perf_counter.c 86.2 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49

T
Thomas Gleixner 已提交
50
/*
51
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
52
 */
53
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
54 55 56 57

/*
 * Architecture provided APIs - weak aliases:
 */
58
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
59
{
60
	return NULL;
T
Thomas Gleixner 已提交
61 62
}

63 64 65
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

66
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
67 68 69 70 71 72
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
73

74 75
void __weak perf_counter_print_debug(void)	{ }

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

100 101 102 103 104 105 106
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

static void put_ctx(struct perf_counter_context *ctx)
{
107 108 109
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
110
		kfree(ctx);
111
	}
112 113
}

114 115 116 117 118 119 120 121 122 123
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
124
	if (group_leader == counter)
125
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
126
	else {
127
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
128 129
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
130 131

	list_add_rcu(&counter->event_entry, &ctx->event_list);
132
	ctx->nr_counters++;
133 134
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		ctx->nr_enabled++;
135 136
}

137 138 139 140
/*
 * Remove a counter from the lists for its context.
 * Must be called with counter->mutex and ctx->mutex held.
 */
141 142 143 144 145
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

146 147
	if (list_empty(&counter->list_entry))
		return;
148
	ctx->nr_counters--;
149 150
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		ctx->nr_enabled--;
151

152
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
153
	list_del_rcu(&counter->event_entry);
154

P
Peter Zijlstra 已提交
155 156 157
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

158 159 160 161 162 163 164 165
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

166
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 168 169 170
		sibling->group_leader = sibling;
	}
}

171 172 173 174 175 176 177 178 179
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
180
	counter->tstamp_stopped = ctx->time;
181
	counter->pmu->disable(counter);
182 183 184 185 186 187 188 189 190
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/*
 * Mark this context as not being a clone of another.
 * Called when counters are added to or removed from this context.
 * We also increment our generation number so that anything that
 * was cloned from this context before this will not match anything
 * cloned from this context after this.
 */
static void unclone_ctx(struct perf_counter_context *ctx)
{
	++ctx->generation;
	if (!ctx->parent_ctx)
		return;
	put_ctx(ctx->parent_ctx);
	ctx->parent_ctx = NULL;
}

T
Thomas Gleixner 已提交
229 230 231 232 233 234
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
235
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
236 237 238 239
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
240
	unsigned long flags;
T
Thomas Gleixner 已提交
241 242 243 244 245 246 247 248 249

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

250
	spin_lock_irqsave(&ctx->lock, flags);
251 252 253 254 255
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
256

257 258
	counter_sched_out(counter, cpuctx, ctx);

259
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
260 261 262 263 264 265 266 267 268 269 270

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

271
	perf_enable();
272
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
273 274 275 276 277 278
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
279
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
280 281 282 283
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
284
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
285 286 287 288
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

289
	unclone_ctx(ctx);
T
Thomas Gleixner 已提交
290 291 292 293 294 295
	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
296
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
297 298 299 300 301
					 counter, 1);
		return;
	}

retry:
302
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
303 304 305 306 307 308
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
309
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
310 311 312 313 314 315
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
316
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
317 318
	 * succeed.
	 */
319 320
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
321 322 323 324
	}
	spin_unlock_irq(&ctx->lock);
}

325
static inline u64 perf_clock(void)
326
{
327
	return cpu_clock(smp_processor_id());
328 329 330 331 332
}

/*
 * Update the record of the current time in a context.
 */
333
static void update_context_time(struct perf_counter_context *ctx)
334
{
335 336 337 338
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
339 340 341 342 343 344 345 346 347 348
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

349 350 351 352 353 354 355 356 357 358 359
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

391
	spin_lock_irqsave(&ctx->lock, flags);
392 393 394 395 396 397

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398
		update_context_time(ctx);
399
		update_counter_times(counter);
400 401 402 403 404
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
405
		ctx->nr_enabled--;
406 407
	}

408
	spin_unlock_irqrestore(&ctx->lock, flags);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
444 445
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
446
		counter->state = PERF_COUNTER_STATE_OFF;
447
		ctx->nr_enabled--;
448
	}
449 450 451 452

	spin_unlock_irq(&ctx->lock);
}

453 454 455 456 457 458
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
459
	if (counter->state <= PERF_COUNTER_STATE_OFF)
460 461 462 463 464 465 466 467 468
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

469
	if (counter->pmu->enable(counter)) {
470 471 472 473 474
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

475
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
476

477 478
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
479 480
	ctx->nr_active++;

481 482 483
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

484 485 486
	return 0;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

535 536 537 538 539 540 541 542 543 544
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
545

546 547 548
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

584 585 586 587 588
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
589 590 591
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
592 593
}

T
Thomas Gleixner 已提交
594
/*
595
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
596 597 598 599 600 601
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
602
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
603
	int cpu = smp_processor_id();
604
	unsigned long flags;
605
	int err;
T
Thomas Gleixner 已提交
606 607 608 609 610

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
611 612
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
613
	 */
614 615 616 617 618
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
619

620
	spin_lock_irqsave(&ctx->lock, flags);
621
	ctx->is_active = 1;
622
	update_context_time(ctx);
T
Thomas Gleixner 已提交
623 624 625 626 627

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
628
	perf_disable();
T
Thomas Gleixner 已提交
629

630
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
631

632 633 634 635 636 637 638 639
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

640 641 642 643 644
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
645
	if (!group_can_go_on(counter, cpuctx, 1))
646 647 648 649
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

650 651 652 653 654 655 656 657
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
658 659
		if (leader->hw_event.pinned) {
			update_group_times(leader);
660
			leader->state = PERF_COUNTER_STATE_ERROR;
661
		}
662
	}
T
Thomas Gleixner 已提交
663

664
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
665 666
		cpuctx->max_pertask--;

667
 unlock:
668
	perf_enable();
669

670
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
671 672 673 674 675 676 677 678 679 680 681
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
682 683
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
710
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
711 712 713 714 715 716 717 718 719
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
720 721
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
722 723 724
	spin_unlock_irq(&ctx->lock);
}

725 726 727 728
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
729
{
730 731 732 733 734 735
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
736

737 738 739 740
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
741 742 743 744 745
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
746

747
	spin_lock_irqsave(&ctx->lock, flags);
748
	ctx->is_active = 1;
749
	update_context_time(ctx);
750

751
	counter->prev_state = counter->state;
752 753 754
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
755
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
	ctx->nr_enabled++;
757 758

	/*
759 760
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
761
	 */
762 763
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
764

765
	if (!group_can_go_on(counter, cpuctx, 1)) {
766
		err = -EEXIST;
767
	} else {
768
		perf_disable();
769 770 771 772 773 774
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
775
		perf_enable();
776
	}
777 778 779 780 781 782 783 784

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
785 786
		if (leader->hw_event.pinned) {
			update_group_times(leader);
787
			leader->state = PERF_COUNTER_STATE_ERROR;
788
		}
789 790 791
	}

 unlock:
792
	spin_unlock_irqrestore(&ctx->lock, flags);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
843
	if (counter->state == PERF_COUNTER_STATE_OFF) {
844
		counter->state = PERF_COUNTER_STATE_INACTIVE;
845 846
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
847
		ctx->nr_enabled++;
848
	}
849 850 851 852
 out:
	spin_unlock_irq(&ctx->lock);
}

853
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
854
{
855 856 857 858 859 860
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

861 862
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
863 864

	return 0;
865 866
}

867 868 869 870 871
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

872 873
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
874
	if (likely(!ctx->nr_counters))
875
		goto out;
876
	update_context_time(ctx);
877

878
	perf_disable();
879
	if (ctx->nr_active) {
880 881 882 883 884 885
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
886
	}
887
	perf_enable();
888
 out:
889 890 891
	spin_unlock(&ctx->lock);
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
		&& ctx1->parent_gen == ctx2->parent_gen
		&& ctx1->nr_enabled == ctx2->nr_enabled;
}

T
Thomas Gleixner 已提交
911 912 913 914 915 916
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
917
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
918 919 920 921
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
922 923
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
924 925
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
926
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
927
	struct perf_counter_context *next_ctx;
928
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
929

930
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
931 932
		return;

933 934
	update_context_time(ctx);

935
	regs = task_pt_regs(task);
936
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
937 938 939 940 941 942 943 944 945 946

	next_ctx = next->perf_counter_ctxp;
	if (next_ctx && context_equiv(ctx, next_ctx)) {
		task->perf_counter_ctxp = next_ctx;
		next->perf_counter_ctxp = ctx;
		ctx->task = next;
		next_ctx->task = task;
		return;
	}

947 948
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
949 950 951
	cpuctx->task_ctx = NULL;
}

952 953 954 955
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

956 957
	if (!cpuctx->task_ctx)
		return;
958 959 960 961
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

962
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
963
{
964
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
965 966
}

967 968 969
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
970 971
{
	struct perf_counter *counter;
972
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
973

974 975
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
976
	if (likely(!ctx->nr_counters))
977
		goto out;
T
Thomas Gleixner 已提交
978

979
	ctx->timestamp = perf_clock();
980

981
	perf_disable();
982 983 984 985 986 987 988 989 990 991 992 993

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

994 995 996 997 998 999
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1000 1001 1002 1003 1004

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1005 1006
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1007
			counter->state = PERF_COUNTER_STATE_ERROR;
1008
		}
1009 1010
	}

1011
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1012 1013 1014 1015 1016 1017 1018 1019
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1020 1021 1022 1023
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1024 1025 1026
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1027 1028
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1029
				can_add_hw = 0;
1030 1031 1032 1033 1034
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1035
		}
T
Thomas Gleixner 已提交
1036
	}
1037
	perf_enable();
1038
 out:
T
Thomas Gleixner 已提交
1039
	spin_unlock(&ctx->lock);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1056
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1057

1058 1059
	if (likely(!ctx))
		return;
1060 1061
	if (cpuctx->task_ctx == ctx)
		return;
1062
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1063 1064 1065
	cpuctx->task_ctx = ctx;
}

1066 1067 1068 1069 1070 1071 1072
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1073 1074 1075
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
1076
	struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1077
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1078
	unsigned long flags;
1079

1080
	if (!ctx || !ctx->nr_counters)
1081 1082
		return 0;

1083
	local_irq_save(flags);
1084

1085
	__perf_counter_task_sched_out(ctx);
1086 1087 1088 1089 1090 1091

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
1092
	perf_disable();
1093

1094
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1095 1096
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
1097
			counter->state = PERF_COUNTER_STATE_OFF;
1098
		}
1099
	}
1100

1101
	perf_enable();
1102

1103
	spin_unlock_irqrestore(&ctx->lock, flags);
1104 1105 1106 1107 1108 1109 1110

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
1111
	struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1112
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1113
	unsigned long flags;
1114 1115
	int cpu;

1116
	if (!ctx || !ctx->nr_counters)
1117 1118
		return 0;

1119
	local_irq_save(flags);
1120 1121
	cpu = smp_processor_id();

1122
	__perf_counter_task_sched_out(ctx);
1123

1124 1125 1126 1127 1128
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
1129
	perf_disable();
1130 1131

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1132
		if (counter->state > PERF_COUNTER_STATE_OFF)
1133
			continue;
1134
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1135 1136
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1137
		counter->hw_event.disabled = 0;
1138
	}
1139
	perf_enable();
1140 1141 1142 1143 1144

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1145
	local_irq_restore(flags);
1146 1147 1148 1149

	return 0;
}

1150 1151 1152
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	struct perf_counter *counter;
	u64 irq_period;
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

		events = HZ * counter->hw.interrupts * counter->hw.irq_period;
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

1178 1179
		perf_log_period(counter, irq_period);

1180 1181 1182 1183 1184 1185
		counter->hw.irq_period = irq_period;
		counter->hw.interrupts = 0;
	}
	spin_unlock(&ctx->lock);
}

1186 1187 1188 1189
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1190 1191 1192
{
	struct perf_counter *counter;

1193
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1194 1195 1196 1197
		return;

	spin_lock(&ctx->lock);
	/*
1198
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1199
	 */
1200
	perf_disable();
1201
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1202
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1203 1204
		break;
	}
1205
	perf_enable();
T
Thomas Gleixner 已提交
1206 1207

	spin_unlock(&ctx->lock);
1208 1209 1210 1211
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1212 1213 1214 1215 1216 1217 1218
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1219
	ctx = curr->perf_counter_ctxp;
1220

1221
	perf_adjust_freq(&cpuctx->ctx);
1222 1223
	if (ctx)
		perf_adjust_freq(ctx);
1224

1225
	perf_counter_cpu_sched_out(cpuctx);
1226 1227
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1228

1229
	rotate_ctx(&cpuctx->ctx);
1230 1231
	if (ctx)
		rotate_ctx(ctx);
1232

1233
	perf_counter_cpu_sched_in(cpuctx, cpu);
1234 1235
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1236 1237 1238 1239 1240
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1241
static void __read(void *info)
T
Thomas Gleixner 已提交
1242
{
I
Ingo Molnar 已提交
1243
	struct perf_counter *counter = info;
1244
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1245
	unsigned long flags;
I
Ingo Molnar 已提交
1246

1247
	local_irq_save(flags);
1248
	if (ctx->is_active)
1249
		update_context_time(ctx);
1250
	counter->pmu->read(counter);
1251
	update_counter_times(counter);
1252
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1253 1254
}

1255
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1256 1257 1258 1259 1260
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1261
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1262
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1263
					 __read, counter, 1);
1264 1265
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1266 1267
	}

1268
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
1297
	struct perf_counter_context *tctx;
T
Thomas Gleixner 已提交
1298 1299 1300 1301 1302 1303 1304
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1305
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1339
		put_task_struct(task);
T
Thomas Gleixner 已提交
1340 1341 1342
		return ERR_PTR(-EACCES);
	}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	ctx = task->perf_counter_ctxp;
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
		if (!ctx) {
			put_task_struct(task);
			return ERR_PTR(-ENOMEM);
		}
		__perf_counter_init_context(ctx, task);
		/*
		 * Make sure other cpus see correct values for *ctx
		 * once task->perf_counter_ctxp is visible to them.
		 */
		smp_wmb();
		tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
		if (tctx) {
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
			ctx = tctx;
		}
	}

T
Thomas Gleixner 已提交
1367 1368 1369
	return ctx;
}

P
Peter Zijlstra 已提交
1370 1371 1372 1373 1374
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1375
	put_ctx(counter->ctx);
P
Peter Zijlstra 已提交
1376 1377 1378
	kfree(counter);
}

1379 1380
static void perf_pending_sync(struct perf_counter *counter);

1381 1382
static void free_counter(struct perf_counter *counter)
{
1383 1384
	perf_pending_sync(counter);

1385
	atomic_dec(&nr_counters);
1386 1387 1388 1389 1390 1391 1392
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1393 1394 1395
	if (counter->destroy)
		counter->destroy(counter);

1396 1397 1398
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1409
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1410 1411
	mutex_lock(&counter->mutex);

1412
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1413 1414

	mutex_unlock(&counter->mutex);
1415
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1416

1417
	free_counter(counter);
1418
	put_context(ctx);
T
Thomas Gleixner 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1429 1430
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1431

1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1440
	mutex_lock(&counter->mutex);
1441 1442 1443 1444 1445 1446 1447 1448
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1449 1450
	mutex_unlock(&counter->mutex);

1451 1452 1453 1454 1455 1456 1457 1458
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1459 1460 1461 1462 1463 1464 1465
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1466
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1467 1468 1469 1470 1471
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1472
	struct perf_mmap_data *data;
1473
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1474 1475 1476 1477

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1478
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1479
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1480 1481 1482 1483 1484 1485

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1486 1487
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1488
	(void)perf_counter_read(counter);
1489
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

	spin_lock_irq(&ctx->lock);
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
	spin_unlock_irq(&ctx->lock);
}

static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
	mutex_unlock(&counter->mutex);
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
	mutex_unlock(&counter->mutex);
1530 1531
}

1532 1533 1534
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1535 1536
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1537 1538 1539

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1540
		func = perf_counter_enable;
1541 1542
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1543
		func = perf_counter_disable;
1544
		break;
1545
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1546
		func = perf_counter_reset;
1547
		break;
P
Peter Zijlstra 已提交
1548 1549 1550

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1551
	default:
P
Peter Zijlstra 已提交
1552
		return -ENOTTY;
1553
	}
P
Peter Zijlstra 已提交
1554 1555 1556 1557 1558 1559 1560

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1561 1562
}

1563 1564 1565 1566 1567 1568
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1569
{
1570 1571 1572 1573 1574 1575 1576 1577 1578
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1579

1580 1581 1582 1583 1584
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1585
	++userpg->lock;
1586
	barrier();
1587 1588 1589 1590
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1591

1592
	barrier();
1593
	++userpg->lock;
1594
	preempt_enable();
1595
unlock:
1596
	rcu_read_unlock();
1597 1598 1599 1600 1601
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1614

1615 1616
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1617

1618 1619
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1620
	get_page(vmf->page);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1654
	atomic_set(&data->lock, -1);
1655 1656 1657

	rcu_assign_pointer(counter->data, data);

1658
	return 0;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1708 1709 1710
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1711
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1712 1713 1714
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1715 1716 1717
}

static struct vm_operations_struct perf_mmap_vmops = {
1718
	.open  = perf_mmap_open,
1719
	.close = perf_mmap_close,
1720 1721 1722 1723 1724 1725
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1726
	struct user_struct *user = current_user();
1727 1728
	unsigned long vma_size;
	unsigned long nr_pages;
1729
	unsigned long user_locked, user_lock_limit;
1730
	unsigned long locked, lock_limit;
1731
	long user_extra, extra;
1732
	int ret = 0;
1733 1734 1735

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1736 1737 1738 1739

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1740 1741 1742 1743 1744
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1745 1746
		return -EINVAL;

1747
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1748 1749
		return -EINVAL;

1750 1751
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1752

1753 1754 1755 1756 1757 1758 1759
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1760 1761 1762
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1763

1764 1765 1766
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1767 1768 1769

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1770
	locked = vma->vm_mm->locked_vm + extra;
1771

1772 1773 1774 1775
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1776 1777 1778

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1779 1780 1781 1782
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1783
	atomic_long_add(user_extra, &user->locked_vm);
1784 1785
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1786
unlock:
1787
	mutex_unlock(&counter->mmap_mutex);
1788 1789 1790 1791

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1792 1793

	return ret;
1794 1795
}

P
Peter Zijlstra 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1812 1813 1814 1815
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1816 1817
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1818
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1819
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1820 1821
};

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1832 1833 1834 1835 1836

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1864
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1865

1866
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1867 1868 1869
	PENDING_TAIL,
};

1870 1871
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1872
{
1873
	struct perf_pending_entry **head;
1874

1875
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1876 1877
		return;

1878 1879 1880
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1881 1882

	do {
1883 1884
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1885 1886 1887

	set_perf_counter_pending();

1888
	put_cpu_var(perf_pending_head);
1889 1890 1891 1892
}

static int __perf_pending_run(void)
{
1893
	struct perf_pending_entry *list;
1894 1895
	int nr = 0;

1896
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1897
	while (list != PENDING_TAIL) {
1898 1899
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1900 1901 1902

		list = list->next;

1903 1904
		func = entry->func;
		entry->next = NULL;
1905 1906 1907 1908 1909 1910 1911
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1912
		func(entry);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1934
	return counter->pending.next == NULL;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1947 1948 1949 1950
/*
 * Callchain support -- arch specific
 */

1951
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 1953 1954 1955
{
	return NULL;
}

1956 1957 1958 1959
/*
 * Output
 */

1960 1961 1962 1963
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1964
	unsigned int		head;
1965
	int			nmi;
1966
	int			overflow;
1967 1968
	int			locked;
	unsigned long		flags;
1969 1970
};

1971
static void perf_output_wakeup(struct perf_output_handle *handle)
1972
{
1973 1974
	atomic_set(&handle->data->poll, POLL_IN);

1975
	if (handle->nmi) {
1976
		handle->counter->pending_wakeup = 1;
1977
		perf_pending_queue(&handle->counter->pending,
1978
				   perf_pending_counter);
1979
	} else
1980 1981 1982
		perf_counter_wakeup(handle->counter);
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2009
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

2020
	data->done_head = data->head;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2031
	while ((head = atomic_xchg(&data->done_head, 0)))
2032 2033 2034
		data->user_page->data_head = head;

	/*
2035
	 * NMI can happen here, which means we can miss a done_head update.
2036 2037
	 */

2038
	cpu = atomic_xchg(&data->lock, -1);
2039 2040 2041 2042 2043
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2044
	if (unlikely(atomic_read(&data->done_head))) {
2045 2046 2047
		/*
		 * Since we had it locked, we can lock it again.
		 */
2048
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2049 2050 2051 2052 2053
			cpu_relax();

		goto again;
	}

2054
	if (atomic_xchg(&data->wakeup, 0))
2055 2056 2057 2058 2059
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2060
static int perf_output_begin(struct perf_output_handle *handle,
2061
			     struct perf_counter *counter, unsigned int size,
2062
			     int nmi, int overflow)
2063
{
2064
	struct perf_mmap_data *data;
2065
	unsigned int offset, head;
2066

2067 2068 2069 2070 2071 2072
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2073 2074 2075 2076 2077
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2078
	handle->data	 = data;
2079 2080 2081
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2082

2083
	if (!data->nr_pages)
2084
		goto fail;
2085

2086 2087
	perf_output_lock(handle);

2088 2089
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2090
		head += size;
2091 2092
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2093
	handle->offset	= offset;
2094
	handle->head	= head;
2095 2096 2097

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2098

2099
	return 0;
2100

2101
fail:
2102
	perf_output_wakeup(handle);
2103 2104
out:
	rcu_read_unlock();
2105

2106 2107
	return -ENOSPC;
}
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2137

2138 2139 2140 2141 2142
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2143 2144
}

P
Peter Zijlstra 已提交
2145 2146 2147
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2148
static void perf_output_end(struct perf_output_handle *handle)
2149
{
2150 2151 2152 2153
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2154

2155
	if (handle->overflow && wakeup_events) {
2156
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2157
		if (events >= wakeup_events) {
2158
			atomic_sub(wakeup_events, &data->events);
2159
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2160
		}
2161 2162 2163
	}

	perf_output_unlock(handle);
2164
	rcu_read_unlock();
2165 2166
}

2167
static void perf_counter_output(struct perf_counter *counter,
2168
				int nmi, struct pt_regs *regs, u64 addr)
2169
{
2170
	int ret;
2171
	u64 record_type = counter->hw_event.record_type;
2172 2173 2174
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2175
	struct {
2176
		u32 pid, tid;
2177
	} tid_entry;
2178 2179 2180 2181
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2182 2183
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2184
	u64 time;
2185 2186 2187
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2188

2189
	header.type = 0;
2190
	header.size = sizeof(header);
2191

2192
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2193
	header.misc |= perf_misc_flags(regs);
2194

2195
	if (record_type & PERF_RECORD_IP) {
2196
		ip = perf_instruction_pointer(regs);
2197
		header.type |= PERF_RECORD_IP;
2198 2199
		header.size += sizeof(ip);
	}
2200

2201
	if (record_type & PERF_RECORD_TID) {
2202
		/* namespace issues */
2203 2204 2205
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2206
		header.type |= PERF_RECORD_TID;
2207 2208 2209
		header.size += sizeof(tid_entry);
	}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2220 2221 2222 2223 2224
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2225 2226 2227 2228 2229
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2230 2231 2232 2233 2234 2235 2236
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2237
	if (record_type & PERF_RECORD_GROUP) {
2238
		header.type |= PERF_RECORD_GROUP;
2239 2240 2241 2242 2243
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2244 2245 2246
		callchain = perf_callchain(regs);

		if (callchain) {
2247
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2248

2249
			header.type |= PERF_RECORD_CALLCHAIN;
2250 2251 2252 2253
			header.size += callchain_size;
		}
	}

2254
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2255 2256
	if (ret)
		return;
2257

2258
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2259

2260 2261
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2262

2263 2264
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2265

2266 2267 2268
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2269 2270 2271
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2272 2273 2274
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2275 2276 2277
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2278 2279 2280
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2281 2282 2283
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2284

2285
		perf_output_put(&handle, nr);
2286

2287 2288 2289
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2290
				sub->pmu->read(sub);
2291

2292 2293
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2294

2295 2296
			perf_output_put(&handle, group_entry);
		}
2297
	}
P
Peter Zijlstra 已提交
2298

2299 2300
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2301

2302
	perf_output_end(&handle);
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2370
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

2381
	perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2382 2383 2384 2385
}

void perf_counter_comm(struct task_struct *task)
{
2386 2387 2388 2389
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2390 2391 2392
	if (!current->perf_counter_ctxp)
		return;

2393
	comm_event = (struct perf_comm_event){
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2430
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2431 2432 2433 2434 2435 2436 2437

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2438
	perf_output_end(&handle);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2486
		name = d_path(&file->f_path, buf, PATH_MAX);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2497
	size = ALIGN(strlen(name)+1, sizeof(u64));
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2508
	perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2509 2510 2511 2512 2513 2514 2515

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2516 2517 2518 2519
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;
2520 2521
	if (!current->perf_counter_ctxp)
		return;
2522 2523

	mmap_event = (struct perf_mmap_event){
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2541 2542 2543 2544 2545 2546
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2561
/*
2562 2563
 * Log irq_period changes so that analyzing tools can re-normalize the
 * event flow.
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

	if (counter->hw.irq_period == period)
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2596 2597 2598 2599 2600
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2601
			  int nmi, struct pt_regs *regs, u64 addr)
2602
{
2603 2604 2605
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2606 2607
	counter->hw.interrupts++;

2608 2609 2610 2611 2612
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2613
	counter->pending_kill = POLL_IN;
2614 2615
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2616
		counter->pending_kill = POLL_HUP;
2617 2618 2619 2620 2621 2622 2623 2624
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2625
	perf_counter_output(counter, nmi, regs, addr);
2626
	return ret;
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2671 2672
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2673
	enum hrtimer_restart ret = HRTIMER_RESTART;
2674 2675
	struct perf_counter *counter;
	struct pt_regs *regs;
2676
	u64 period;
2677 2678

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2679
	counter->pmu->read(counter);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2690
	if (regs) {
2691
		if (perf_counter_overflow(counter, 0, regs, 0))
2692 2693
			ret = HRTIMER_NORESTART;
	}
2694

2695 2696
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2697

2698
	return ret;
2699 2700 2701
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2702
				    int nmi, struct pt_regs *regs, u64 addr)
2703
{
2704 2705
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2706
	if (perf_counter_overflow(counter, nmi, regs, addr))
2707 2708 2709
		/* soft-disable the counter */
		;

2710 2711
}

2712
static int perf_swcounter_match(struct perf_counter *counter,
2713 2714
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2715 2716 2717 2718
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2719
	if (perf_event_raw(&counter->hw_event))
2720 2721
		return 0;

2722
	if (perf_event_type(&counter->hw_event) != type)
2723 2724
		return 0;

2725
	if (perf_event_id(&counter->hw_event) != event)
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2737
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2738
			       int nmi, struct pt_regs *regs, u64 addr)
2739 2740 2741
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2742
		perf_swcounter_overflow(counter, nmi, regs, addr);
2743 2744
}

2745
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2746
				     enum perf_event_types type, u32 event,
2747 2748
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2749 2750 2751
{
	struct perf_counter *counter;

2752
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2753 2754
		return;

P
Peter Zijlstra 已提交
2755 2756
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2757
		if (perf_swcounter_match(counter, type, event, regs))
2758
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2759
	}
P
Peter Zijlstra 已提交
2760
	rcu_read_unlock();
2761 2762
}

P
Peter Zijlstra 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2777
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2778 2779
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2780 2781
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2782 2783 2784 2785 2786 2787 2788
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2789

2790 2791
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2792 2793
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2794
					 nr, nmi, regs, addr);
2795
	}
2796

P
Peter Zijlstra 已提交
2797 2798 2799 2800
	barrier();
	(*recursion)--;

out:
2801 2802 2803
	put_cpu_var(perf_cpu_context);
}

2804 2805
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2806
{
2807
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2826
static const struct pmu perf_ops_generic = {
2827 2828 2829 2830 2831
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2832 2833 2834 2835
/*
 * Software counter: cpu wall time clock
 */

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2848 2849 2850 2851 2852 2853
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2854 2855
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2856
	if (hwc->irq_period) {
2857
		u64 period = max_t(u64, 10000, hwc->irq_period);
2858
		__hrtimer_start_range_ns(&hwc->hrtimer,
2859
				ns_to_ktime(period), 0,
2860 2861 2862 2863 2864 2865
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2866 2867
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2868 2869
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2870
	cpu_clock_perf_counter_update(counter);
2871 2872 2873 2874
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2875
	cpu_clock_perf_counter_update(counter);
2876 2877
}

2878
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2879 2880 2881
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2882 2883
};

2884 2885 2886 2887
/*
 * Software counter: task time clock
 */

2888
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2889
{
2890
	u64 prev;
I
Ingo Molnar 已提交
2891 2892
	s64 delta;

2893
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2894 2895
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2896 2897
}

2898
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2899
{
2900
	struct hw_perf_counter *hwc = &counter->hw;
2901 2902 2903
	u64 now;

	now = counter->ctx->time;
2904

2905
	atomic64_set(&hwc->prev_count, now);
2906 2907
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2908
	if (hwc->irq_period) {
2909
		u64 period = max_t(u64, 10000, hwc->irq_period);
2910
		__hrtimer_start_range_ns(&hwc->hrtimer,
2911
				ns_to_ktime(period), 0,
2912 2913
				HRTIMER_MODE_REL, 0);
	}
2914 2915

	return 0;
I
Ingo Molnar 已提交
2916 2917 2918
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2919
{
2920 2921
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2922 2923
	task_clock_perf_counter_update(counter, counter->ctx->time);

2924
}
I
Ingo Molnar 已提交
2925

2926 2927
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2940 2941
}

2942
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2943 2944 2945
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2946 2947
};

2948 2949 2950 2951
/*
 * Software counter: cpu migrations
 */

2952
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2953
{
2954 2955 2956 2957 2958
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2959 2960 2961 2962 2963 2964 2965 2966
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2967
	now = get_cpu_migrations(counter);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2981
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2982
{
2983 2984 2985
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2986
	return 0;
2987 2988 2989 2990 2991 2992 2993
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2994
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2995 2996 2997
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2998 2999
};

3000 3001 3002
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3003 3004 3005 3006 3007
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3008
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3009
}
3010
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3011 3012 3013 3014 3015 3016

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3017
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
3018 3019
}

3020
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3021
{
3022
	int event_id = perf_event_id(&counter->hw_event);
3023 3024 3025 3026 3027 3028 3029
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3030
	counter->hw.irq_period = counter->hw_event.irq_period;
3031 3032 3033 3034

	return &perf_ops_generic;
}
#else
3035
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3036 3037 3038 3039 3040
{
	return NULL;
}
#endif

3041
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3042
{
3043
	const struct pmu *pmu = NULL;
3044

3045 3046 3047 3048 3049 3050 3051
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3052
	switch (perf_event_id(&counter->hw_event)) {
3053
	case PERF_COUNT_CPU_CLOCK:
3054
		pmu = &perf_ops_cpu_clock;
3055

3056
		break;
3057
	case PERF_COUNT_TASK_CLOCK:
3058 3059 3060 3061 3062
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3063
			pmu = &perf_ops_task_clock;
3064
		else
3065
			pmu = &perf_ops_cpu_clock;
3066

3067
		break;
3068
	case PERF_COUNT_PAGE_FAULTS:
3069 3070
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3071
	case PERF_COUNT_CONTEXT_SWITCHES:
3072
		pmu = &perf_ops_generic;
3073
		break;
3074
	case PERF_COUNT_CPU_MIGRATIONS:
3075
		if (!counter->hw_event.exclude_kernel)
3076
			pmu = &perf_ops_cpu_migrations;
3077
		break;
3078
	}
3079

3080
	return pmu;
3081 3082
}

T
Thomas Gleixner 已提交
3083 3084 3085 3086
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3087 3088
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3089
		   struct perf_counter_context *ctx,
3090 3091
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3092
{
3093
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3094
	struct perf_counter *counter;
3095
	struct hw_perf_counter *hwc;
3096
	long err;
T
Thomas Gleixner 已提交
3097

3098
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3099
	if (!counter)
3100
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3101

3102 3103 3104 3105 3106 3107 3108
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
3109
	mutex_init(&counter->mutex);
3110
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3111
	INIT_LIST_HEAD(&counter->event_entry);
3112
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3113 3114
	init_waitqueue_head(&counter->waitq);

3115 3116
	mutex_init(&counter->mmap_mutex);

3117 3118
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
3119 3120
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3121
	counter->group_leader		= group_leader;
3122
	counter->pmu			= NULL;
3123
	counter->ctx			= ctx;
3124
	get_ctx(ctx);
I
Ingo Molnar 已提交
3125

3126
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3127 3128 3129
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3130
	pmu = NULL;
3131

3132 3133
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
3134
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3135 3136 3137
	else
		hwc->irq_period = hw_event->irq_period;

3138 3139 3140 3141 3142 3143
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

3144
	if (perf_event_raw(hw_event)) {
3145
		pmu = hw_perf_counter_init(counter);
3146 3147 3148 3149
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3150
	case PERF_TYPE_HARDWARE:
3151
		pmu = hw_perf_counter_init(counter);
3152 3153 3154
		break;

	case PERF_TYPE_SOFTWARE:
3155
		pmu = sw_perf_counter_init(counter);
3156 3157 3158
		break;

	case PERF_TYPE_TRACEPOINT:
3159
		pmu = tp_perf_counter_init(counter);
3160 3161
		break;
	}
3162 3163
done:
	err = 0;
3164
	if (!pmu)
3165
		err = -EINVAL;
3166 3167
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3168

3169
	if (err) {
I
Ingo Molnar 已提交
3170
		kfree(counter);
3171
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3172
	}
3173

3174
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3175

3176
	atomic_inc(&nr_counters);
3177 3178 3179 3180 3181 3182 3183
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3184 3185 3186 3187
	return counter;
}

/**
3188
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3189 3190
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3191
 * @pid:		target pid
I
Ingo Molnar 已提交
3192 3193
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3194
 */
3195
SYSCALL_DEFINE5(perf_counter_open,
3196
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3197
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3198
{
3199
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3200
	struct perf_counter_hw_event hw_event;
3201
	struct perf_counter_context *ctx;
3202
	struct file *counter_file = NULL;
3203 3204
	struct file *group_file = NULL;
	int fput_needed = 0;
3205
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3206 3207
	int ret;

3208 3209 3210 3211
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3212
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3213 3214
		return -EFAULT;

3215
	/*
I
Ingo Molnar 已提交
3216 3217 3218 3219 3220 3221 3222 3223
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3224 3225 3226 3227 3228 3229
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3230
			goto err_put_context;
3231
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3232
			goto err_put_context;
3233 3234 3235

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3236 3237 3238 3239 3240 3241 3242 3243
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3244
		 */
I
Ingo Molnar 已提交
3245 3246
		if (group_leader->ctx != ctx)
			goto err_put_context;
3247 3248 3249 3250 3251
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3252 3253
	}

3254 3255
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3256 3257
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3258 3259 3260 3261
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3262 3263 3264 3265 3266 3267 3268
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3269
	mutex_lock(&ctx->mutex);
3270
	perf_install_in_context(ctx, counter, cpu);
3271
	mutex_unlock(&ctx->mutex);
3272 3273

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3274

3275 3276 3277
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3278 3279
	return ret;

3280
err_free_put_context:
T
Thomas Gleixner 已提交
3281 3282 3283 3284 3285
	kfree(counter);

err_put_context:
	put_context(ctx);

3286
	goto out_fput;
T
Thomas Gleixner 已提交
3287 3288
}

3289 3290 3291
/*
 * inherit a counter from parent task to child task:
 */
3292
static struct perf_counter *
3293 3294 3295 3296
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3297
	      struct perf_counter *group_leader,
3298 3299 3300 3301
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3302 3303 3304 3305 3306 3307 3308 3309 3310
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3311
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3312 3313
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3314 3315
	if (IS_ERR(child_counter))
		return child_counter;
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3327 3328 3329
	/*
	 * Link it up in the child's context:
	 */
3330
	add_counter_to_ctx(child_counter, child_ctx);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3365
	struct perf_counter *child_ctr;
3366 3367 3368

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3369 3370
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3371
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3372 3373 3374 3375
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3376
	}
3377 3378 3379
	return 0;
}

3380 3381 3382
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3383
	u64 child_val;
3384 3385 3386 3387 3388 3389 3390

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3391 3392 3393 3394
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3410 3411 3412 3413 3414 3415 3416 3417
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

	/*
3418 3419
	 * Protect against concurrent operations on child_counter
	 * due its fd getting closed, etc.
3420
	 */
3421
	mutex_lock(&child_counter->mutex);
3422

3423 3424
	update_counter_times(child_counter);
	list_del_counter(child_counter, child_ctx);
3425

3426
	mutex_unlock(&child_counter->mutex);
3427 3428 3429 3430 3431 3432 3433

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3434 3435
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3436
		free_counter(child_counter);
3437
	}
3438 3439 3440
}

/*
3441
 * When a child task exits, feed back counter values to parent counters.
3442
 *
3443
 * Note: we may be running in child context, but the PID is not hashed
3444
 * anymore so new counters will not be added.
3445 3446
 * (XXX not sure that is true when we get called from flush_old_exec.
 *  -- paulus)
3447 3448 3449 3450 3451
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3452
	unsigned long flags;
3453

3454 3455
	WARN_ON_ONCE(child != current);

3456
	child_ctx = child->perf_counter_ctxp;
3457

3458
	if (likely(!child_ctx))
3459 3460
		return;

3461 3462 3463 3464 3465 3466 3467
	local_irq_save(flags);
	__perf_counter_task_sched_out(child_ctx);
	child->perf_counter_ctxp = NULL;
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3468
again:
3469 3470 3471
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3472 3473 3474 3475 3476 3477 3478 3479

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3480 3481 3482 3483

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3484 3485 3486 3487 3488 3489 3490 3491
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3492
	struct perf_counter *counter;
3493
	struct task_struct *parent = current;
3494
	int inherited_all = 1;
3495

3496
	child->perf_counter_ctxp = NULL;
3497 3498 3499

	/*
	 * This is executed from the parent task context, so inherit
3500 3501
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3502 3503
	 */

3504 3505 3506 3507 3508 3509
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
		return;

	parent_ctx = parent->perf_counter_ctxp;
	if (likely(!parent_ctx || !parent_ctx->nr_counters))
3510 3511
		return;

3512 3513 3514
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;

3515 3516 3517 3518
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3519
	mutex_lock(&parent_ctx->mutex);
3520 3521 3522 3523 3524

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3525 3526 3527 3528
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3529 3530
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3531
			continue;
3532
		}
3533

3534
		if (inherit_group(counter, parent,
3535 3536
				  parent_ctx, child, child_ctx)) {
			inherited_all = 0;
3537
			break;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
		 */
		if (parent_ctx->parent_ctx) {
			child_ctx->parent_ctx = parent_ctx->parent_ctx;
			child_ctx->parent_gen = parent_ctx->parent_gen;
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3554 3555
	}

3556
	mutex_unlock(&parent_ctx->mutex);
3557 3558
}

3559
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3560
{
3561
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3562

3563 3564
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3565

3566
	spin_lock(&perf_resource_lock);
3567
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3568
	spin_unlock(&perf_resource_lock);
3569

3570
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3571 3572 3573
}

#ifdef CONFIG_HOTPLUG_CPU
3574
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3575 3576 3577 3578 3579
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3580 3581
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3582
}
3583
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3584
{
3585 3586 3587 3588
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3589
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3590
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3591 3592
}
#else
3593
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3605
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3606 3607 3608 3609
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3610
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3624
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3651
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3661
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3683
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3684
	perf_overcommit = val;
3685
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);