459 1460
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1461 1462 1463
}

static struct vm_operations_struct perf_mmap_vmops = {
1464
	.open  = perf_mmap_open,
1465
	.close = perf_mmap_close,
1466 1467 1468 1469 1470 1471
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1472 1473 1474 1475
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1476 1477 1478

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1479 1480 1481 1482

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1483 1484 1485 1486 1487
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1488 1489
		return -EINVAL;

1490
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1491 1492
		return -EINVAL;

1493 1494
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1505 1506 1507 1508

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1509 1510 1511 1512
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1513 1514 1515

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1516 1517 1518 1519 1520 1521
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1522
	mutex_unlock(&counter->mmap_mutex);
1523 1524 1525 1526

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1527 1528

	return ret;
1529 1530
}

P
Peter Zijlstra 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1547 1548 1549 1550
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1551 1552
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1553
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1554
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1555 1556
};

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1571
		atomic_set(&data->wakeup, POLL_IN);
1572 1573 1574 1575 1576 1577 1578
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1579 1580 1581 1582
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
1583 1584 1585 1586 1587

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1615
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1616

1617
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1618 1619 1620
	PENDING_TAIL,
};

1621 1622
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1623
{
1624
	struct perf_pending_entry **head;
1625

1626
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1627 1628
		return;

1629 1630 1631
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1632 1633

	do {
1634 1635
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1636 1637 1638

	set_perf_counter_pending();

1639
	put_cpu_var(perf_pending_head);
1640 1641 1642 1643
}

static int __perf_pending_run(void)
{
1644
	struct perf_pending_entry *list;
1645 1646
	int nr = 0;

1647
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1648
	while (list != PENDING_TAIL) {
1649 1650
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1651 1652 1653

		list = list->next;

1654 1655
		func = entry->func;
		entry->next = NULL;
1656 1657 1658 1659 1660 1661 1662
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1663
		func(entry);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1685
	return counter->pending.next == NULL;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1698 1699 1700 1701
/*
 * Callchain support -- arch specific
 */

1702
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1703 1704 1705 1706
{
	return NULL;
}

1707 1708 1709 1710
/*
 * Output
 */

1711 1712 1713 1714
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1715
	unsigned int		head;
1716
	int			wakeup;
1717
	int			nmi;
1718
	int			overflow;
1719 1720
};

1721 1722
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1723
	if (handle->nmi) {
1724
		handle->counter->pending_wakeup = 1;
1725
		perf_pending_queue(&handle->counter->pending,
1726
				   perf_pending_counter);
1727
	} else
1728 1729 1730
		perf_counter_wakeup(handle->counter);
}

1731
static int perf_output_begin(struct perf_output_handle *handle,
1732
			     struct perf_counter *counter, unsigned int size,
1733
			     int nmi, int overflow)
1734
{
1735
	struct perf_mmap_data *data;
1736
	unsigned int offset, head;
1737

1738 1739 1740 1741 1742
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1743 1744 1745
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1746

1747
	if (!data->nr_pages)
1748
		goto fail;
1749 1750 1751

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1752
		head += size;
1753 1754
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1755 1756
	handle->data	= data;
	handle->offset	= offset;
1757
	handle->head	= head;
1758
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1759

1760
	return 0;
1761

1762 1763
fail:
	__perf_output_wakeup(handle);
1764 1765
out:
	rcu_read_unlock();
1766

1767 1768
	return -ENOSPC;
}
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1798 1799

	WARN_ON_ONCE(handle->offset > handle->head);
1800 1801
}

P
Peter Zijlstra 已提交
1802 1803 1804
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1805
static void perf_output_end(struct perf_output_handle *handle)
1806
{
P
Peter Zijlstra 已提交
1807 1808
	int wakeup_events = handle->counter->hw_event.wakeup_events;

1809
	if (handle->overflow && wakeup_events) {
P
Peter Zijlstra 已提交
1810 1811 1812 1813 1814 1815
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1816
		__perf_output_wakeup(handle);
1817
	rcu_read_unlock();
1818 1819
}

1820 1821
static void perf_counter_output(struct perf_counter *counter,
				int nmi, struct pt_regs *regs)
1822
{
1823
	int ret;
1824
	u64 record_type = counter->hw_event.record_type;
1825 1826 1827
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1828
	struct {
1829
		u32 pid, tid;
1830
	} tid_entry;
1831 1832 1833 1834
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1835 1836
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1837
	u64 time;
1838

1839
	header.type = PERF_EVENT_COUNTER_OVERFLOW;
1840
	header.size = sizeof(header);
1841

1842 1843 1844 1845 1846
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
		header.type |= __PERF_EVENT_IP;
		header.size += sizeof(ip);
	}
1847

1848
	if (record_type & PERF_RECORD_TID) {
1849
		/* namespace issues */
1850 1851 1852 1853 1854 1855 1856
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

		header.type |= __PERF_EVENT_TID;
		header.size += sizeof(tid_entry);
	}

1857 1858 1859 1860 1861 1862 1863
	if (record_type & PERF_RECORD_GROUP) {
		header.type |= __PERF_EVENT_GROUP;
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1864 1865 1866
		callchain = perf_callchain(regs);

		if (callchain) {
1867
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1868 1869 1870 1871 1872 1873

			header.type |= __PERF_EVENT_CALLCHAIN;
			header.size += callchain_size;
		}
	}

P
Peter Zijlstra 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= __PERF_EVENT_TIME;
		header.size += sizeof(u64);
	}

1884
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1885 1886
	if (ret)
		return;
1887

1888
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1889

1890 1891
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1892

1893 1894
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1895

1896 1897 1898
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1899

1900
		perf_output_put(&handle, nr);
1901

1902 1903 1904 1905
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1906

1907 1908
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1909

1910 1911
			perf_output_put(&handle, group_entry);
		}
1912
	}
P
Peter Zijlstra 已提交
1913

1914 1915
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1916

P
Peter Zijlstra 已提交
1917 1918 1919
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1920
	perf_output_end(&handle);
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
1948
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
1949 1950 1951 1952 1953 1954 1955

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
1956
	perf_output_end(&handle);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
		name = dentry_path(file->f_dentry, buf, PATH_MAX);
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
	size = ALIGN(strlen(name), sizeof(u64));

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2067 2068 2069 2070 2071 2072 2073
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
			  int nmi, struct pt_regs *regs)
{
2074 2075 2076
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2077
	counter->pending_kill = POLL_IN;
2078 2079
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2080
		counter->pending_kill = POLL_HUP;
2081 2082 2083 2084 2085 2086 2087 2088
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2089
	perf_counter_output(counter, nmi, regs);
2090
	return ret;
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2135 2136
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2137
	enum hrtimer_restart ret = HRTIMER_RESTART;
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2153 2154 2155 2156
	if (regs) {
		if (perf_counter_overflow(counter, 0, regs))
			ret = HRTIMER_NORESTART;
	}
2157 2158 2159

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2160
	return ret;
2161 2162 2163 2164 2165
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
2166 2167
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2168 2169 2170 2171
	if (perf_counter_overflow(counter, nmi, regs))
		/* soft-disable the counter */
		;

2172 2173
}

2174
static int perf_swcounter_match(struct perf_counter *counter,
2175 2176
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2177 2178 2179 2180
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2181
	if (perf_event_raw(&counter->hw_event))
2182 2183
		return 0;

2184
	if (perf_event_type(&counter->hw_event) != type)
2185 2186
		return 0;

2187
	if (perf_event_id(&counter->hw_event) != event)
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2199 2200 2201 2202 2203 2204 2205 2206
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

2207
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2208 2209
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
2210 2211 2212
{
	struct perf_counter *counter;

2213
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2214 2215
		return;

P
Peter Zijlstra 已提交
2216 2217
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2218
		if (perf_swcounter_match(counter, type, event, regs))
2219
			perf_swcounter_add(counter, nr, nmi, regs);
2220
	}
P
Peter Zijlstra 已提交
2221
	rcu_read_unlock();
2222 2223
}

P
Peter Zijlstra 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2238 2239
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
2240 2241
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2242 2243 2244 2245 2246 2247 2248
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2249

2250 2251 2252 2253 2254
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
2255

P
Peter Zijlstra 已提交
2256 2257 2258 2259
	barrier();
	(*recursion)--;

out:
2260 2261 2262
	put_cpu_var(perf_cpu_context);
}

2263 2264 2265 2266 2267
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2284 2285 2286 2287 2288 2289
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2290 2291 2292 2293
/*
 * Software counter: cpu wall time clock
 */

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2306 2307 2308 2309 2310 2311
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2312 2313
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2323 2324
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2325
	hrtimer_cancel(&counter->hw.hrtimer);
2326
	cpu_clock_perf_counter_update(counter);
2327 2328 2329 2330
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2331
	cpu_clock_perf_counter_update(counter);
2332 2333 2334
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2335 2336 2337
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2338 2339
};

2340 2341 2342 2343
/*
 * Software counter: task time clock
 */

2344
static void task_clock_perf_counter_update(struct perf_counter *counter)
I
Ingo Molnar 已提交
2345
{
2346
	u64 prev, now;
I
Ingo Molnar 已提交
2347 2348
	s64 delta;

2349 2350
	update_context_time(counter->ctx);
	now = counter->ctx->time;
I
Ingo Molnar 已提交
2351

2352
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2353 2354
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2355 2356
}

2357
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2358
{
2359
	struct hw_perf_counter *hwc = &counter->hw;
2360 2361 2362 2363
	u64 now;

	update_context_time(counter->ctx);
	now = counter->ctx->time;
2364

2365
	atomic64_set(&hwc->prev_count, now);
2366 2367
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2368 2369 2370 2371 2372
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2373 2374

	return 0;
I
Ingo Molnar 已提交
2375 2376 2377
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2378
{
2379
	hrtimer_cancel(&counter->hw.hrtimer);
2380
	task_clock_perf_counter_update(counter);
2381
}
I
Ingo Molnar 已提交
2382

2383 2384
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2385
	task_clock_perf_counter_update(counter);
2386 2387 2388
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2389 2390 2391
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2392 2393
};

2394 2395 2396 2397
/*
 * Software counter: cpu migrations
 */

2398
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2399
{
2400 2401 2402 2403 2404
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2405 2406 2407 2408 2409 2410 2411 2412
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2413
	now = get_cpu_migrations(counter);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2427
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2428
{
2429 2430 2431
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2432
	return 0;
2433 2434 2435 2436 2437 2438 2439 2440
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2441 2442 2443
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2444 2445
};

2446 2447 2448
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2449 2450 2451 2452 2453 2454
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2455 2456 2457 2458 2459 2460 2461
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2462
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2463 2464 2465 2466 2467
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2468
	int event_id = perf_event_id(&counter->hw_event);
2469 2470 2471 2472 2473 2474 2475
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2476
	counter->hw.irq_period = counter->hw_event.irq_period;
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2488 2489 2490
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2491
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2492
	const struct hw_perf_counter_ops *hw_ops = NULL;
2493
	struct hw_perf_counter *hwc = &counter->hw;
2494

2495 2496 2497 2498 2499 2500 2501
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2502
	switch (perf_event_id(&counter->hw_event)) {
2503
	case PERF_COUNT_CPU_CLOCK:
2504 2505 2506 2507
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2508
		break;
2509
	case PERF_COUNT_TASK_CLOCK:
2510 2511 2512 2513 2514 2515 2516 2517
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2518 2519 2520

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2521
		break;
2522
	case PERF_COUNT_PAGE_FAULTS:
2523 2524
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2525
	case PERF_COUNT_CONTEXT_SWITCHES:
2526
		hw_ops = &perf_ops_generic;
2527
		break;
2528
	case PERF_COUNT_CPU_MIGRATIONS:
2529 2530
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2531
		break;
2532
	}
2533 2534 2535 2536

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2537 2538 2539
	return hw_ops;
}

T
Thomas Gleixner 已提交
2540 2541 2542 2543
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2544 2545
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2546
		   struct perf_counter_context *ctx,
2547 2548
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2549
{
2550
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2551
	struct perf_counter *counter;
2552
	long err;
T
Thomas Gleixner 已提交
2553

2554
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2555
	if (!counter)
2556
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2557

2558 2559 2560 2561 2562 2563 2564
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2565
	mutex_init(&counter->mutex);
2566
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2567
	INIT_LIST_HEAD(&counter->event_entry);
2568
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2569 2570
	init_waitqueue_head(&counter->waitq);

2571 2572
	mutex_init(&counter->mmap_mutex);

2573 2574
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2575 2576
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2577
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2578
	counter->hw_ops			= NULL;
2579
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2580

2581
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2582 2583 2584
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2585
	hw_ops = NULL;
2586

2587
	if (perf_event_raw(hw_event)) {
2588
		hw_ops = hw_perf_counter_init(counter);
2589 2590 2591 2592
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2593
	case PERF_TYPE_HARDWARE:
2594
		hw_ops = hw_perf_counter_init(counter);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2605 2606 2607 2608 2609 2610
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2611

2612
	if (err) {
I
Ingo Molnar 已提交
2613
		kfree(counter);
2614
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2615
	}
2616

I
Ingo Molnar 已提交
2617
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2618 2619 2620 2621 2622

	return counter;
}

/**
2623
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2624 2625
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2626
 * @pid:		target pid
I
Ingo Molnar 已提交
2627 2628
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2629
 */
2630
SYSCALL_DEFINE5(perf_counter_open,
2631
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2632
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2633
{
2634
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2635
	struct perf_counter_hw_event hw_event;
2636
	struct perf_counter_context *ctx;
2637
	struct file *counter_file = NULL;
2638 2639
	struct file *group_file = NULL;
	int fput_needed = 0;
2640
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2641 2642
	int ret;

2643 2644 2645 2646
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2647
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2648 2649
		return -EFAULT;

2650
	/*
I
Ingo Molnar 已提交
2651 2652 2653 2654 2655 2656 2657 2658
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2659 2660 2661 2662 2663 2664
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2665
			goto err_put_context;
2666
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2667
			goto err_put_context;
2668 2669 2670

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2671 2672 2673 2674 2675 2676 2677 2678
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2679
		 */
I
Ingo Molnar 已提交
2680 2681
		if (group_leader->ctx != ctx)
			goto err_put_context;
2682 2683 2684 2685 2686
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2687 2688
	}

2689 2690
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2691 2692
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2693 2694 2695 2696
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2697 2698 2699 2700 2701 2702 2703
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2704
	mutex_lock(&ctx->mutex);
2705
	perf_install_in_context(ctx, counter, cpu);
2706
	mutex_unlock(&ctx->mutex);
2707 2708

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2709

2710 2711 2712
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2713 2714
	return ret;

2715
err_free_put_context:
T
Thomas Gleixner 已提交
2716 2717 2718 2719 2720
	kfree(counter);

err_put_context:
	put_context(ctx);

2721
	goto out_fput;
T
Thomas Gleixner 已提交
2722 2723
}

2724 2725 2726 2727 2728 2729 2730 2731 2732
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2733
	mutex_init(&ctx->mutex);
2734
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2735
	INIT_LIST_HEAD(&ctx->event_list);
2736 2737 2738 2739 2740 2741
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2742
static struct perf_counter *
2743 2744 2745 2746
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2747
	      struct perf_counter *group_leader,
2748 2749 2750 2751
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2752 2753 2754 2755 2756 2757 2758 2759 2760
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2761
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2762 2763
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2764 2765
	if (IS_ERR(child_counter))
		return child_counter;
2766 2767 2768 2769 2770

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2771
	add_counter_to_ctx(child_counter, child_ctx);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2816
	struct perf_counter *child_ctr;
2817 2818 2819

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2820 2821
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2822
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2823 2824 2825 2826
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2827
	}
2828 2829 2830
	return 0;
}

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2843 2844 2845 2846
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2862 2863 2864 2865 2866 2867
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2868
	struct perf_counter *sub, *tmp;
2869 2870

	/*
2871 2872 2873 2874 2875 2876
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2877
	 */
2878 2879 2880
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2881
		update_counter_times(child_counter);
2882
	} else {
2883
		struct perf_cpu_context *cpuctx;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2895 2896 2897

		cpuctx = &__get_cpu_var(perf_cpu_context);

2898
		group_sched_out(child_counter, cpuctx, child_ctx);
2899
		update_counter_times(child_counter);
2900

2901
		list_del_init(&child_counter->list_entry);
2902

2903
		child_ctx->nr_counters--;
2904

2905 2906 2907
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2908 2909 2910 2911 2912 2913 2914

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2915 2916 2917 2918
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2919
			if (sub->parent) {
2920
				sync_child_counter(sub, sub->parent);
2921
				free_counter(sub);
2922
			}
2923
		}
2924
		free_counter(child_counter);
2925
	}
2926 2927 2928
}

/*
2929
 * When a child task exits, feed back counter values to parent counters.
2930
 *
2931
 * Note: we may be running in child context, but the PID is not hashed
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2955
	struct perf_counter *counter;
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2975
	mutex_lock(&parent_ctx->mutex);
2976 2977 2978 2979 2980 2981

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2982
		if (!counter->hw_event.inherit)
2983 2984
			continue;

2985
		if (inherit_group(counter, parent,
2986 2987 2988 2989
				  parent_ctx, child, child_ctx))
			break;
	}

2990
	mutex_unlock(&parent_ctx->mutex);
2991 2992
}

2993
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2994
{
2995
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2996

2997 2998
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2999 3000

	mutex_lock(&perf_resource_mutex);
3001
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3002
	mutex_unlock(&perf_resource_mutex);
3003

3004
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3005 3006 3007
}

#ifdef CONFIG_HOTPLUG_CPU
3008
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3009 3010 3011 3012 3013
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3014 3015
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3016
}
3017
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3018
{
3019 3020 3021 3022
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3023
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3024
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3025 3026
}
#else
3027
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3039
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3040 3041 3042 3043
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3044
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);