perf_counter.c 85.6 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49

T
Thomas Gleixner 已提交
50
/*
51
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
52
 */
53
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
54 55 56 57

/*
 * Architecture provided APIs - weak aliases:
 */
58
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
59
{
60
	return NULL;
T
Thomas Gleixner 已提交
61 62
}

63 64 65
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

66
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
67 68 69 70 71 72
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
73

74 75
void __weak perf_counter_print_debug(void)	{ }

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

100 101 102 103 104 105 106
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

static void put_ctx(struct perf_counter_context *ctx)
{
107 108 109
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
110
		kfree(ctx);
111
	}
112 113
}

114 115 116 117
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
118 119 120 121 122 123 124 125 126 127
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
128
	if (group_leader == counter)
129
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
130
	else {
131
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
132 133
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
134 135

	list_add_rcu(&counter->event_entry, &ctx->event_list);
136
	ctx->nr_counters++;
137 138
}

139 140
/*
 * Remove a counter from the lists for its context.
141
 * Must be called with ctx->mutex and ctx->lock held.
142
 */
143 144 145 146 147
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

148 149
	if (list_empty(&counter->list_entry))
		return;
150 151
	ctx->nr_counters--;

152
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
153
	list_del_rcu(&counter->event_entry);
154

P
Peter Zijlstra 已提交
155 156 157
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

158 159 160 161 162 163 164 165
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

166
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 168 169 170
		sibling->group_leader = sibling;
	}
}

171 172 173 174 175 176 177 178 179
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
180
	counter->tstamp_stopped = ctx->time;
181
	counter->pmu->disable(counter);
182 183 184 185 186 187 188 189 190
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/*
 * Mark this context as not being a clone of another.
 * Called when counters are added to or removed from this context.
 * We also increment our generation number so that anything that
 * was cloned from this context before this will not match anything
 * cloned from this context after this.
 */
static void unclone_ctx(struct perf_counter_context *ctx)
{
	++ctx->generation;
	if (!ctx->parent_ctx)
		return;
	put_ctx(ctx->parent_ctx);
	ctx->parent_ctx = NULL;
}

T
Thomas Gleixner 已提交
229 230 231 232 233 234
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
235
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
236 237 238 239
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
240
	unsigned long flags;
T
Thomas Gleixner 已提交
241 242 243 244 245 246 247 248 249

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

250
	spin_lock_irqsave(&ctx->lock, flags);
251 252 253 254 255
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
256

257 258
	counter_sched_out(counter, cpuctx, ctx);

259
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
260 261 262 263 264 265 266 267 268 269 270

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

271
	perf_enable();
272
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
273 274 275 276 277 278
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
279
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
280 281 282 283
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
284
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
285 286 287 288
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

289
	unclone_ctx(ctx);
T
Thomas Gleixner 已提交
290 291 292 293 294 295
	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
296
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
297 298 299 300 301
					 counter, 1);
		return;
	}

retry:
302
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
303 304 305 306 307 308
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
309
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
310 311 312 313 314 315
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
316
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
317 318
	 * succeed.
	 */
319 320
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
321 322 323 324
	}
	spin_unlock_irq(&ctx->lock);
}

325
static inline u64 perf_clock(void)
326
{
327
	return cpu_clock(smp_processor_id());
328 329 330 331 332
}

/*
 * Update the record of the current time in a context.
 */
333
static void update_context_time(struct perf_counter_context *ctx)
334
{
335 336 337 338
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
339 340 341 342 343 344 345 346 347 348
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

349 350 351 352 353 354 355 356 357 358 359
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

391
	spin_lock_irqsave(&ctx->lock, flags);
392 393 394 395 396 397

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398
		update_context_time(ctx);
399
		update_counter_times(counter);
400 401 402 403 404 405 406
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

407
	spin_unlock_irqrestore(&ctx->lock, flags);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
443 444
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
445
		counter->state = PERF_COUNTER_STATE_OFF;
446
	}
447 448 449 450

	spin_unlock_irq(&ctx->lock);
}

451 452 453 454 455 456
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
457
	if (counter->state <= PERF_COUNTER_STATE_OFF)
458 459 460 461 462 463 464 465 466
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

467
	if (counter->pmu->enable(counter)) {
468 469 470 471 472
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

473
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474

475 476
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
477 478
	ctx->nr_active++;

479 480 481
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

482 483 484
	return 0;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

533 534 535 536 537 538 539 540 541 542
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
543

544 545 546
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

582 583 584 585 586
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
587 588 589
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
590 591
}

T
Thomas Gleixner 已提交
592
/*
593
 * Cross CPU call to install and enable a performance counter
594 595
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
596 597 598 599 600 601
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
602
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
603
	int cpu = smp_processor_id();
604
	unsigned long flags;
605
	int err;
T
Thomas Gleixner 已提交
606 607 608 609 610

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
611 612
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
613
	 */
614 615 616 617 618
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
619

620
	spin_lock_irqsave(&ctx->lock, flags);
621
	ctx->is_active = 1;
622
	update_context_time(ctx);
T
Thomas Gleixner 已提交
623 624 625 626 627

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
628
	perf_disable();
T
Thomas Gleixner 已提交
629

630
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
631

632 633 634 635 636 637 638 639
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

640 641 642 643 644
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
645
	if (!group_can_go_on(counter, cpuctx, 1))
646 647 648 649
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

650 651 652 653 654 655 656 657
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
658 659
		if (leader->hw_event.pinned) {
			update_group_times(leader);
660
			leader->state = PERF_COUNTER_STATE_ERROR;
661
		}
662
	}
T
Thomas Gleixner 已提交
663

664
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
665 666
		cpuctx->max_pertask--;

667
 unlock:
668
	perf_enable();
669

670
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
671 672 673 674 675 676 677 678 679 680 681
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
682 683
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
710
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
711 712 713 714 715 716 717 718 719
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
720 721
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
722 723 724
	spin_unlock_irq(&ctx->lock);
}

725 726 727 728
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
729
{
730 731 732 733 734 735
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
736

737 738 739 740
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
741 742 743 744 745
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
746

747
	spin_lock_irqsave(&ctx->lock, flags);
748
	ctx->is_active = 1;
749
	update_context_time(ctx);
750

751
	counter->prev_state = counter->state;
752 753 754
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
755
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756 757

	/*
758 759
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
760
	 */
761 762
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
763

764
	if (!group_can_go_on(counter, cpuctx, 1)) {
765
		err = -EEXIST;
766
	} else {
767
		perf_disable();
768 769 770 771 772 773
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
774
		perf_enable();
775
	}
776 777 778 779 780 781 782 783

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
784 785
		if (leader->hw_event.pinned) {
			update_group_times(leader);
786
			leader->state = PERF_COUNTER_STATE_ERROR;
787
		}
788 789 790
	}

 unlock:
791
	spin_unlock_irqrestore(&ctx->lock, flags);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
842
	if (counter->state == PERF_COUNTER_STATE_OFF) {
843
		counter->state = PERF_COUNTER_STATE_INACTIVE;
844 845
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
846
	}
847 848 849 850
 out:
	spin_unlock_irq(&ctx->lock);
}

851
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852
{
853 854 855 856 857 858
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

859 860
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
861 862

	return 0;
863 864
}

865 866 867 868 869
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

870 871
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
872
	if (likely(!ctx->nr_counters))
873
		goto out;
874
	update_context_time(ctx);
875

876
	perf_disable();
877
	if (ctx->nr_active) {
878 879 880 881 882 883
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
884
	}
885
	perf_enable();
886
 out:
887 888 889
	spin_unlock(&ctx->lock);
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905
		&& ctx1->parent_gen == ctx2->parent_gen;
906 907
}

T
Thomas Gleixner 已提交
908 909 910 911 912 913
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
914
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
915 916 917 918
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
919 920
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
921 922
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
924
	struct perf_counter_context *next_ctx;
925
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
926

927
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
928 929
		return;

930 931
	update_context_time(ctx);

932
	regs = task_pt_regs(task);
933
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
934 935 936 937 938 939 940 941 942 943

	next_ctx = next->perf_counter_ctxp;
	if (next_ctx && context_equiv(ctx, next_ctx)) {
		task->perf_counter_ctxp = next_ctx;
		next->perf_counter_ctxp = ctx;
		ctx->task = next;
		next_ctx->task = task;
		return;
	}

944 945
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
946 947 948
	cpuctx->task_ctx = NULL;
}

949 950 951 952
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

953 954
	if (!cpuctx->task_ctx)
		return;
955 956 957 958
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

959
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
960
{
961
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
962 963
}

964 965 966
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
967 968
{
	struct perf_counter *counter;
969
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
970

971 972
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
973
	if (likely(!ctx->nr_counters))
974
		goto out;
T
Thomas Gleixner 已提交
975

976
	ctx->timestamp = perf_clock();
977

978
	perf_disable();
979 980 981 982 983 984 985 986 987 988 989 990

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

991 992 993 994 995 996
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
997 998 999 1000 1001

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1002 1003
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1004
			counter->state = PERF_COUNTER_STATE_ERROR;
1005
		}
1006 1007
	}

1008
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1009 1010 1011 1012 1013 1014 1015 1016
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1017 1018 1019 1020
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1021 1022 1023
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1024 1025
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1026
				can_add_hw = 0;
1027 1028 1029 1030 1031
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1032
		}
T
Thomas Gleixner 已提交
1033
	}
1034
	perf_enable();
1035
 out:
T
Thomas Gleixner 已提交
1036
	spin_unlock(&ctx->lock);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1053
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1054

1055 1056
	if (likely(!ctx))
		return;
1057 1058
	if (cpuctx->task_ctx == ctx)
		return;
1059
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1060 1061 1062
	cpuctx->task_ctx = ctx;
}

1063 1064 1065 1066 1067 1068 1069
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1070 1071 1072
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	struct perf_counter *counter;
	u64 irq_period;
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

		events = HZ * counter->hw.interrupts * counter->hw.irq_period;
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

1098 1099
		perf_log_period(counter, irq_period);

1100 1101 1102 1103 1104 1105
		counter->hw.irq_period = irq_period;
		counter->hw.interrupts = 0;
	}
	spin_unlock(&ctx->lock);
}

1106 1107 1108 1109
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1110 1111 1112
{
	struct perf_counter *counter;

1113
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1114 1115 1116 1117
		return;

	spin_lock(&ctx->lock);
	/*
1118
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1119
	 */
1120
	perf_disable();
1121
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1123 1124
		break;
	}
1125
	perf_enable();
T
Thomas Gleixner 已提交
1126 1127

	spin_unlock(&ctx->lock);
1128 1129 1130 1131
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1132 1133 1134 1135 1136 1137 1138
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1139
	ctx = curr->perf_counter_ctxp;
1140

1141
	perf_adjust_freq(&cpuctx->ctx);
1142 1143
	if (ctx)
		perf_adjust_freq(ctx);
1144

1145
	perf_counter_cpu_sched_out(cpuctx);
1146 1147
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1148

1149
	rotate_ctx(&cpuctx->ctx);
1150 1151
	if (ctx)
		rotate_ctx(ctx);
1152

1153
	perf_counter_cpu_sched_in(cpuctx, cpu);
1154 1155
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1156 1157 1158 1159 1160
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1161
static void __read(void *info)
T
Thomas Gleixner 已提交
1162
{
I
Ingo Molnar 已提交
1163
	struct perf_counter *counter = info;
1164
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1165
	unsigned long flags;
I
Ingo Molnar 已提交
1166

1167
	local_irq_save(flags);
1168
	if (ctx->is_active)
1169
		update_context_time(ctx);
1170
	counter->pmu->read(counter);
1171
	update_counter_times(counter);
1172
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1173 1174
}

1175
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1176 1177 1178 1179 1180
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1181
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1182
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1183
					 __read, counter, 1);
1184 1185
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1186 1187
	}

1188
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
1217
	struct perf_counter_context *tctx;
T
Thomas Gleixner 已提交
1218 1219 1220 1221 1222 1223 1224
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1225
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1259
		put_task_struct(task);
T
Thomas Gleixner 已提交
1260 1261 1262
		return ERR_PTR(-EACCES);
	}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	ctx = task->perf_counter_ctxp;
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
		if (!ctx) {
			put_task_struct(task);
			return ERR_PTR(-ENOMEM);
		}
		__perf_counter_init_context(ctx, task);
		/*
		 * Make sure other cpus see correct values for *ctx
		 * once task->perf_counter_ctxp is visible to them.
		 */
		smp_wmb();
		tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
		if (tctx) {
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
			ctx = tctx;
		}
	}

T
Thomas Gleixner 已提交
1287 1288 1289
	return ctx;
}

P
Peter Zijlstra 已提交
1290 1291 1292 1293 1294
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1295
	put_ctx(counter->ctx);
P
Peter Zijlstra 已提交
1296 1297 1298
	kfree(counter);
}

1299 1300
static void perf_pending_sync(struct perf_counter *counter);

1301 1302
static void free_counter(struct perf_counter *counter)
{
1303 1304
	perf_pending_sync(counter);

1305
	atomic_dec(&nr_counters);
1306 1307 1308 1309 1310 1311 1312
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1313 1314 1315
	if (counter->destroy)
		counter->destroy(counter);

1316 1317 1318
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1329
	mutex_lock(&ctx->mutex);
1330
	perf_counter_remove_from_context(counter);
1331
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1332

1333 1334 1335 1336 1337
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1338
	free_counter(counter);
1339
	put_context(ctx);
T
Thomas Gleixner 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1350 1351
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1361
	mutex_lock(&counter->child_mutex);
1362 1363 1364 1365 1366 1367 1368 1369
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1370
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1380 1381 1382 1383 1384 1385 1386
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1387
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1388 1389 1390 1391 1392
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1393
	struct perf_mmap_data *data;
1394
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1395 1396 1397 1398

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1399
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1400
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1401 1402 1403 1404 1405 1406

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1407 1408
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1409
	(void)perf_counter_read(counter);
1410
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1420
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1421 1422 1423 1424 1425
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1426
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1427 1428 1429 1430 1431 1432 1433
}

static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1434
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1435 1436 1437
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1438
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1439 1440 1441 1442 1443 1444 1445
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1446
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1447 1448 1449
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1450
	mutex_unlock(&counter->child_mutex);
1451 1452
}

1453 1454 1455
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1456 1457
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1458 1459 1460

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1461
		func = perf_counter_enable;
1462 1463
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1464
		func = perf_counter_disable;
1465
		break;
1466
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1467
		func = perf_counter_reset;
1468
		break;
P
Peter Zijlstra 已提交
1469 1470 1471

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1472
	default:
P
Peter Zijlstra 已提交
1473
		return -ENOTTY;
1474
	}
P
Peter Zijlstra 已提交
1475 1476 1477 1478 1479 1480 1481

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1508 1509 1510 1511 1512 1513
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1514
{
1515 1516 1517 1518 1519 1520 1521 1522 1523
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1524

1525 1526 1527 1528 1529
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1530
	++userpg->lock;
1531
	barrier();
1532 1533 1534 1535
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1536

1537
	barrier();
1538
	++userpg->lock;
1539
	preempt_enable();
1540
unlock:
1541
	rcu_read_unlock();
1542 1543 1544 1545 1546
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1559

1560 1561
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1562

1563 1564
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1565
	get_page(vmf->page);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1599
	atomic_set(&data->lock, -1);
1600 1601 1602

	rcu_assign_pointer(counter->data, data);

1603
	return 0;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1653 1654 1655
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1656
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1657 1658 1659
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1660 1661 1662
}

static struct vm_operations_struct perf_mmap_vmops = {
1663
	.open  = perf_mmap_open,
1664
	.close = perf_mmap_close,
1665 1666 1667 1668 1669 1670
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1671
	struct user_struct *user = current_user();
1672 1673
	unsigned long vma_size;
	unsigned long nr_pages;
1674
	unsigned long user_locked, user_lock_limit;
1675
	unsigned long locked, lock_limit;
1676
	long user_extra, extra;
1677
	int ret = 0;
1678 1679 1680

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1681 1682 1683 1684

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1685 1686 1687 1688 1689
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1690 1691
		return -EINVAL;

1692
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1693 1694
		return -EINVAL;

1695 1696
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1697

1698 1699 1700 1701 1702 1703 1704
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1705 1706
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1707 1708 1709 1710 1711 1712

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1713
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1714

1715 1716 1717
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1718 1719 1720

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1721
	locked = vma->vm_mm->locked_vm + extra;
1722

1723 1724 1725 1726
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1727 1728 1729

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1730 1731 1732 1733
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1734
	atomic_long_add(user_extra, &user->locked_vm);
1735 1736
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1737
unlock:
1738
	mutex_unlock(&counter->mmap_mutex);
1739 1740 1741 1742

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1743 1744

	return ret;
1745 1746
}

P
Peter Zijlstra 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1763 1764 1765 1766
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1767 1768
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1769
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1770
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1771 1772
};

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1783 1784 1785 1786 1787

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1815
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1816

1817
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1818 1819 1820
	PENDING_TAIL,
};

1821 1822
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1823
{
1824
	struct perf_pending_entry **head;
1825

1826
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1827 1828
		return;

1829 1830 1831
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1832 1833

	do {
1834 1835
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1836 1837 1838

	set_perf_counter_pending();

1839
	put_cpu_var(perf_pending_head);
1840 1841 1842 1843
}

static int __perf_pending_run(void)
{
1844
	struct perf_pending_entry *list;
1845 1846
	int nr = 0;

1847
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1848
	while (list != PENDING_TAIL) {
1849 1850
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1851 1852 1853

		list = list->next;

1854 1855
		func = entry->func;
		entry->next = NULL;
1856 1857 1858 1859 1860 1861 1862
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1863
		func(entry);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1885
	return counter->pending.next == NULL;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1898 1899 1900 1901
/*
 * Callchain support -- arch specific
 */

1902
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1903 1904 1905 1906
{
	return NULL;
}

1907 1908 1909 1910
/*
 * Output
 */

1911 1912 1913 1914
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1915
	unsigned int		head;
1916
	int			nmi;
1917
	int			overflow;
1918 1919
	int			locked;
	unsigned long		flags;
1920 1921
};

1922
static void perf_output_wakeup(struct perf_output_handle *handle)
1923
{
1924 1925
	atomic_set(&handle->data->poll, POLL_IN);

1926
	if (handle->nmi) {
1927
		handle->counter->pending_wakeup = 1;
1928
		perf_pending_queue(&handle->counter->pending,
1929
				   perf_pending_counter);
1930
	} else
1931 1932 1933
		perf_counter_wakeup(handle->counter);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

1960
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

1971
	data->done_head = data->head;
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
1982
	while ((head = atomic_xchg(&data->done_head, 0)))
1983 1984 1985
		data->user_page->data_head = head;

	/*
1986
	 * NMI can happen here, which means we can miss a done_head update.
1987 1988
	 */

1989
	cpu = atomic_xchg(&data->lock, -1);
1990 1991 1992 1993 1994
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
1995
	if (unlikely(atomic_read(&data->done_head))) {
1996 1997 1998
		/*
		 * Since we had it locked, we can lock it again.
		 */
1999
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2000 2001 2002 2003 2004
			cpu_relax();

		goto again;
	}

2005
	if (atomic_xchg(&data->wakeup, 0))
2006 2007 2008 2009 2010
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2011
static int perf_output_begin(struct perf_output_handle *handle,
2012
			     struct perf_counter *counter, unsigned int size,
2013
			     int nmi, int overflow)
2014
{
2015
	struct perf_mmap_data *data;
2016
	unsigned int offset, head;
2017

2018 2019 2020 2021 2022 2023
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2024 2025 2026 2027 2028
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2029
	handle->data	 = data;
2030 2031 2032
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2033

2034
	if (!data->nr_pages)
2035
		goto fail;
2036

2037 2038
	perf_output_lock(handle);

2039 2040
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2041
		head += size;
2042 2043
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2044
	handle->offset	= offset;
2045
	handle->head	= head;
2046 2047 2048

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2049

2050
	return 0;
2051

2052
fail:
2053
	perf_output_wakeup(handle);
2054 2055
out:
	rcu_read_unlock();
2056

2057 2058
	return -ENOSPC;
}
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2088

2089 2090 2091 2092 2093
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2094 2095
}

P
Peter Zijlstra 已提交
2096 2097 2098
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2099
static void perf_output_end(struct perf_output_handle *handle)
2100
{
2101 2102 2103 2104
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2105

2106
	if (handle->overflow && wakeup_events) {
2107
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2108
		if (events >= wakeup_events) {
2109
			atomic_sub(wakeup_events, &data->events);
2110
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2111
		}
2112 2113 2114
	}

	perf_output_unlock(handle);
2115
	rcu_read_unlock();
2116 2117
}

2118
static void perf_counter_output(struct perf_counter *counter,
2119
				int nmi, struct pt_regs *regs, u64 addr)
2120
{
2121
	int ret;
2122
	u64 record_type = counter->hw_event.record_type;
2123 2124 2125
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2126
	struct {
2127
		u32 pid, tid;
2128
	} tid_entry;
2129 2130 2131 2132
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2133 2134
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2135
	u64 time;
2136 2137 2138
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2139

2140
	header.type = 0;
2141
	header.size = sizeof(header);
2142

2143
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2144
	header.misc |= perf_misc_flags(regs);
2145

2146
	if (record_type & PERF_RECORD_IP) {
2147
		ip = perf_instruction_pointer(regs);
2148
		header.type |= PERF_RECORD_IP;
2149 2150
		header.size += sizeof(ip);
	}
2151

2152
	if (record_type & PERF_RECORD_TID) {
2153
		/* namespace issues */
2154 2155 2156
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2157
		header.type |= PERF_RECORD_TID;
2158 2159 2160
		header.size += sizeof(tid_entry);
	}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2171 2172 2173 2174 2175
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2176 2177 2178 2179 2180
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2181 2182 2183 2184 2185 2186 2187
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2188
	if (record_type & PERF_RECORD_GROUP) {
2189
		header.type |= PERF_RECORD_GROUP;
2190 2191 2192 2193 2194
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2195 2196 2197
		callchain = perf_callchain(regs);

		if (callchain) {
2198
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2199

2200
			header.type |= PERF_RECORD_CALLCHAIN;
2201 2202 2203 2204
			header.size += callchain_size;
		}
	}

2205
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2206 2207
	if (ret)
		return;
2208

2209
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2210

2211 2212
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2213

2214 2215
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2216

2217 2218 2219
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2220 2221 2222
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2223 2224 2225
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2226 2227 2228
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2229 2230 2231
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2232 2233 2234
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2235

2236
		perf_output_put(&handle, nr);
2237

2238 2239 2240
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2241
				sub->pmu->read(sub);
2242

2243 2244
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2245

2246 2247
			perf_output_put(&handle, group_entry);
		}
2248
	}
P
Peter Zijlstra 已提交
2249

2250 2251
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2252

2253
	perf_output_end(&handle);
2254 2255
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2321
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

2332
	perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2333 2334 2335 2336
}

void perf_counter_comm(struct task_struct *task)
{
2337 2338 2339 2340
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2341 2342 2343
	if (!current->perf_counter_ctxp)
		return;

2344
	comm_event = (struct perf_comm_event){
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2381
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2382 2383 2384 2385 2386 2387 2388

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2389
	perf_output_end(&handle);
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2437
		name = d_path(&file->f_path, buf, PATH_MAX);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2448
	size = ALIGN(strlen(name)+1, sizeof(u64));
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2459
	perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2460 2461 2462 2463 2464 2465 2466

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2467 2468 2469 2470
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;
2471 2472
	if (!current->perf_counter_ctxp)
		return;
2473 2474

	mmap_event = (struct perf_mmap_event){
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2492 2493 2494 2495 2496 2497
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2512
/*
2513 2514
 * Log irq_period changes so that analyzing tools can re-normalize the
 * event flow.
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

	if (counter->hw.irq_period == period)
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2547 2548 2549 2550 2551
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2552
			  int nmi, struct pt_regs *regs, u64 addr)
2553
{
2554 2555 2556
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2557 2558
	counter->hw.interrupts++;

2559 2560 2561 2562 2563
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2564
	counter->pending_kill = POLL_IN;
2565 2566
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2567
		counter->pending_kill = POLL_HUP;
2568 2569 2570 2571 2572 2573 2574 2575
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2576
	perf_counter_output(counter, nmi, regs, addr);
2577
	return ret;
2578 2579
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2622 2623
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2624
	enum hrtimer_restart ret = HRTIMER_RESTART;
2625 2626
	struct perf_counter *counter;
	struct pt_regs *regs;
2627
	u64 period;
2628 2629

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2630
	counter->pmu->read(counter);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2641
	if (regs) {
2642
		if (perf_counter_overflow(counter, 0, regs, 0))
2643 2644
			ret = HRTIMER_NORESTART;
	}
2645

2646 2647
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2648

2649
	return ret;
2650 2651 2652
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2653
				    int nmi, struct pt_regs *regs, u64 addr)
2654
{
2655 2656
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2657
	if (perf_counter_overflow(counter, nmi, regs, addr))
2658 2659 2660
		/* soft-disable the counter */
		;

2661 2662
}

2663
static int perf_swcounter_match(struct perf_counter *counter,
2664 2665
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2666 2667 2668 2669
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2670
	if (perf_event_raw(&counter->hw_event))
2671 2672
		return 0;

2673
	if (perf_event_type(&counter->hw_event) != type)
2674 2675
		return 0;

2676
	if (perf_event_id(&counter->hw_event) != event)
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2688
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2689
			       int nmi, struct pt_regs *regs, u64 addr)
2690 2691 2692
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2693
		perf_swcounter_overflow(counter, nmi, regs, addr);
2694 2695
}

2696
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2697
				     enum perf_event_types type, u32 event,
2698 2699
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2700 2701 2702
{
	struct perf_counter *counter;

2703
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2704 2705
		return;

P
Peter Zijlstra 已提交
2706 2707
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2708
		if (perf_swcounter_match(counter, type, event, regs))
2709
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2710
	}
P
Peter Zijlstra 已提交
2711
	rcu_read_unlock();
2712 2713
}

P
Peter Zijlstra 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2728
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2729 2730
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2731 2732
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2733 2734 2735 2736 2737 2738 2739
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2740

2741 2742
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2743 2744
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2745
					 nr, nmi, regs, addr);
2746
	}
2747

P
Peter Zijlstra 已提交
2748 2749 2750 2751
	barrier();
	(*recursion)--;

out:
2752 2753 2754
	put_cpu_var(perf_cpu_context);
}

2755 2756
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2757
{
2758
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2777
static const struct pmu perf_ops_generic = {
2778 2779 2780 2781 2782
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2783 2784 2785 2786
/*
 * Software counter: cpu wall time clock
 */

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2799 2800 2801 2802 2803 2804
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2805 2806
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2807
	if (hwc->irq_period) {
2808
		u64 period = max_t(u64, 10000, hwc->irq_period);
2809
		__hrtimer_start_range_ns(&hwc->hrtimer,
2810
				ns_to_ktime(period), 0,
2811 2812 2813 2814 2815 2816
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2817 2818
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2819 2820
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2821
	cpu_clock_perf_counter_update(counter);
2822 2823 2824 2825
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2826
	cpu_clock_perf_counter_update(counter);
2827 2828
}

2829
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2830 2831 2832
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2833 2834
};

2835 2836 2837 2838
/*
 * Software counter: task time clock
 */

2839
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2840
{
2841
	u64 prev;
I
Ingo Molnar 已提交
2842 2843
	s64 delta;

2844
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2845 2846
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2847 2848
}

2849
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2850
{
2851
	struct hw_perf_counter *hwc = &counter->hw;
2852 2853 2854
	u64 now;

	now = counter->ctx->time;
2855

2856
	atomic64_set(&hwc->prev_count, now);
2857 2858
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2859
	if (hwc->irq_period) {
2860
		u64 period = max_t(u64, 10000, hwc->irq_period);
2861
		__hrtimer_start_range_ns(&hwc->hrtimer,
2862
				ns_to_ktime(period), 0,
2863 2864
				HRTIMER_MODE_REL, 0);
	}
2865 2866

	return 0;
I
Ingo Molnar 已提交
2867 2868 2869
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2870
{
2871 2872
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2873 2874
	task_clock_perf_counter_update(counter, counter->ctx->time);

2875
}
I
Ingo Molnar 已提交
2876

2877 2878
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2891 2892
}

2893
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2894 2895 2896
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2897 2898
};

2899 2900 2901 2902
/*
 * Software counter: cpu migrations
 */

2903
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2904
{
2905 2906 2907 2908 2909
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2910 2911 2912 2913 2914 2915 2916 2917
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2918
	now = get_cpu_migrations(counter);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2932
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2933
{
2934 2935 2936
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2937
	return 0;
2938 2939 2940 2941 2942 2943 2944
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2945
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2946 2947 2948
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2949 2950
};

2951 2952 2953
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2954 2955 2956 2957 2958
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2959
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2960
}
2961
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2962 2963 2964 2965 2966 2967

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2968
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2969 2970
}

2971
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2972
{
2973
	int event_id = perf_event_id(&counter->hw_event);
2974 2975 2976 2977 2978 2979 2980
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2981
	counter->hw.irq_period = counter->hw_event.irq_period;
2982 2983 2984 2985

	return &perf_ops_generic;
}
#else
2986
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2987 2988 2989 2990 2991
{
	return NULL;
}
#endif

2992
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2993
{
2994
	const struct pmu *pmu = NULL;
2995

2996 2997 2998 2999 3000 3001 3002
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3003
	switch (perf_event_id(&counter->hw_event)) {
3004
	case PERF_COUNT_CPU_CLOCK:
3005
		pmu = &perf_ops_cpu_clock;
3006

3007
		break;
3008
	case PERF_COUNT_TASK_CLOCK:
3009 3010 3011 3012 3013
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3014
			pmu = &perf_ops_task_clock;
3015
		else
3016
			pmu = &perf_ops_cpu_clock;
3017

3018
		break;
3019
	case PERF_COUNT_PAGE_FAULTS:
3020 3021
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3022
	case PERF_COUNT_CONTEXT_SWITCHES:
3023
		pmu = &perf_ops_generic;
3024
		break;
3025
	case PERF_COUNT_CPU_MIGRATIONS:
3026
		if (!counter->hw_event.exclude_kernel)
3027
			pmu = &perf_ops_cpu_migrations;
3028
		break;
3029
	}
3030

3031
	return pmu;
3032 3033
}

T
Thomas Gleixner 已提交
3034 3035 3036 3037
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3038 3039
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3040
		   struct perf_counter_context *ctx,
3041 3042
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3043
{
3044
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3045
	struct perf_counter *counter;
3046
	struct hw_perf_counter *hwc;
3047
	long err;
T
Thomas Gleixner 已提交
3048

3049
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3050
	if (!counter)
3051
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3052

3053 3054 3055 3056 3057 3058 3059
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3060 3061 3062
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3063
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3064
	INIT_LIST_HEAD(&counter->event_entry);
3065
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3066 3067
	init_waitqueue_head(&counter->waitq);

3068 3069
	mutex_init(&counter->mmap_mutex);

I
Ingo Molnar 已提交
3070 3071
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3072
	counter->group_leader		= group_leader;
3073
	counter->pmu			= NULL;
3074
	counter->ctx			= ctx;
3075
	get_ctx(ctx);
I
Ingo Molnar 已提交
3076

3077
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3078 3079 3080
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3081
	pmu = NULL;
3082

3083 3084
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
3085
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3086 3087 3088
	else
		hwc->irq_period = hw_event->irq_period;

3089 3090 3091 3092 3093 3094
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

3095
	if (perf_event_raw(hw_event)) {
3096
		pmu = hw_perf_counter_init(counter);
3097 3098 3099 3100
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3101
	case PERF_TYPE_HARDWARE:
3102
		pmu = hw_perf_counter_init(counter);
3103 3104 3105
		break;

	case PERF_TYPE_SOFTWARE:
3106
		pmu = sw_perf_counter_init(counter);
3107 3108 3109
		break;

	case PERF_TYPE_TRACEPOINT:
3110
		pmu = tp_perf_counter_init(counter);
3111 3112
		break;
	}
3113 3114
done:
	err = 0;
3115
	if (!pmu)
3116
		err = -EINVAL;
3117 3118
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3119

3120
	if (err) {
I
Ingo Molnar 已提交
3121
		kfree(counter);
3122
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3123
	}
3124

3125
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3126

3127
	atomic_inc(&nr_counters);
3128 3129 3130 3131 3132 3133 3134
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3135 3136 3137 3138
	return counter;
}

/**
3139
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3140 3141
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3142
 * @pid:		target pid
I
Ingo Molnar 已提交
3143 3144
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3145
 */
3146
SYSCALL_DEFINE5(perf_counter_open,
3147
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3148
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3149
{
3150
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3151
	struct perf_counter_hw_event hw_event;
3152
	struct perf_counter_context *ctx;
3153
	struct file *counter_file = NULL;
3154 3155
	struct file *group_file = NULL;
	int fput_needed = 0;
3156
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3157 3158
	int ret;

3159 3160 3161 3162
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3163
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3164 3165
		return -EFAULT;

3166
	/*
I
Ingo Molnar 已提交
3167 3168 3169 3170 3171 3172 3173 3174
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3175 3176 3177 3178 3179 3180
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3181
			goto err_put_context;
3182
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3183
			goto err_put_context;
3184 3185 3186

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3187 3188 3189 3190 3191 3192 3193 3194
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3195
		 */
I
Ingo Molnar 已提交
3196 3197
		if (group_leader->ctx != ctx)
			goto err_put_context;
3198 3199 3200 3201 3202
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3203 3204
	}

3205 3206
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3207 3208
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3209 3210 3211 3212
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3213 3214 3215 3216 3217 3218 3219
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3220
	mutex_lock(&ctx->mutex);
3221
	perf_install_in_context(ctx, counter, cpu);
3222
	mutex_unlock(&ctx->mutex);
3223

3224 3225 3226 3227 3228 3229
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3230
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3231

3232 3233 3234
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3235 3236
	return ret;

3237
err_free_put_context:
T
Thomas Gleixner 已提交
3238 3239 3240 3241 3242
	kfree(counter);

err_put_context:
	put_context(ctx);

3243
	goto out_fput;
T
Thomas Gleixner 已提交
3244 3245
}

3246 3247 3248
/*
 * inherit a counter from parent task to child task:
 */
3249
static struct perf_counter *
3250 3251 3252 3253
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3254
	      struct perf_counter *group_leader,
3255 3256 3257 3258
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3259 3260 3261 3262 3263 3264 3265 3266 3267
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3268
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3269 3270
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3271 3272
	if (IS_ERR(child_counter))
		return child_counter;
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3284 3285 3286
	/*
	 * Link it up in the child's context:
	 */
3287
	add_counter_to_ctx(child_counter, child_ctx);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3303 3304 3305
	/*
	 * Link this into the parent counter's child list
	 */
3306
	mutex_lock(&parent_counter->child_mutex);
3307
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3308
	mutex_unlock(&parent_counter->child_mutex);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3321
	struct perf_counter *child_ctr;
3322 3323 3324

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3325 3326
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3327
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3328 3329 3330 3331
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3332
	}
3333 3334 3335
	return 0;
}

3336 3337 3338
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3339
	u64 child_val;
3340 3341 3342 3343 3344 3345 3346

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3347 3348 3349 3350
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3351 3352 3353 3354

	/*
	 * Remove this counter from the parent's list
	 */
3355
	mutex_lock(&parent_counter->child_mutex);
3356
	list_del_init(&child_counter->child_list);
3357
	mutex_unlock(&parent_counter->child_mutex);
3358 3359 3360 3361 3362 3363 3364 3365

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3366 3367 3368 3369 3370 3371 3372
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3373
	update_counter_times(child_counter);
3374
	perf_counter_remove_from_context(child_counter);
3375

3376 3377 3378 3379 3380 3381
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3382 3383
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3384
		free_counter(child_counter);
3385
	}
3386 3387 3388
}

/*
3389
 * When a child task exits, feed back counter values to parent counters.
3390
 *
3391
 * Note: we may be running in child context, but the PID is not hashed
3392
 * anymore so new counters will not be added.
3393 3394
 * (XXX not sure that is true when we get called from flush_old_exec.
 *  -- paulus)
3395 3396 3397 3398 3399
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3400
	unsigned long flags;
3401

3402 3403
	WARN_ON_ONCE(child != current);

3404
	child_ctx = child->perf_counter_ctxp;
3405

3406
	if (likely(!child_ctx))
3407 3408
		return;

3409 3410 3411 3412 3413 3414 3415
	local_irq_save(flags);
	__perf_counter_task_sched_out(child_ctx);
	child->perf_counter_ctxp = NULL;
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3416
again:
3417 3418 3419
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3420 3421 3422 3423 3424 3425 3426 3427

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3428 3429 3430 3431

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3432 3433 3434 3435 3436
}

/*
 * Initialize the perf_counter context in task_struct
 */
3437
int perf_counter_init_task(struct task_struct *child)
3438 3439
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3440
	struct perf_counter *counter;
3441
	struct task_struct *parent = current;
3442
	int inherited_all = 1;
3443
	int ret = 0;
3444

3445
	child->perf_counter_ctxp = NULL;
3446

3447 3448 3449
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3450 3451 3452 3453
	parent_ctx = parent->perf_counter_ctxp;
	if (likely(!parent_ctx || !parent_ctx->nr_counters))
		return 0;

3454 3455
	/*
	 * This is executed from the parent task context, so inherit
3456 3457
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3458 3459
	 */

3460 3461
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3462
		return -ENOMEM;
3463

3464 3465 3466
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;

3467 3468 3469 3470
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3471
	mutex_lock(&parent_ctx->mutex);
3472 3473 3474 3475 3476

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3477 3478 3479 3480
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3481 3482
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3483
			continue;
3484
		}
3485

3486 3487 3488
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3489
			inherited_all = 0;
3490
			break;
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
		 */
		if (parent_ctx->parent_ctx) {
			child_ctx->parent_ctx = parent_ctx->parent_ctx;
			child_ctx->parent_gen = parent_ctx->parent_gen;
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3507 3508
	}

3509
	mutex_unlock(&parent_ctx->mutex);
3510 3511

	return ret;
3512 3513
}

3514
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3515
{
3516
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3517

3518 3519
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3520

3521
	spin_lock(&perf_resource_lock);
3522
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3523
	spin_unlock(&perf_resource_lock);
3524

3525
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3526 3527 3528
}

#ifdef CONFIG_HOTPLUG_CPU
3529
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3530 3531 3532 3533 3534
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3535 3536
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3537
}
3538
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3539
{
3540 3541 3542 3543
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3544
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3545
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3546 3547
}
#else
3548
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3560
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3561 3562 3563 3564
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3565
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3579
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3606
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3616
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3638
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3639
	perf_overcommit = val;
3640
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);