perf_counter.c 81.5 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49

T
Thomas Gleixner 已提交
50
/*
51
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
52
 */
53
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
54 55 56 57

/*
 * Architecture provided APIs - weak aliases:
 */
58
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
59
{
60
	return NULL;
T
Thomas Gleixner 已提交
61 62
}

63 64 65
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

66
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
67 68 69 70 71 72
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
73

74 75
void __weak perf_counter_print_debug(void)	{ }

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

100 101 102 103 104 105 106 107 108 109
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
110
	if (group_leader == counter)
111
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
112
	else {
113
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
114 115
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
116 117

	list_add_rcu(&counter->event_entry, &ctx->event_list);
118
	ctx->nr_counters++;
119 120 121 122 123 124 125
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

126 127
	ctx->nr_counters--;

128
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
129
	list_del_rcu(&counter->event_entry);
130

P
Peter Zijlstra 已提交
131 132 133
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

134 135 136 137 138 139 140 141
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

142
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
143 144 145 146
		sibling->group_leader = sibling;
	}
}

147 148 149 150 151 152 153 154 155
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
156
	counter->tstamp_stopped = ctx->time;
157
	counter->pmu->disable(counter);
158 159 160 161 162 163 164 165 166
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
189 190 191 192 193 194
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
195
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
196 197 198 199
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
200
	unsigned long flags;
T
Thomas Gleixner 已提交
201 202 203 204 205 206 207 208 209

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

210
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
211

212 213 214
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
215 216 217 218 219

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
220
	perf_disable();
221
	list_del_counter(counter, ctx);
222
	perf_enable();
T
Thomas Gleixner 已提交
223 224 225 226 227 228 229 230 231 232 233

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

234
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
235 236 237 238 239 240
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
241
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
242 243 244 245
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
246
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
247 248 249 250 251 252 253 254 255 256
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
257
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
258 259 260 261 262
					 counter, 1);
		return;
	}

retry:
263
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
264 265 266 267 268 269
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
270
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
271 272 273 274 275 276
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
277
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
278 279
	 * succeed.
	 */
280 281
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
282 283 284 285 286
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

287
static inline u64 perf_clock(void)
288
{
289
	return cpu_clock(smp_processor_id());
290 291 292 293 294
}

/*
 * Update the record of the current time in a context.
 */
295
static void update_context_time(struct perf_counter_context *ctx)
296
{
297 298 299 300
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
301 302 303 304 305 306 307 308 309 310
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

311 312 313 314 315 316 317 318 319 320 321
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

353
	spin_lock_irqsave(&ctx->lock, flags);
354 355 356 357 358 359

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
360
		update_context_time(ctx);
361
		update_counter_times(counter);
362 363 364 365 366 367 368
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

369
	spin_unlock_irqrestore(&ctx->lock, flags);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
405 406
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
407
		counter->state = PERF_COUNTER_STATE_OFF;
408
	}
409 410 411 412

	spin_unlock_irq(&ctx->lock);
}

413 414 415 416 417 418
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
419
	if (counter->state <= PERF_COUNTER_STATE_OFF)
420 421 422 423 424 425 426 427 428
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

429
	if (counter->pmu->enable(counter)) {
430 431 432 433 434
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

435
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
436

437 438
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
439 440
	ctx->nr_active++;

441 442 443
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

444 445 446
	return 0;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

495 496 497 498 499 500 501 502 503 504
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
505

506 507 508
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

544 545 546 547 548
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
549 550 551
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
552 553
}

T
Thomas Gleixner 已提交
554
/*
555
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
556 557 558 559 560 561
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
562
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
563
	int cpu = smp_processor_id();
564
	unsigned long flags;
565
	int err;
T
Thomas Gleixner 已提交
566 567 568 569 570 571 572 573 574

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

575
	spin_lock_irqsave(&ctx->lock, flags);
576
	update_context_time(ctx);
T
Thomas Gleixner 已提交
577 578 579 580 581

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
582
	perf_disable();
T
Thomas Gleixner 已提交
583

584
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
585

586 587 588 589 590 591 592 593
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

594 595 596 597 598
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
599
	if (!group_can_go_on(counter, cpuctx, 1))
600 601 602 603
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

604 605 606 607 608 609 610 611
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
612 613
		if (leader->hw_event.pinned) {
			update_group_times(leader);
614
			leader->state = PERF_COUNTER_STATE_ERROR;
615
		}
616
	}
T
Thomas Gleixner 已提交
617

618
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
619 620
		cpuctx->max_pertask--;

621
 unlock:
622
	perf_enable();
623

624
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
625 626 627 628 629 630 631 632 633 634 635
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
636 637
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
665
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
666 667 668 669 670 671 672 673 674
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
675 676
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
677 678 679
	spin_unlock_irq(&ctx->lock);
}

680 681 682 683
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
684
{
685 686 687 688 689 690
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
691

692 693 694 695 696
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
697 698
		return;

699
	spin_lock_irqsave(&ctx->lock, flags);
700
	update_context_time(ctx);
701

702
	counter->prev_state = counter->state;
703 704 705
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
706
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707 708

	/*
709 710
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
711
	 */
712 713
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
714

715
	if (!group_can_go_on(counter, cpuctx, 1)) {
716
		err = -EEXIST;
717
	} else {
718
		perf_disable();
719 720 721 722 723 724
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
725
		perf_enable();
726
	}
727 728 729 730 731 732 733 734

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
735 736
		if (leader->hw_event.pinned) {
			update_group_times(leader);
737
			leader->state = PERF_COUNTER_STATE_ERROR;
738
		}
739 740 741
	}

 unlock:
742
	spin_unlock_irqrestore(&ctx->lock, flags);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
793
	if (counter->state == PERF_COUNTER_STATE_OFF) {
794
		counter->state = PERF_COUNTER_STATE_INACTIVE;
795 796
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
797
	}
798 799 800 801
 out:
	spin_unlock_irq(&ctx->lock);
}

802
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803
{
804 805 806 807 808 809
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

810 811
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
812 813

	return 0;
814 815
}

816 817 818 819 820
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

821 822
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
823
	if (likely(!ctx->nr_counters))
824
		goto out;
825
	update_context_time(ctx);
826

827
	perf_disable();
828 829 830 831
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
832
	perf_enable();
833
 out:
834 835 836
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
837 838 839 840 841 842
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
843
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
844 845 846 847 848 849 850 851
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
852
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
853 854 855 856

	if (likely(!cpuctx->task_ctx))
		return;

857 858
	update_context_time(ctx);

859
	regs = task_pt_regs(task);
860
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
861 862
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
863 864 865
	cpuctx->task_ctx = NULL;
}

866 867 868 869 870 871 872 873
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

874
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
875
{
876
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
877 878
}

879 880 881
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
882 883
{
	struct perf_counter *counter;
884
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
885

886 887
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
888
	if (likely(!ctx->nr_counters))
889
		goto out;
T
Thomas Gleixner 已提交
890

891
	ctx->timestamp = perf_clock();
892

893
	perf_disable();
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
913 914
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
915
			counter->state = PERF_COUNTER_STATE_ERROR;
916
		}
917 918
	}

919
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920 921 922 923 924 925 926 927
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

928 929 930 931
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
932 933 934
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

935
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936 937
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
938
		}
T
Thomas Gleixner 已提交
939
	}
940
	perf_enable();
941
 out:
T
Thomas Gleixner 已提交
942
	spin_unlock(&ctx->lock);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
960

961
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
962 963 964
	cpuctx->task_ctx = ctx;
}

965 966 967 968 969 970 971
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

972 973 974 975 976
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
977
	unsigned long flags;
978 979 980 981

	if (likely(!ctx->nr_counters))
		return 0;

982
	local_irq_save(flags);
983

984
	__perf_counter_task_sched_out(ctx);
985 986 987 988 989 990

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
991
	perf_disable();
992

993
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 995
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
996
			counter->state = PERF_COUNTER_STATE_OFF;
997
		}
998
	}
999

1000
	perf_enable();
1001

1002
	spin_unlock_irqrestore(&ctx->lock, flags);
1003 1004 1005 1006 1007 1008 1009 1010 1011

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1012
	unsigned long flags;
1013 1014 1015 1016 1017
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1018
	local_irq_save(flags);
1019 1020
	cpu = smp_processor_id();

1021
	__perf_counter_task_sched_out(ctx);
1022

1023 1024 1025 1026 1027
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
1028
	perf_disable();
1029 1030

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1031
		if (counter->state > PERF_COUNTER_STATE_OFF)
1032
			continue;
1033
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1034 1035
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1036
		counter->hw_event.disabled = 0;
1037
	}
1038
	perf_enable();
1039 1040 1041 1042 1043

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1044
	local_irq_restore(flags);
1045 1046 1047 1048

	return 0;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
void perf_adjust_freq(struct perf_counter_context *ctx)
{
	struct perf_counter *counter;
	u64 irq_period;
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

		events = HZ * counter->hw.interrupts * counter->hw.irq_period;
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

		counter->hw.irq_period = irq_period;
		counter->hw.interrupts = 0;
	}
	spin_unlock(&ctx->lock);
}

1081 1082 1083 1084
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1085 1086 1087
{
	struct perf_counter *counter;

1088
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1089 1090 1091 1092
		return;

	spin_lock(&ctx->lock);
	/*
1093
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1094
	 */
1095
	perf_disable();
1096
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1097
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1098 1099
		break;
	}
1100
	perf_enable();
T
Thomas Gleixner 已提交
1101 1102

	spin_unlock(&ctx->lock);
1103 1104 1105 1106
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1107 1108 1109 1110 1111 1112 1113 1114
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
	ctx = &curr->perf_counter_ctx;
1115

1116 1117 1118
	perf_adjust_freq(&cpuctx->ctx);
	perf_adjust_freq(ctx);

1119
	perf_counter_cpu_sched_out(cpuctx);
1120
	__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1121

1122
	rotate_ctx(&cpuctx->ctx);
1123
	rotate_ctx(ctx);
1124

1125
	perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1126 1127 1128 1129 1130 1131
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1132
static void __read(void *info)
T
Thomas Gleixner 已提交
1133
{
I
Ingo Molnar 已提交
1134
	struct perf_counter *counter = info;
1135
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1136
	unsigned long flags;
I
Ingo Molnar 已提交
1137

1138
	local_irq_save(flags);
1139
	if (ctx->is_active)
1140
		update_context_time(ctx);
1141
	counter->pmu->read(counter);
1142
	update_counter_times(counter);
1143
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1144 1145
}

1146
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1147 1148 1149 1150 1151
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1152
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1153
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1154
					 __read, counter, 1);
1155 1156
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1157 1158
	}

1159
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1179
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1223 1224 1225 1226 1227 1228 1229 1230
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1231 1232
static void perf_pending_sync(struct perf_counter *counter);

1233 1234
static void free_counter(struct perf_counter *counter)
{
1235 1236
	perf_pending_sync(counter);

1237
	atomic_dec(&nr_counters);
1238 1239 1240 1241 1242 1243 1244
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1245 1246 1247
	if (counter->destroy)
		counter->destroy(counter);

1248 1249 1250
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1261
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1262 1263
	mutex_lock(&counter->mutex);

1264
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1265 1266

	mutex_unlock(&counter->mutex);
1267
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1268

1269
	free_counter(counter);
1270
	put_context(ctx);
T
Thomas Gleixner 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1281 1282
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1292
	mutex_lock(&counter->mutex);
1293 1294 1295 1296 1297 1298 1299 1300
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1301 1302
	mutex_unlock(&counter->mutex);

1303 1304 1305 1306 1307 1308 1309 1310
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1311 1312 1313 1314 1315 1316 1317
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1318
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1319 1320 1321 1322 1323
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1324
	struct perf_mmap_data *data;
1325
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1326 1327 1328 1329

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1330
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1331
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1332 1333 1334 1335 1336 1337

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1338 1339
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1340
	(void)perf_counter_read(counter);
1341
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

	spin_lock_irq(&ctx->lock);
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
	spin_unlock_irq(&ctx->lock);
}

static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
	mutex_unlock(&counter->mutex);
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
	mutex_unlock(&counter->mutex);
1382 1383
}

1384 1385 1386
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1387 1388
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1389 1390 1391

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1392
		func = perf_counter_enable;
1393 1394
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1395
		func = perf_counter_disable;
1396
		break;
1397
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1398
		func = perf_counter_reset;
1399
		break;
P
Peter Zijlstra 已提交
1400 1401 1402

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1403
	default:
P
Peter Zijlstra 已提交
1404
		return -ENOTTY;
1405
	}
P
Peter Zijlstra 已提交
1406 1407 1408 1409 1410 1411 1412

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1413 1414
}

1415 1416 1417 1418 1419 1420
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1421
{
1422 1423 1424 1425 1426 1427 1428 1429 1430
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1431

1432 1433 1434 1435 1436
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1437
	++userpg->lock;
1438
	barrier();
1439 1440 1441 1442
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1443

1444
	barrier();
1445
	++userpg->lock;
1446
	preempt_enable();
1447
unlock:
1448
	rcu_read_unlock();
1449 1450 1451 1452 1453
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1466

1467 1468
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1469

1470 1471
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1472
	get_page(vmf->page);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1506
	atomic_set(&data->lock, -1);
1507 1508 1509

	rcu_assign_pointer(counter->data, data);

1510
	return 0;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1560 1561 1562
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1563
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1564 1565 1566
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1567 1568 1569
}

static struct vm_operations_struct perf_mmap_vmops = {
1570
	.open  = perf_mmap_open,
1571
	.close = perf_mmap_close,
1572 1573 1574 1575 1576 1577
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1578
	struct user_struct *user = current_user();
1579 1580
	unsigned long vma_size;
	unsigned long nr_pages;
1581
	unsigned long user_locked, user_lock_limit;
1582
	unsigned long locked, lock_limit;
1583
	long user_extra, extra;
1584
	int ret = 0;
1585 1586 1587

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1588 1589 1590 1591

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1592 1593 1594 1595 1596
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1597 1598
		return -EINVAL;

1599
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1600 1601
		return -EINVAL;

1602 1603
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1604

1605 1606 1607 1608 1609 1610 1611
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1612 1613 1614
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1615

1616 1617 1618
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1619 1620 1621

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1622
	locked = vma->vm_mm->locked_vm + extra;
1623

1624 1625 1626 1627
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1628 1629 1630

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1631 1632 1633 1634
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1635
	atomic_long_add(user_extra, &user->locked_vm);
1636 1637
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1638
unlock:
1639
	mutex_unlock(&counter->mmap_mutex);
1640 1641 1642 1643

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1644 1645

	return ret;
1646 1647
}

P
Peter Zijlstra 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1664 1665 1666 1667
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1668 1669
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1670
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1671
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1672 1673
};

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1684 1685 1686 1687 1688

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1716
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1717

1718
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1719 1720 1721
	PENDING_TAIL,
};

1722 1723
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1724
{
1725
	struct perf_pending_entry **head;
1726

1727
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1728 1729
		return;

1730 1731 1732
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1733 1734

	do {
1735 1736
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1737 1738 1739

	set_perf_counter_pending();

1740
	put_cpu_var(perf_pending_head);
1741 1742 1743 1744
}

static int __perf_pending_run(void)
{
1745
	struct perf_pending_entry *list;
1746 1747
	int nr = 0;

1748
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1749
	while (list != PENDING_TAIL) {
1750 1751
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1752 1753 1754

		list = list->next;

1755 1756
		func = entry->func;
		entry->next = NULL;
1757 1758 1759 1760 1761 1762 1763
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1764
		func(entry);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1786
	return counter->pending.next == NULL;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1799 1800 1801 1802
/*
 * Callchain support -- arch specific
 */

1803
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1804 1805 1806 1807
{
	return NULL;
}

1808 1809 1810 1811
/*
 * Output
 */

1812 1813 1814 1815
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1816
	unsigned int		head;
1817
	int			nmi;
1818
	int			overflow;
1819 1820
	int			locked;
	unsigned long		flags;
1821 1822
};

1823
static void perf_output_wakeup(struct perf_output_handle *handle)
1824
{
1825 1826
	atomic_set(&handle->data->poll, POLL_IN);

1827
	if (handle->nmi) {
1828
		handle->counter->pending_wakeup = 1;
1829
		perf_pending_queue(&handle->counter->pending,
1830
				   perf_pending_counter);
1831
	} else
1832 1833 1834
		perf_counter_wakeup(handle->counter);
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

1861
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

1872
	data->done_head = data->head;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
1883
	while ((head = atomic_xchg(&data->done_head, 0)))
1884 1885 1886
		data->user_page->data_head = head;

	/*
1887
	 * NMI can happen here, which means we can miss a done_head update.
1888 1889
	 */

1890
	cpu = atomic_xchg(&data->lock, -1);
1891 1892 1893 1894 1895
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
1896
	if (unlikely(atomic_read(&data->done_head))) {
1897 1898 1899
		/*
		 * Since we had it locked, we can lock it again.
		 */
1900
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1901 1902 1903 1904 1905
			cpu_relax();

		goto again;
	}

1906
	if (atomic_xchg(&data->wakeup, 0))
1907 1908 1909 1910 1911
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

1912
static int perf_output_begin(struct perf_output_handle *handle,
1913
			     struct perf_counter *counter, unsigned int size,
1914
			     int nmi, int overflow)
1915
{
1916
	struct perf_mmap_data *data;
1917
	unsigned int offset, head;
1918

1919 1920 1921 1922 1923 1924
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

1925 1926 1927 1928 1929
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1930
	handle->data	 = data;
1931 1932 1933
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1934

1935
	if (!data->nr_pages)
1936
		goto fail;
1937

1938 1939
	perf_output_lock(handle);

1940 1941
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1942
		head += size;
1943 1944
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1945
	handle->offset	= offset;
1946
	handle->head	= head;
1947 1948 1949

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
1950

1951
	return 0;
1952

1953
fail:
1954
	perf_output_wakeup(handle);
1955 1956
out:
	rcu_read_unlock();
1957

1958 1959
	return -ENOSPC;
}
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1989

1990 1991 1992 1993 1994
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1995 1996
}

P
Peter Zijlstra 已提交
1997 1998 1999
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2000
static void perf_output_end(struct perf_output_handle *handle)
2001
{
2002 2003 2004 2005
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2006

2007
	if (handle->overflow && wakeup_events) {
2008
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2009
		if (events >= wakeup_events) {
2010
			atomic_sub(wakeup_events, &data->events);
2011
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2012
		}
2013 2014 2015
	}

	perf_output_unlock(handle);
2016
	rcu_read_unlock();
2017 2018
}

2019
static void perf_counter_output(struct perf_counter *counter,
2020
				int nmi, struct pt_regs *regs, u64 addr)
2021
{
2022
	int ret;
2023
	u64 record_type = counter->hw_event.record_type;
2024 2025 2026
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2027
	struct {
2028
		u32 pid, tid;
2029
	} tid_entry;
2030 2031 2032 2033
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2034 2035
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2036
	u64 time;
2037 2038 2039
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2040

2041
	header.type = 0;
2042
	header.size = sizeof(header);
2043

2044
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2045
	header.misc |= perf_misc_flags(regs);
2046

2047
	if (record_type & PERF_RECORD_IP) {
2048
		ip = perf_instruction_pointer(regs);
2049
		header.type |= PERF_RECORD_IP;
2050 2051
		header.size += sizeof(ip);
	}
2052

2053
	if (record_type & PERF_RECORD_TID) {
2054
		/* namespace issues */
2055 2056 2057
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2058
		header.type |= PERF_RECORD_TID;
2059 2060 2061
		header.size += sizeof(tid_entry);
	}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2072 2073 2074 2075 2076
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2077 2078 2079 2080 2081
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2082 2083 2084 2085 2086 2087 2088
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2089
	if (record_type & PERF_RECORD_GROUP) {
2090
		header.type |= PERF_RECORD_GROUP;
2091 2092 2093 2094 2095
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2096 2097 2098
		callchain = perf_callchain(regs);

		if (callchain) {
2099
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2100

2101
			header.type |= PERF_RECORD_CALLCHAIN;
2102 2103 2104 2105
			header.size += callchain_size;
		}
	}

2106
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2107 2108
	if (ret)
		return;
2109

2110
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2111

2112 2113
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2114

2115 2116
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2117

2118 2119 2120
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2121 2122 2123
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2124 2125 2126
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2127 2128 2129
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2130 2131 2132
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2133 2134 2135
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2136

2137
		perf_output_put(&handle, nr);
2138

2139 2140 2141
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2142
				sub->pmu->read(sub);
2143

2144 2145
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2146

2147 2148
			perf_output_put(&handle, group_entry);
		}
2149
	}
P
Peter Zijlstra 已提交
2150

2151 2152
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2153

2154
	perf_output_end(&handle);
2155 2156
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2222
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2238 2239 2240 2241 2242 2243
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2280
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2281 2282 2283 2284 2285 2286 2287

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2288
	perf_output_end(&handle);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2336
		name = d_path(&file->f_path, buf, PATH_MAX);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2347
	size = ALIGN(strlen(name)+1, sizeof(u64));
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2366 2367 2368 2369 2370 2371
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2389 2390 2391 2392 2393 2394
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2409 2410 2411 2412 2413
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2414
			  int nmi, struct pt_regs *regs, u64 addr)
2415
{
2416 2417 2418
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2419 2420
	counter->hw.interrupts++;

2421 2422 2423 2424 2425
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2426
	counter->pending_kill = POLL_IN;
2427 2428
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2429
		counter->pending_kill = POLL_HUP;
2430 2431 2432 2433 2434 2435 2436 2437
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2438
	perf_counter_output(counter, nmi, regs, addr);
2439
	return ret;
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2484 2485
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2486
	enum hrtimer_restart ret = HRTIMER_RESTART;
2487 2488
	struct perf_counter *counter;
	struct pt_regs *regs;
2489
	u64 period;
2490 2491

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2492
	counter->pmu->read(counter);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2503
	if (regs) {
2504
		if (perf_counter_overflow(counter, 0, regs, 0))
2505 2506
			ret = HRTIMER_NORESTART;
	}
2507

2508 2509
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2510

2511
	return ret;
2512 2513 2514
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2515
				    int nmi, struct pt_regs *regs, u64 addr)
2516
{
2517 2518
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2519
	if (perf_counter_overflow(counter, nmi, regs, addr))
2520 2521 2522
		/* soft-disable the counter */
		;

2523 2524
}

2525
static int perf_swcounter_match(struct perf_counter *counter,
2526 2527
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2528 2529 2530 2531
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2532
	if (perf_event_raw(&counter->hw_event))
2533 2534
		return 0;

2535
	if (perf_event_type(&counter->hw_event) != type)
2536 2537
		return 0;

2538
	if (perf_event_id(&counter->hw_event) != event)
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2550
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2551
			       int nmi, struct pt_regs *regs, u64 addr)
2552 2553 2554
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2555
		perf_swcounter_overflow(counter, nmi, regs, addr);
2556 2557
}

2558
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2559
				     enum perf_event_types type, u32 event,
2560 2561
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2562 2563 2564
{
	struct perf_counter *counter;

2565
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2566 2567
		return;

P
Peter Zijlstra 已提交
2568 2569
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2570
		if (perf_swcounter_match(counter, type, event, regs))
2571
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2572
	}
P
Peter Zijlstra 已提交
2573
	rcu_read_unlock();
2574 2575
}

P
Peter Zijlstra 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2590
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2591 2592
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2593 2594
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2595 2596 2597 2598 2599 2600 2601
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2602

2603 2604
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2605 2606
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2607
					 nr, nmi, regs, addr);
2608
	}
2609

P
Peter Zijlstra 已提交
2610 2611 2612 2613
	barrier();
	(*recursion)--;

out:
2614 2615 2616
	put_cpu_var(perf_cpu_context);
}

2617 2618
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2619
{
2620
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2639
static const struct pmu perf_ops_generic = {
2640 2641 2642 2643 2644
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2645 2646 2647 2648
/*
 * Software counter: cpu wall time clock
 */

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2661 2662 2663 2664 2665 2666
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2667 2668
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2669
	if (hwc->irq_period) {
2670
		u64 period = max_t(u64, 10000, hwc->irq_period);
2671
		__hrtimer_start_range_ns(&hwc->hrtimer,
2672
				ns_to_ktime(period), 0,
2673 2674 2675 2676 2677 2678
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2679 2680
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2681
	hrtimer_cancel(&counter->hw.hrtimer);
2682
	cpu_clock_perf_counter_update(counter);
2683 2684 2685 2686
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2687
	cpu_clock_perf_counter_update(counter);
2688 2689
}

2690
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2691 2692 2693
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2694 2695
};

2696 2697 2698 2699
/*
 * Software counter: task time clock
 */

2700
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2701
{
2702
	u64 prev;
I
Ingo Molnar 已提交
2703 2704
	s64 delta;

2705
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2706 2707
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2708 2709
}

2710
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2711
{
2712
	struct hw_perf_counter *hwc = &counter->hw;
2713 2714 2715
	u64 now;

	now = counter->ctx->time;
2716

2717
	atomic64_set(&hwc->prev_count, now);
2718 2719
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2720
	if (hwc->irq_period) {
2721
		u64 period = max_t(u64, 10000, hwc->irq_period);
2722
		__hrtimer_start_range_ns(&hwc->hrtimer,
2723
				ns_to_ktime(period), 0,
2724 2725
				HRTIMER_MODE_REL, 0);
	}
2726 2727

	return 0;
I
Ingo Molnar 已提交
2728 2729 2730
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2731
{
2732
	hrtimer_cancel(&counter->hw.hrtimer);
2733 2734
	task_clock_perf_counter_update(counter, counter->ctx->time);

2735
}
I
Ingo Molnar 已提交
2736

2737 2738
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2751 2752
}

2753
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2754 2755 2756
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2757 2758
};

2759 2760 2761 2762
/*
 * Software counter: cpu migrations
 */

2763
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2764
{
2765 2766 2767 2768 2769
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2770 2771 2772 2773 2774 2775 2776 2777
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2778
	now = get_cpu_migrations(counter);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2792
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2793
{
2794 2795 2796
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2797
	return 0;
2798 2799 2800 2801 2802 2803 2804
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2805
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2806 2807 2808
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2809 2810
};

2811 2812 2813
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2814 2815 2816 2817 2818
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2819
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2820
}
2821
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2822 2823 2824 2825 2826 2827

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2828
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2829 2830
}

2831
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2832
{
2833
	int event_id = perf_event_id(&counter->hw_event);
2834 2835 2836 2837 2838 2839 2840
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2841
	counter->hw.irq_period = counter->hw_event.irq_period;
2842 2843 2844 2845

	return &perf_ops_generic;
}
#else
2846
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2847 2848 2849 2850 2851
{
	return NULL;
}
#endif

2852
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2853
{
2854
	const struct pmu *pmu = NULL;
2855

2856 2857 2858 2859 2860 2861 2862
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2863
	switch (perf_event_id(&counter->hw_event)) {
2864
	case PERF_COUNT_CPU_CLOCK:
2865
		pmu = &perf_ops_cpu_clock;
2866

2867
		break;
2868
	case PERF_COUNT_TASK_CLOCK:
2869 2870 2871 2872 2873
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
2874
			pmu = &perf_ops_task_clock;
2875
		else
2876
			pmu = &perf_ops_cpu_clock;
2877

2878
		break;
2879
	case PERF_COUNT_PAGE_FAULTS:
2880 2881
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2882
	case PERF_COUNT_CONTEXT_SWITCHES:
2883
		pmu = &perf_ops_generic;
2884
		break;
2885
	case PERF_COUNT_CPU_MIGRATIONS:
2886
		if (!counter->hw_event.exclude_kernel)
2887
			pmu = &perf_ops_cpu_migrations;
2888
		break;
2889
	}
2890

2891
	return pmu;
2892 2893
}

T
Thomas Gleixner 已提交
2894 2895 2896 2897
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2898 2899
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2900
		   struct perf_counter_context *ctx,
2901 2902
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2903
{
2904
	const struct pmu *pmu;
I
Ingo Molnar 已提交
2905
	struct perf_counter *counter;
2906
	struct hw_perf_counter *hwc;
2907
	long err;
T
Thomas Gleixner 已提交
2908

2909
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2910
	if (!counter)
2911
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2912

2913 2914 2915 2916 2917 2918 2919
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2920
	mutex_init(&counter->mutex);
2921
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2922
	INIT_LIST_HEAD(&counter->event_entry);
2923
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2924 2925
	init_waitqueue_head(&counter->waitq);

2926 2927
	mutex_init(&counter->mmap_mutex);

2928 2929
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2930 2931
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2932
	counter->group_leader		= group_leader;
2933
	counter->pmu			= NULL;
2934
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2935

2936
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2937 2938 2939
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2940
	pmu = NULL;
2941

2942 2943
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
2944
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
2945 2946 2947
	else
		hwc->irq_period = hw_event->irq_period;

2948 2949 2950 2951 2952 2953
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

2954
	if (perf_event_raw(hw_event)) {
2955
		pmu = hw_perf_counter_init(counter);
2956 2957 2958 2959
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2960
	case PERF_TYPE_HARDWARE:
2961
		pmu = hw_perf_counter_init(counter);
2962 2963 2964
		break;

	case PERF_TYPE_SOFTWARE:
2965
		pmu = sw_perf_counter_init(counter);
2966 2967 2968
		break;

	case PERF_TYPE_TRACEPOINT:
2969
		pmu = tp_perf_counter_init(counter);
2970 2971
		break;
	}
2972 2973
done:
	err = 0;
2974
	if (!pmu)
2975
		err = -EINVAL;
2976 2977
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
2978

2979
	if (err) {
I
Ingo Molnar 已提交
2980
		kfree(counter);
2981
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2982
	}
2983

2984
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
2985

2986
	atomic_inc(&nr_counters);
2987 2988 2989 2990 2991 2992 2993
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2994 2995 2996 2997
	return counter;
}

/**
2998
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2999 3000
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3001
 * @pid:		target pid
I
Ingo Molnar 已提交
3002 3003
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3004
 */
3005
SYSCALL_DEFINE5(perf_counter_open,
3006
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3007
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3008
{
3009
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3010
	struct perf_counter_hw_event hw_event;
3011
	struct perf_counter_context *ctx;
3012
	struct file *counter_file = NULL;
3013 3014
	struct file *group_file = NULL;
	int fput_needed = 0;
3015
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3016 3017
	int ret;

3018 3019 3020 3021
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3022
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3023 3024
		return -EFAULT;

3025
	/*
I
Ingo Molnar 已提交
3026 3027 3028 3029 3030 3031 3032 3033
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3034 3035 3036 3037 3038 3039
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3040
			goto err_put_context;
3041
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3042
			goto err_put_context;
3043 3044 3045

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3046 3047 3048 3049 3050 3051 3052 3053
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3054
		 */
I
Ingo Molnar 已提交
3055 3056
		if (group_leader->ctx != ctx)
			goto err_put_context;
3057 3058 3059 3060 3061
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3062 3063
	}

3064 3065
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3066 3067
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3068 3069 3070 3071
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3072 3073 3074 3075 3076 3077 3078
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3079
	mutex_lock(&ctx->mutex);
3080
	perf_install_in_context(ctx, counter, cpu);
3081
	mutex_unlock(&ctx->mutex);
3082 3083

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3084

3085 3086 3087
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3088 3089
	return ret;

3090
err_free_put_context:
T
Thomas Gleixner 已提交
3091 3092 3093 3094 3095
	kfree(counter);

err_put_context:
	put_context(ctx);

3096
	goto out_fput;
T
Thomas Gleixner 已提交
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
3108
	mutex_init(&ctx->mutex);
3109
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
3110
	INIT_LIST_HEAD(&ctx->event_list);
3111 3112 3113 3114 3115 3116
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
3117
static struct perf_counter *
3118 3119 3120 3121
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3122
	      struct perf_counter *group_leader,
3123 3124 3125 3126
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3127 3128 3129 3130 3131 3132 3133 3134 3135
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3136
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3137 3138
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3139 3140
	if (IS_ERR(child_counter))
		return child_counter;
3141 3142 3143 3144 3145

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
3146
	add_counter_to_ctx(child_counter, child_ctx);
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3191
	struct perf_counter *child_ctr;
3192 3193 3194

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3195 3196
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3197
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3198 3199 3200 3201
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3202
	}
3203 3204 3205
	return 0;
}

3206 3207 3208
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3209
	u64 child_val;
3210 3211 3212 3213 3214 3215 3216

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3217 3218 3219 3220
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3236 3237 3238 3239 3240 3241 3242 3243
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

	/*
3244 3245 3246 3247 3248 3249
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3250
	 */
3251 3252
	if (child != current) {
		wait_task_inactive(child, 0);
3253
		update_counter_times(child_counter);
3254
		list_del_counter(child_counter, child_ctx);
3255
	} else {
3256
		struct perf_cpu_context *cpuctx;
3257 3258 3259 3260 3261 3262 3263 3264
		unsigned long flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3265
		local_irq_save(flags);
3266
		perf_disable();
3267 3268 3269

		cpuctx = &__get_cpu_var(perf_cpu_context);

3270
		group_sched_out(child_counter, cpuctx, child_ctx);
3271
		update_counter_times(child_counter);
3272

3273
		list_del_counter(child_counter, child_ctx);
3274

3275
		perf_enable();
3276
		local_irq_restore(flags);
3277
	}
3278 3279 3280 3281 3282 3283 3284

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3285 3286
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3287
		free_counter(child_counter);
3288
	}
3289 3290 3291
}

/*
3292
 * When a child task exits, feed back counter values to parent counters.
3293
 *
3294
 * Note: we may be running in child context, but the PID is not hashed
3295 3296 3297 3298 3299 3300 3301
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

3302 3303
	WARN_ON_ONCE(child != current);

3304 3305 3306 3307 3308
	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

3309
again:
3310 3311 3312
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3313 3314 3315 3316 3317 3318 3319 3320

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3321 3322 3323 3324 3325 3326 3327 3328
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3329
	struct perf_counter *counter;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3349
	mutex_lock(&parent_ctx->mutex);
3350 3351 3352 3353 3354

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3355 3356 3357 3358
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3359
		if (!counter->hw_event.inherit)
3360 3361
			continue;

3362
		if (inherit_group(counter, parent,
3363 3364 3365 3366
				  parent_ctx, child, child_ctx))
			break;
	}

3367
	mutex_unlock(&parent_ctx->mutex);
3368 3369
}

3370
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3371
{
3372
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3373

3374 3375
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3376

3377
	spin_lock(&perf_resource_lock);
3378
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3379
	spin_unlock(&perf_resource_lock);
3380

3381
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3382 3383 3384
}

#ifdef CONFIG_HOTPLUG_CPU
3385
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3386 3387 3388 3389 3390
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3391 3392
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3393
}
3394
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3395
{
3396 3397 3398 3399
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3400
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3401
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3402 3403
}
#else
3404
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3416
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3417 3418 3419 3420
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3421
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3435
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3462
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3472
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3494
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3495
	perf_overcommit = val;
3496
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);