perf_counter.c 57.3 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
25
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26

27 28
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
29 30 31 32 33
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

34
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
35 36 37 38 39 40 41 42 43 44 45
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
46
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
47
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
48
{
49
	return NULL;
T
Thomas Gleixner 已提交
50 51
}

52
u64 __weak hw_perf_save_disable(void)		{ return 0; }
53
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
54
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
55 56 57 58 59 60
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
61

62 63
void __weak perf_counter_print_debug(void)	{ }

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
78 79

	list_add_rcu(&counter->event_entry, &ctx->event_list);
80 81 82 83 84 85 86 87
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
88
	list_del_rcu(&counter->event_entry);
89 90 91 92 93 94 95 96 97

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

98
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
99 100 101 102
		sibling->group_leader = sibling;
	}
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
144 145 146 147 148 149
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
150
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
151 152 153 154
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
155
	unsigned long flags;
156
	u64 perf_flags;
T
Thomas Gleixner 已提交
157 158 159 160 161 162 163 164 165

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
166 167
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
168

169 170 171
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
172 173 174 175 176 177
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
178
	perf_flags = hw_perf_save_disable();
179
	list_del_counter(counter, ctx);
180
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
181 182 183 184 185 186 187 188 189 190 191

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
192 193
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
194 195 196 197 198 199
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
200
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
201 202 203 204
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
205
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
206 207 208 209 210 211 212 213 214 215
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
216
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
217 218 219 220 221
					 counter, 1);
		return;
	}

retry:
222
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
223 224 225 226 227 228
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
229
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
230 231 232 233 234 235
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
236
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
237 238
	 * succeed.
	 */
239
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
240
		ctx->nr_counters--;
241
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
242 243 244 245 246
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

340 341 342 343 344 345
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
346
	if (counter->state <= PERF_COUNTER_STATE_OFF)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

362 363
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
364 365
	ctx->nr_active++;

366 367 368
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

369 370 371
	return 0;
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
419
/*
420
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
421 422 423 424 425 426
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
427
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
428
	int cpu = smp_processor_id();
429
	unsigned long flags;
430
	u64 perf_flags;
431
	int err;
T
Thomas Gleixner 已提交
432 433 434 435 436 437 438 439 440

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
441 442
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
443 444 445 446 447

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
448
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
449

450
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
451
	ctx->nr_counters++;
452
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
453

454 455 456 457 458 459 460 461
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

462 463 464 465 466
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
467
	if (!group_can_go_on(counter, cpuctx, 1))
468 469 470 471
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

472 473 474 475 476 477 478 479 480 481 482
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
483

484
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
485 486
		cpuctx->max_pertask--;

487
 unlock:
488 489
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
490 491
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
492 493 494 495 496 497 498 499 500 501 502
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
503 504
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
532
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
533 534 535 536 537 538 539 540 541
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
542 543
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
544 545 546 547 548
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

549 550 551 552
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
553
{
554 555 556 557 558 559
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
560

561 562 563 564 565
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
566 567
		return;

568 569 570
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

571
	counter->prev_state = counter->state;
572 573 574
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
575 576

	/*
577 578
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
579
	 */
580 581
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
675 676
}

677 678 679 680
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
681
	u64 flags;
682

683 684
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
685
	if (likely(!ctx->nr_counters))
686
		goto out;
687

688
	flags = hw_perf_save_disable();
689 690 691 692
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
693
	hw_perf_restore(flags);
694
 out:
695 696 697
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
698 699 700 701 702 703
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
704
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
705 706 707 708 709 710 711 712
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
713
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
714 715 716 717

	if (likely(!cpuctx->task_ctx))
		return;

718 719
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
720 721
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
722 723 724
	cpuctx->task_ctx = NULL;
}

725
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
726
{
727
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
728 729
}

I
Ingo Molnar 已提交
730
static int
731 732 733 734 735
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
736
	struct perf_counter *counter, *partial_group;
737 738 739 740 741 742 743 744
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
745

746
	group_counter->prev_state = group_counter->state;
747 748
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
749 750 751 752

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
753
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
754
		counter->prev_state = counter->state;
755 756 757 758 759 760
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

761
	return 0;
762 763 764 765 766 767 768 769 770 771

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
772
	}
773
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
774

775
	return -EAGAIN;
776 777
}

778 779 780
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
781 782
{
	struct perf_counter *counter;
783
	u64 flags;
784
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
785

786 787
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
788
	if (likely(!ctx->nr_counters))
789
		goto out;
T
Thomas Gleixner 已提交
790

791
	flags = hw_perf_save_disable();
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

815
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
816 817 818 819 820 821 822 823
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

824 825 826 827
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
828 829 830
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

831
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
832 833
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
834
		}
T
Thomas Gleixner 已提交
835
	}
836
	hw_perf_restore(flags);
837
 out:
T
Thomas Gleixner 已提交
838
	spin_unlock(&ctx->lock);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
856

857
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
858 859 860
	cpuctx->task_ctx = ctx;
}

861 862 863 864 865 866 867
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

868 869 870 871 872
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
873
	unsigned long flags;
874 875 876 877 878 879
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
880
	curr_rq_lock_irq_save(&flags);
881 882
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
883 884 885
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

886 887 888 889 890 891 892 893 894
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

895 896 897 898
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
899

900 901 902 903
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
904
	curr_rq_unlock_irq_restore(&flags);
905 906 907 908 909 910 911 912 913

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
914
	unsigned long flags;
915 916 917 918 919 920
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
921
	curr_rq_lock_irq_save(&flags);
922 923
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
924 925 926
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

927 928
	perf_counter_task_sched_out(curr, cpu);

929 930 931 932 933 934 935 936
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
937
		if (counter->state > PERF_COUNTER_STATE_OFF)
938
			continue;
939
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
940
		counter->hw_event.disabled = 0;
941 942 943 944 945 946 947
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
948
	curr_rq_unlock_irq_restore(&flags);
949 950 951 952

	return 0;
}

953 954 955 956
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
957 958
{
	struct perf_counter *counter;
959
	u64 perf_flags;
T
Thomas Gleixner 已提交
960

961
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
962 963 964 965
		return;

	spin_lock(&ctx->lock);
	/*
966
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
967
	 */
968
	perf_flags = hw_perf_save_disable();
969
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
971 972
		break;
	}
973
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
974 975

	spin_unlock(&ctx->lock);
976 977 978 979 980 981 982 983 984 985 986
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
987

988 989 990 991 992 993
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
994 995 996 997 998 999
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1000
static void __read(void *info)
T
Thomas Gleixner 已提交
1001
{
I
Ingo Molnar 已提交
1002
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
1003
	unsigned long flags;
I
Ingo Molnar 已提交
1004

I
Ingo Molnar 已提交
1005
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
1006
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1007
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1008 1009
}

1010
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1011 1012 1013 1014 1015
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1016
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1017
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1018
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1019 1020
	}

1021
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1069
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151 1152
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1153 1154
static void free_counter(struct perf_counter *counter)
{
1155 1156 1157
	if (counter->destroy)
		counter->destroy(counter);

1158 1159 1160
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1171
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1172 1173
	mutex_lock(&counter->mutex);

1174
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1175 1176

	mutex_unlock(&counter->mutex);
1177
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1178

1179
	free_counter(counter);
1180
	put_context(ctx);
T
Thomas Gleixner 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1204
	mutex_lock(&counter->mutex);
1205
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1239
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1260 1261 1262
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1263 1264 1265 1266 1267 1268 1269 1270
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1271 1272
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1284 1285
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1286 1287 1288
		if (!res)
			res = -EFAULT;
	} else {
1289
		res += res2;
T
Thomas Gleixner 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1302
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1348 1349 1350 1351
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1352 1353
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1354 1355
};

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

static void perf_swcounter_save_and_restart(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
}

static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
{
	struct perf_data *irqdata = counter->irqdata;

	if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
		irqdata->overrun++;
	} else {
		u64 *p = (u64 *) &irqdata->data[irqdata->len];

		*p = data;
		irqdata->len += sizeof(u64);
	}
}

static void perf_swcounter_handle_group(struct perf_counter *sibling)
{
	struct perf_counter *counter, *group_leader = sibling->group_leader;

	list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1423
		counter->hw_ops->read(counter);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		perf_swcounter_store_irq(sibling, counter->hw_event.type);
		perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
	}
}

static void perf_swcounter_interrupt(struct perf_counter *counter,
				     int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		break;

	case PERF_RECORD_IRQ:
		perf_swcounter_store_irq(counter, instruction_pointer(regs));
		break;

	case PERF_RECORD_GROUP:
		perf_swcounter_handle_group(counter);
		break;
	}

	if (nmi) {
		counter->wakeup_pending = 1;
1447
		set_perf_counter_pending();
1448 1449 1450 1451
	} else
		wake_up(&counter->waitq);
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
		perf_swcounter_interrupt(counter, 0, regs);

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
	perf_swcounter_save_and_restart(counter);
	perf_swcounter_interrupt(counter, nmi, regs);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static int perf_swcounter_match(struct perf_counter *counter,
				enum hw_event_types event,
				struct pt_regs *regs)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	if (counter->hw_event.raw)
		return 0;

	if (counter->hw_event.type != event)
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1506 1507 1508 1509 1510 1511 1512 1513
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1514 1515 1516 1517 1518 1519
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
				     enum hw_event_types event, u64 nr,
				     int nmi, struct pt_regs *regs)
{
	struct perf_counter *counter;

1520
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1521 1522
		return;

P
Peter Zijlstra 已提交
1523 1524
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1525 1526
		if (perf_swcounter_match(counter, event, regs))
			perf_swcounter_add(counter, nr, nmi, regs);
1527
	}
P
Peter Zijlstra 已提交
1528
	rcu_read_unlock();
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

void perf_swcounter_event(enum hw_event_types event, u64 nr,
			  int nmi, struct pt_regs *regs)
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);

	perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
	if (cpuctx->task_ctx)
		perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);

	put_cpu_var(perf_cpu_context);
}

static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1559 1560 1561 1562 1563 1564
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1565 1566 1567 1568
/*
 * Software counter: cpu wall time clock
 */

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1581 1582 1583 1584 1585 1586
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1587 1588
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1589 1590 1591 1592 1593 1594 1595 1596 1597
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1598 1599
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1600
	hrtimer_cancel(&counter->hw.hrtimer);
1601
	cpu_clock_perf_counter_update(counter);
1602 1603 1604 1605
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1606
	cpu_clock_perf_counter_update(counter);
1607 1608 1609
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1610 1611 1612
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1613 1614
};

1615 1616 1617 1618
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1619 1620 1621 1622
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1623
{
I
Ingo Molnar 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1644 1645
}

1646
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1647
{
1648 1649 1650
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1651 1652
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1653 1654 1655 1656 1657
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
1658 1659

	return 0;
I
Ingo Molnar 已提交
1660 1661 1662
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1663
{
1664 1665 1666 1667
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
1668

1669 1670 1671 1672
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
1673 1674 1675
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1676 1677 1678
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1679 1680
};

1681 1682 1683 1684
/*
 * Software counter: cpu migrations
 */

1685
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1686
{
1687 1688 1689 1690 1691
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1692 1693 1694 1695 1696 1697 1698 1699
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1700
	now = get_cpu_migrations(counter);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1714
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1715
{
1716 1717 1718
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1719
	return 0;
1720 1721 1722 1723 1724 1725 1726 1727
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1728 1729 1730
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1731 1732
};

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
	perf_swcounter_event(PERF_TP_EVENTS_MIN + event_id, 1, 1,
			task_pt_regs(current));
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
	int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;

	ftrace_profile_disable(event_id);
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

1772 1773 1774
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
1775
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776
	const struct hw_perf_counter_ops *hw_ops = NULL;
1777
	struct hw_perf_counter *hwc = &counter->hw;
1778

1779 1780 1781 1782 1783 1784 1785
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1786 1787
	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
1788 1789 1790 1791
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1792
		break;
1793
	case PERF_COUNT_TASK_CLOCK:
1794 1795 1796 1797 1798 1799 1800 1801
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1802 1803 1804

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1805
		break;
1806
	case PERF_COUNT_PAGE_FAULTS:
1807 1808
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
1809
	case PERF_COUNT_CONTEXT_SWITCHES:
1810
		hw_ops = &perf_ops_generic;
1811
		break;
1812
	case PERF_COUNT_CPU_MIGRATIONS:
1813 1814
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1815
		break;
1816
	default:
1817
		hw_ops = tp_perf_counter_init(counter);
1818 1819
		break;
	}
1820 1821 1822 1823

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

1824 1825 1826
	return hw_ops;
}

T
Thomas Gleixner 已提交
1827 1828 1829 1830
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1831 1832
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1833
		   struct perf_counter_context *ctx,
1834 1835
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1836
{
1837
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1838
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1839

1840
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1841 1842 1843
	if (!counter)
		return NULL;

1844 1845 1846 1847 1848 1849 1850
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1851
	mutex_init(&counter->mutex);
1852
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
1853
	INIT_LIST_HEAD(&counter->event_entry);
1854
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1855 1856
	init_waitqueue_head(&counter->waitq);

1857 1858
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1859 1860 1861 1862 1863
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1864
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1865
	counter->hw_ops			= NULL;
1866
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1867

1868
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1869 1870 1871
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1872 1873 1874
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1875
	else
1876 1877
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1878 1879 1880 1881 1882
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1883 1884 1885 1886 1887

	return counter;
}

/**
1888
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
1889 1890
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1891
 * @pid:		target pid
I
Ingo Molnar 已提交
1892 1893
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1894
 */
1895
SYSCALL_DEFINE5(perf_counter_open,
1896
		const struct perf_counter_hw_event __user *, hw_event_uptr,
1897
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
1898
{
1899
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1900
	struct perf_counter_hw_event hw_event;
1901
	struct perf_counter_context *ctx;
1902
	struct file *counter_file = NULL;
1903 1904
	struct file *group_file = NULL;
	int fput_needed = 0;
1905
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1906 1907
	int ret;

1908 1909 1910 1911
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
1912
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1913 1914
		return -EFAULT;

1915
	/*
I
Ingo Molnar 已提交
1916 1917 1918 1919 1920 1921 1922 1923
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1924 1925 1926 1927 1928 1929
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1930
			goto err_put_context;
1931
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1932
			goto err_put_context;
1933 1934 1935

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1936 1937 1938 1939 1940 1941 1942 1943
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1944
		 */
I
Ingo Molnar 已提交
1945 1946
		if (group_leader->ctx != ctx)
			goto err_put_context;
1947 1948 1949 1950 1951
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1952 1953
	}

1954
	ret = -EINVAL;
1955 1956
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
1957 1958 1959 1960 1961
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1962 1963 1964 1965 1966 1967 1968
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1969
	mutex_lock(&ctx->mutex);
1970
	perf_install_in_context(ctx, counter, cpu);
1971
	mutex_unlock(&ctx->mutex);
1972 1973

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1974

1975 1976 1977
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1978 1979
	return ret;

1980
err_free_put_context:
T
Thomas Gleixner 已提交
1981 1982 1983 1984 1985
	kfree(counter);

err_put_context:
	put_context(ctx);

1986
	goto out_fput;
T
Thomas Gleixner 已提交
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
1998
	mutex_init(&ctx->mutex);
1999
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2000
	INIT_LIST_HEAD(&ctx->event_list);
2001 2002 2003 2004 2005 2006
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2007
static struct perf_counter *
2008 2009 2010 2011
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2012
	      struct perf_counter *group_leader,
2013 2014 2015 2016
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2017 2018 2019 2020 2021 2022 2023 2024 2025
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2026
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2027 2028
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2029
	if (!child_counter)
2030
		return NULL;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2092 2093 2094
	return 0;
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2122 2123 2124 2125 2126 2127
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2128
	struct perf_counter *sub, *tmp;
2129 2130

	/*
2131 2132 2133 2134 2135 2136
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2137
	 */
2138 2139 2140 2141
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2142
		struct perf_cpu_context *cpuctx;
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2154 2155 2156

		cpuctx = &__get_cpu_var(perf_cpu_context);

2157
		group_sched_out(child_counter, cpuctx, child_ctx);
2158

2159
		list_del_init(&child_counter->list_entry);
2160

2161
		child_ctx->nr_counters--;
2162

2163 2164 2165
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2166 2167 2168 2169 2170 2171 2172

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2173 2174 2175 2176
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2177
			if (sub->parent) {
2178
				sync_child_counter(sub, sub->parent);
2179
				free_counter(sub);
2180
			}
2181
		}
2182
		free_counter(child_counter);
2183
	}
2184 2185 2186
}

/*
2187
 * When a child task exits, feed back counter values to parent counters.
2188
 *
2189
 * Note: we may be running in child context, but the PID is not hashed
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2213
	struct perf_counter *counter;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2233
	mutex_lock(&parent_ctx->mutex);
2234 2235 2236 2237 2238 2239

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2240
		if (!counter->hw_event.inherit)
2241 2242
			continue;

2243
		if (inherit_group(counter, parent,
2244 2245 2246 2247
				  parent_ctx, child, child_ctx))
			break;
	}

2248
	mutex_unlock(&parent_ctx->mutex);
2249 2250
}

2251
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2252
{
2253
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2254

2255 2256
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2257 2258

	mutex_lock(&perf_resource_mutex);
2259
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2260
	mutex_unlock(&perf_resource_mutex);
2261

2262
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2263 2264 2265
}

#ifdef CONFIG_HOTPLUG_CPU
2266
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2267 2268 2269 2270 2271
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2272 2273
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2274
}
2275
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2276
{
2277 2278 2279 2280
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2281
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2282
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2283 2284
}
#else
2285
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2297
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2298 2299 2300 2301
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2302
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);