perf_counter.c 68.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27 28
#include <linux/perf_counter.h>

29 30
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
31 32 33 34 35
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

36
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
37 38 39 40 41 42 43 44 45 46 47
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
48
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
49
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
50
{
51
	return NULL;
T
Thomas Gleixner 已提交
52 53
}

54
u64 __weak hw_perf_save_disable(void)		{ return 0; }
55
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
56
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
57 58 59 60 61 62
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
63

64 65
void __weak perf_counter_print_debug(void)	{ }

66 67 68 69 70 71 72 73 74 75 76 77
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
78
	else {
79
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
80 81
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
82 83

	list_add_rcu(&counter->event_entry, &ctx->event_list);
84 85 86 87 88 89 90 91
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
92
	list_del_rcu(&counter->event_entry);
93

P
Peter Zijlstra 已提交
94 95 96
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

97 98 99 100 101 102 103 104
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

105
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
106 107 108 109
		sibling->group_leader = sibling;
	}
}

110 111 112 113 114 115 116 117 118
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
119
	counter->tstamp_stopped = ctx->time_now;
120 121 122 123 124 125 126 127 128 129
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
152 153 154 155 156 157
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
158
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
159 160 161 162
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
163
	unsigned long flags;
164
	u64 perf_flags;
T
Thomas Gleixner 已提交
165 166 167 168 169 170 171 172 173

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
174 175
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
176

177 178 179
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
180 181 182 183 184 185
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
186
	perf_flags = hw_perf_save_disable();
187
	list_del_counter(counter, ctx);
188
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
189 190 191 192 193 194 195 196 197 198 199

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
200 201
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
202 203 204 205 206 207
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
208
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
209 210 211 212
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
213
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
214 215 216 217 218 219 220 221 222 223
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
224
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
225 226 227 228 229
					 counter, 1);
		return;
	}

retry:
230
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
231 232 233 234 235 236
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
237
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
238 239 240 241 242 243
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
244
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
245 246
	 * succeed.
	 */
247
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
248
		ctx->nr_counters--;
249
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
250 251 252 253 254
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Get the current time for this context.
 * If this is a task context, we use the task's task clock,
 * or for a per-cpu context, we use the cpu clock.
 */
static u64 get_context_time(struct perf_counter_context *ctx, int update)
{
	struct task_struct *curr = ctx->task;

	if (!curr)
		return cpu_clock(smp_processor_id());

	return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_counter_context *ctx, int update)
{
	ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		counter->total_time_enabled = ctx->time_now -
			counter->tstamp_enabled;
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			run_end = counter->tstamp_stopped;
		else
			run_end = ctx->time_now;
		counter->total_time_running = run_end - counter->tstamp_running;
	}
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334 335
		update_context_time(ctx, 1);
		update_counter_times(counter);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
380 381
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
382
		counter->state = PERF_COUNTER_STATE_OFF;
383
	}
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

406 407 408 409 410 411
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
412
	if (counter->state <= PERF_COUNTER_STATE_OFF)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

428 429
	counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;

430 431
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
432 433
	ctx->nr_active++;

434 435 436
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

437 438 439
	return 0;
}

440 441 442 443 444 445 446 447 448 449
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
450

451 452 453
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

489 490 491 492 493 494 495 496 497 498 499
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
	counter->tstamp_enabled = ctx->time_now;
	counter->tstamp_running = ctx->time_now;
	counter->tstamp_stopped = ctx->time_now;
}

T
Thomas Gleixner 已提交
500
/*
501
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
502 503 504 505 506 507
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
508
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
509
	int cpu = smp_processor_id();
510
	unsigned long flags;
511
	u64 perf_flags;
512
	int err;
T
Thomas Gleixner 已提交
513 514 515 516 517 518 519 520 521

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
522 523
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
524
	update_context_time(ctx, 1);
T
Thomas Gleixner 已提交
525 526 527 528 529

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
530
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
531

532
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
533

534 535 536 537 538 539 540 541
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

542 543 544 545 546
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
547
	if (!group_can_go_on(counter, cpuctx, 1))
548 549 550 551
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

552 553 554 555 556 557 558 559
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
560 561
		if (leader->hw_event.pinned) {
			update_group_times(leader);
562
			leader->state = PERF_COUNTER_STATE_ERROR;
563
		}
564
	}
T
Thomas Gleixner 已提交
565

566
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
567 568
		cpuctx->max_pertask--;

569
 unlock:
570 571
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
572 573
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
574 575 576 577 578 579 580 581 582 583 584
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
585 586
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
614
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
615 616 617 618 619 620 621 622 623
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
624 625
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
626 627 628
	spin_unlock_irq(&ctx->lock);
}

629 630 631 632
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
633
{
634 635 636 637 638 639
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
640

641 642 643 644 645
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
646 647
		return;

648 649
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
650
	update_context_time(ctx, 1);
651

652
	counter->prev_state = counter->state;
653 654 655
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
656
	counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
657 658

	/*
659 660
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
661
	 */
662 663
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
664

665 666 667 668 669 670 671 672 673 674 675 676 677
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
678 679
		if (leader->hw_event.pinned) {
			update_group_times(leader);
680
			leader->state = PERF_COUNTER_STATE_ERROR;
681
		}
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
737
	if (counter->state == PERF_COUNTER_STATE_OFF) {
738
		counter->state = PERF_COUNTER_STATE_INACTIVE;
739 740 741
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
	}
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
762 763
}

764 765 766 767
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
768
	u64 flags;
769

770 771
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
772
	if (likely(!ctx->nr_counters))
773
		goto out;
774
	update_context_time(ctx, 0);
775

776
	flags = hw_perf_save_disable();
777 778 779 780
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
781
	hw_perf_restore(flags);
782
 out:
783 784 785
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
786 787 788 789 790 791
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
792
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
793 794 795 796 797 798 799 800
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
801
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
802 803 804 805

	if (likely(!cpuctx->task_ctx))
		return;

806 807
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
808 809
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
810 811 812
	cpuctx->task_ctx = NULL;
}

813
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
814
{
815
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
816 817
}

I
Ingo Molnar 已提交
818
static int
819 820 821 822 823
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
824
	struct perf_counter *counter, *partial_group;
825 826 827 828 829 830 831 832
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
833

834
	group_counter->prev_state = group_counter->state;
835 836
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
837 838 839 840

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
841
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842
		counter->prev_state = counter->state;
843 844 845 846 847 848
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

849
	return 0;
850 851 852 853 854 855 856 857 858 859

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
860
	}
861
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862

863
	return -EAGAIN;
864 865
}

866 867 868
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
869 870
{
	struct perf_counter *counter;
871
	u64 flags;
872
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
873

874 875
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
876
	if (likely(!ctx->nr_counters))
877
		goto out;
T
Thomas Gleixner 已提交
878

879 880 881 882 883 884 885
	/*
	 * Add any time since the last sched_out to the lost time
	 * so it doesn't get included in the total_time_enabled and
	 * total_time_running measures for counters in the context.
	 */
	ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;

886
	flags = hw_perf_save_disable();
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
906 907
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
908
			counter->state = PERF_COUNTER_STATE_ERROR;
909
		}
910 911
	}

912
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
913 914 915 916 917 918 919 920
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

921 922 923 924
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
925 926 927
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

928
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
929 930
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
931
		}
T
Thomas Gleixner 已提交
932
	}
933
	hw_perf_restore(flags);
934
 out:
T
Thomas Gleixner 已提交
935
	spin_unlock(&ctx->lock);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
953

954
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
955 956 957
	cpuctx->task_ctx = ctx;
}

958 959 960 961 962 963 964
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

965 966 967 968 969
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
970
	unsigned long flags;
971 972 973 974 975 976
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
977
	curr_rq_lock_irq_save(&flags);
978 979
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
980 981 982
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

983 984 985 986 987 988 989 990 991
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

992
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
993 994
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
995
			counter->state = PERF_COUNTER_STATE_OFF;
996
		}
997
	}
998

999 1000 1001 1002
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
1003
	curr_rq_unlock_irq_restore(&flags);
1004 1005 1006 1007 1008 1009 1010 1011 1012

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1013
	unsigned long flags;
1014 1015 1016 1017 1018 1019
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
1020
	curr_rq_lock_irq_save(&flags);
1021 1022
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
1023 1024 1025
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

1026 1027
	perf_counter_task_sched_out(curr, cpu);

1028 1029 1030 1031 1032 1033 1034 1035
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036
		if (counter->state > PERF_COUNTER_STATE_OFF)
1037
			continue;
1038
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1039 1040
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
I
Ingo Molnar 已提交
1041
		counter->hw_event.disabled = 0;
1042 1043 1044 1045 1046 1047 1048
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
1049
	curr_rq_unlock_irq_restore(&flags);
1050 1051 1052 1053

	return 0;
}

1054 1055 1056 1057
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1058 1059
{
	struct perf_counter *counter;
1060
	u64 perf_flags;
T
Thomas Gleixner 已提交
1061

1062
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1063 1064 1065 1066
		return;

	spin_lock(&ctx->lock);
	/*
1067
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1068
	 */
1069
	perf_flags = hw_perf_save_disable();
1070
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1071
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1072 1073
		break;
	}
1074
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1075 1076

	spin_unlock(&ctx->lock);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1088

1089 1090 1091 1092 1093 1094
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1095 1096 1097 1098 1099 1100
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1101
static void __read(void *info)
T
Thomas Gleixner 已提交
1102
{
I
Ingo Molnar 已提交
1103
	struct perf_counter *counter = info;
1104
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1105
	unsigned long flags;
I
Ingo Molnar 已提交
1106

I
Ingo Molnar 已提交
1107
	curr_rq_lock_irq_save(&flags);
1108 1109
	if (ctx->is_active)
		update_context_time(ctx, 1);
I
Ingo Molnar 已提交
1110
	counter->hw_ops->read(counter);
1111
	update_counter_times(counter);
I
Ingo Molnar 已提交
1112
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1113 1114
}

1115
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1116 1117 1118 1119 1120
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1121
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1122
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1123
					 __read, counter, 1);
1124 1125
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1126 1127
	}

1128
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1192 1193 1194 1195 1196 1197 1198 1199
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1200 1201
static void perf_pending_sync(struct perf_counter *counter);

1202 1203
static void free_counter(struct perf_counter *counter)
{
1204 1205
	perf_pending_sync(counter);

1206 1207 1208
	if (counter->destroy)
		counter->destroy(counter);

1209 1210 1211
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1222
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1223 1224
	mutex_lock(&counter->mutex);

1225
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1226 1227

	mutex_unlock(&counter->mutex);
1228
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1229

1230
	free_counter(counter);
1231
	put_context(ctx);
T
Thomas Gleixner 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1242 1243
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1244

1245 1246 1247 1248 1249 1250 1251 1252
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1253
	mutex_lock(&counter->mutex);
1254 1255 1256 1257 1258 1259 1260 1261
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1262 1263
	mutex_unlock(&counter->mutex);

1264 1265 1266 1267 1268 1269 1270 1271
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1272 1273 1274 1275 1276 1277 1278
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1279
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1280 1281 1282 1283 1284
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1295 1296 1297 1298 1299 1300

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1319 1320 1321 1322 1323 1324
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1325
{
1326 1327 1328 1329 1330 1331 1332 1333 1334
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1335

1336 1337 1338 1339 1340
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1341 1342 1343 1344 1345 1346
	++userpg->lock;
	smp_wmb();
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1347

1348 1349
	smp_wmb();
	++userpg->lock;
1350
	preempt_enable();
1351
unlock:
1352
	rcu_read_unlock();
1353 1354 1355 1356 1357
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1370

1371 1372
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1373

1374 1375
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1376
	get_page(vmf->page);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1413
	return 0;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1466 1467 1468
}

static struct vm_operations_struct perf_mmap_vmops = {
1469 1470
	.open = perf_mmap_open,
	.close = perf_mmap_close,
1471 1472 1473 1474 1475 1476
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1477 1478 1479 1480
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1481 1482 1483

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1484 1485 1486 1487

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1488 1489 1490 1491 1492
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1493 1494
		return -EINVAL;

1495
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1496 1497
		return -EINVAL;

1498 1499
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	locked = vma_size >>  PAGE_SHIFT;
	locked += vma->vm_mm->locked_vm;

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
		return -EPERM;

	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count))
		goto out;

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
	if (!ret)
		atomic_set(&counter->mmap_count, 1);
out:
	mutex_unlock(&counter->mmap_mutex);
1520 1521 1522 1523

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1524 1525

	return ret;
1526 1527
}

T
Thomas Gleixner 已提交
1528 1529 1530 1531
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1532 1533
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1534
	.mmap			= perf_mmap,
T
Thomas Gleixner 已提交
1535 1536
};

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
		(void)atomic_xchg(&data->wakeup, POLL_IN);
1552 1553 1554 1555 1556 1557 1558
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

#define PENDING_TAIL ((struct perf_wakeup_entry *)-1UL)

static DEFINE_PER_CPU(struct perf_wakeup_entry *, perf_wakeup_head) = {
	PENDING_TAIL,
};

static void perf_pending_queue(struct perf_counter *counter)
{
	struct perf_wakeup_entry **head;
	struct perf_wakeup_entry *prev, *next;

	if (cmpxchg(&counter->wakeup.next, NULL, PENDING_TAIL) != NULL)
		return;

	head = &get_cpu_var(perf_wakeup_head);

	do {
		prev = counter->wakeup.next = *head;
		next = &counter->wakeup;
	} while (cmpxchg(head, prev, next) != prev);

	set_perf_counter_pending();

	put_cpu_var(perf_wakeup_head);
}

static int __perf_pending_run(void)
{
	struct perf_wakeup_entry *list;
	int nr = 0;

	list = xchg(&__get_cpu_var(perf_wakeup_head), PENDING_TAIL);
	while (list != PENDING_TAIL) {
		struct perf_counter *counter = container_of(list,
				struct perf_counter, wakeup);

		list = list->next;

		counter->wakeup.next = NULL;
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

		perf_counter_wakeup(counter);
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
	return counter->wakeup.next == NULL;
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1655 1656 1657 1658
/*
 * Output
 */

1659 1660 1661 1662
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1663
	unsigned int		head;
1664 1665 1666 1667 1668
	int			wakeup;
};

static int perf_output_begin(struct perf_output_handle *handle,
			     struct perf_counter *counter, unsigned int size)
1669
{
1670
	struct perf_mmap_data *data;
1671
	unsigned int offset, head;
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

	if (!data->nr_pages)
		goto out;

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1683
		head += size;
1684 1685
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1686 1687 1688
	handle->counter	= counter;
	handle->data	= data;
	handle->offset	= offset;
1689
	handle->head	= head;
1690
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1691

1692
	return 0;
1693

1694 1695
out:
	rcu_read_unlock();
1696

1697 1698
	return -ENOSPC;
}
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1728 1729

	WARN_ON_ONCE(handle->offset > handle->head);
1730 1731
}

P
Peter Zijlstra 已提交
1732 1733 1734
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1735 1736 1737
static void perf_output_end(struct perf_output_handle *handle, int nmi)
{
	if (handle->wakeup) {
1738 1739 1740 1741
		if (nmi)
			perf_pending_queue(handle->counter);
		else
			perf_counter_wakeup(handle->counter);
1742
	}
1743
	rcu_read_unlock();
1744 1745 1746 1747 1748 1749 1750
}

static int perf_output_write(struct perf_counter *counter, int nmi,
			     void *buf, ssize_t size)
{
	struct perf_output_handle handle;
	int ret;
1751

1752 1753 1754 1755 1756 1757 1758 1759
	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		goto out;

	perf_output_copy(&handle, buf, size);
	perf_output_end(&handle, nmi);

out:
1760 1761 1762 1763 1764 1765
	return ret;
}

static void perf_output_simple(struct perf_counter *counter,
			       int nmi, struct pt_regs *regs)
{
1766
	unsigned int size;
P
Peter Zijlstra 已提交
1767 1768 1769
	struct {
		struct perf_event_header header;
		u64 ip;
1770
		u32 pid, tid;
P
Peter Zijlstra 已提交
1771
	} event;
1772

P
Peter Zijlstra 已提交
1773 1774
	event.header.type = PERF_EVENT_IP;
	event.ip = instruction_pointer(regs);
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	size = sizeof(event);

	if (counter->hw_event.include_tid) {
		/* namespace issues */
		event.pid = current->group_leader->pid;
		event.tid = current->pid;

		event.header.type |= __PERF_EVENT_TID;
	} else
		size -= sizeof(u64);

	event.header.size = size;

	perf_output_write(counter, nmi, &event, size);
1790 1791
}

1792
static void perf_output_group(struct perf_counter *counter, int nmi)
1793
{
P
Peter Zijlstra 已提交
1794 1795
	struct perf_output_handle handle;
	struct perf_event_header header;
1796
	struct perf_counter *leader, *sub;
P
Peter Zijlstra 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	unsigned int size;
	struct {
		u64 event;
		u64 counter;
	} entry;
	int ret;

	size = sizeof(header) + counter->nr_siblings * sizeof(entry);

	ret = perf_output_begin(&handle, counter, size);
	if (ret)
		return;

	header.type = PERF_EVENT_GROUP;
	header.size = size;

	perf_output_put(&handle, header);
1814 1815 1816 1817 1818

	leader = counter->group_leader;
	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		if (sub != counter)
			sub->hw_ops->read(sub);
1819 1820 1821 1822

		entry.event = sub->hw_event.config;
		entry.counter = atomic64_read(&sub->count);

P
Peter Zijlstra 已提交
1823
		perf_output_put(&handle, entry);
1824
	}
P
Peter Zijlstra 已提交
1825 1826

	perf_output_end(&handle, nmi);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
}

void perf_counter_output(struct perf_counter *counter,
			 int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		return;

	case PERF_RECORD_IRQ:
1837
		perf_output_simple(counter, nmi, regs);
1838 1839 1840
		break;

	case PERF_RECORD_GROUP:
1841
		perf_output_group(counter, nmi);
1842 1843 1844 1845
		break;
	}
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
1906
		perf_counter_output(counter, 0, regs);
1907 1908 1909 1910 1911 1912 1913 1914 1915

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
1916 1917
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
1918
	perf_counter_output(counter, nmi, regs);
1919 1920
}

1921
static int perf_swcounter_match(struct perf_counter *counter,
1922 1923
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
1924 1925 1926 1927
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

1928
	if (perf_event_raw(&counter->hw_event))
1929 1930
		return 0;

1931
	if (perf_event_type(&counter->hw_event) != type)
1932 1933
		return 0;

1934
	if (perf_event_id(&counter->hw_event) != event)
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1946 1947 1948 1949 1950 1951 1952 1953
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1954
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1955 1956
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
1957 1958 1959
{
	struct perf_counter *counter;

1960
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1961 1962
		return;

P
Peter Zijlstra 已提交
1963 1964
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1965
		if (perf_swcounter_match(counter, type, event, regs))
1966
			perf_swcounter_add(counter, nr, nmi, regs);
1967
	}
P
Peter Zijlstra 已提交
1968
	rcu_read_unlock();
1969 1970
}

P
Peter Zijlstra 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

1985 1986
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
1987 1988
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
1989 1990 1991 1992 1993 1994 1995
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
1996

1997 1998 1999 2000 2001
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
2002

P
Peter Zijlstra 已提交
2003 2004 2005 2006
	barrier();
	(*recursion)--;

out:
2007 2008 2009
	put_cpu_var(perf_cpu_context);
}

2010 2011 2012 2013 2014
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2031 2032 2033 2034 2035 2036
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2037 2038 2039 2040
/*
 * Software counter: cpu wall time clock
 */

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2053 2054 2055 2056 2057 2058
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2059 2060
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2070 2071
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2072
	hrtimer_cancel(&counter->hw.hrtimer);
2073
	cpu_clock_perf_counter_update(counter);
2074 2075 2076 2077
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2078
	cpu_clock_perf_counter_update(counter);
2079 2080 2081
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2082 2083 2084
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2085 2086
};

2087 2088 2089 2090
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
2091 2092 2093 2094
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2095
{
I
Ingo Molnar 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
2116 2117
}

2118
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2119
{
2120 2121 2122
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2123 2124
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2125 2126 2127 2128 2129
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2130 2131

	return 0;
I
Ingo Molnar 已提交
2132 2133 2134
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2135
{
2136 2137 2138 2139
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
2140

2141 2142 2143 2144
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
2145 2146 2147
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2148 2149 2150
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2151 2152
};

2153 2154 2155 2156
/*
 * Software counter: cpu migrations
 */

2157
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2158
{
2159 2160 2161 2162 2163
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2164 2165 2166 2167 2168 2169 2170 2171
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2172
	now = get_cpu_migrations(counter);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2186
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2187
{
2188 2189 2190
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2191
	return 0;
2192 2193 2194 2195 2196 2197 2198 2199
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2200 2201 2202
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2203 2204
};

2205 2206 2207
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2208 2209 2210 2211 2212 2213
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2214 2215 2216 2217 2218 2219 2220
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2221
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2222 2223 2224 2225 2226
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2227
	int event_id = perf_event_id(&counter->hw_event);
2228 2229 2230 2231 2232 2233 2234
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2235
	counter->hw.irq_period = counter->hw_event.irq_period;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2247 2248 2249
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2250
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2251
	const struct hw_perf_counter_ops *hw_ops = NULL;
2252
	struct hw_perf_counter *hwc = &counter->hw;
2253

2254 2255 2256 2257 2258 2259 2260
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2261
	switch (perf_event_id(&counter->hw_event)) {
2262
	case PERF_COUNT_CPU_CLOCK:
2263 2264 2265 2266
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2267
		break;
2268
	case PERF_COUNT_TASK_CLOCK:
2269 2270 2271 2272 2273 2274 2275 2276
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2277 2278 2279

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2280
		break;
2281
	case PERF_COUNT_PAGE_FAULTS:
2282 2283
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2284
	case PERF_COUNT_CONTEXT_SWITCHES:
2285
		hw_ops = &perf_ops_generic;
2286
		break;
2287
	case PERF_COUNT_CPU_MIGRATIONS:
2288 2289
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2290
		break;
2291
	}
2292 2293 2294 2295

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2296 2297 2298
	return hw_ops;
}

T
Thomas Gleixner 已提交
2299 2300 2301 2302
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2303 2304
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2305
		   struct perf_counter_context *ctx,
2306 2307
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2308
{
2309
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2310
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
2311

2312
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2313 2314 2315
	if (!counter)
		return NULL;

2316 2317 2318 2319 2320 2321 2322
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2323
	mutex_init(&counter->mutex);
2324
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2325
	INIT_LIST_HEAD(&counter->event_entry);
2326
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2327 2328
	init_waitqueue_head(&counter->waitq);

2329 2330
	mutex_init(&counter->mmap_mutex);

2331 2332
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2333 2334
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2335
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2336
	counter->hw_ops			= NULL;
2337
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2338

2339
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2340 2341 2342
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2343
	hw_ops = NULL;
2344

2345
	if (perf_event_raw(hw_event)) {
2346
		hw_ops = hw_perf_counter_init(counter);
2347 2348 2349 2350
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2351
	case PERF_TYPE_HARDWARE:
2352
		hw_ops = hw_perf_counter_init(counter);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2363

I
Ingo Molnar 已提交
2364 2365 2366 2367
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
2368
done:
I
Ingo Molnar 已提交
2369
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2370 2371 2372 2373 2374

	return counter;
}

/**
2375
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2376 2377
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2378
 * @pid:		target pid
I
Ingo Molnar 已提交
2379 2380
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2381
 */
2382
SYSCALL_DEFINE5(perf_counter_open,
2383
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2384
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2385
{
2386
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2387
	struct perf_counter_hw_event hw_event;
2388
	struct perf_counter_context *ctx;
2389
	struct file *counter_file = NULL;
2390 2391
	struct file *group_file = NULL;
	int fput_needed = 0;
2392
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2393 2394
	int ret;

2395 2396 2397 2398
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2399
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2400 2401
		return -EFAULT;

2402
	/*
I
Ingo Molnar 已提交
2403 2404 2405 2406 2407 2408 2409 2410
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2411 2412 2413 2414 2415 2416
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2417
			goto err_put_context;
2418
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2419
			goto err_put_context;
2420 2421 2422

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2423 2424 2425 2426 2427 2428 2429 2430
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2431
		 */
I
Ingo Molnar 已提交
2432 2433
		if (group_leader->ctx != ctx)
			goto err_put_context;
2434 2435 2436 2437 2438
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2439 2440
	}

2441
	ret = -EINVAL;
2442 2443
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
2444 2445 2446 2447 2448
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2449 2450 2451 2452 2453 2454 2455
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2456
	mutex_lock(&ctx->mutex);
2457
	perf_install_in_context(ctx, counter, cpu);
2458
	mutex_unlock(&ctx->mutex);
2459 2460

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2461

2462 2463 2464
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2465 2466
	return ret;

2467
err_free_put_context:
T
Thomas Gleixner 已提交
2468 2469 2470 2471 2472
	kfree(counter);

err_put_context:
	put_context(ctx);

2473
	goto out_fput;
T
Thomas Gleixner 已提交
2474 2475
}

2476 2477 2478 2479 2480 2481 2482 2483 2484
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2485
	mutex_init(&ctx->mutex);
2486
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2487
	INIT_LIST_HEAD(&ctx->event_list);
2488 2489 2490 2491 2492 2493
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2494
static struct perf_counter *
2495 2496 2497 2498
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2499
	      struct perf_counter *group_leader,
2500 2501 2502 2503
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2513
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2514 2515
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2516
	if (!child_counter)
2517
		return NULL;
2518 2519 2520 2521 2522

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2523
	add_counter_to_ctx(child_counter, child_ctx);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2578 2579 2580
	return 0;
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2593 2594 2595 2596
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2612 2613 2614 2615 2616 2617
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2618
	struct perf_counter *sub, *tmp;
2619 2620

	/*
2621 2622 2623 2624 2625 2626
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2627
	 */
2628 2629 2630
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2631
		update_counter_times(child_counter);
2632
	} else {
2633
		struct perf_cpu_context *cpuctx;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2645 2646 2647

		cpuctx = &__get_cpu_var(perf_cpu_context);

2648
		group_sched_out(child_counter, cpuctx, child_ctx);
2649
		update_counter_times(child_counter);
2650

2651
		list_del_init(&child_counter->list_entry);
2652

2653
		child_ctx->nr_counters--;
2654

2655 2656 2657
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2658 2659 2660 2661 2662 2663 2664

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2665 2666 2667 2668
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2669
			if (sub->parent) {
2670
				sync_child_counter(sub, sub->parent);
2671
				free_counter(sub);
2672
			}
2673
		}
2674
		free_counter(child_counter);
2675
	}
2676 2677 2678
}

/*
2679
 * When a child task exits, feed back counter values to parent counters.
2680
 *
2681
 * Note: we may be running in child context, but the PID is not hashed
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2705
	struct perf_counter *counter;
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2725
	mutex_lock(&parent_ctx->mutex);
2726 2727 2728 2729 2730 2731

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2732
		if (!counter->hw_event.inherit)
2733 2734
			continue;

2735
		if (inherit_group(counter, parent,
2736 2737 2738 2739
				  parent_ctx, child, child_ctx))
			break;
	}

2740
	mutex_unlock(&parent_ctx->mutex);
2741 2742
}

2743
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2744
{
2745
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2746

2747 2748
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2749 2750

	mutex_lock(&perf_resource_mutex);
2751
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2752
	mutex_unlock(&perf_resource_mutex);
2753

2754
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2755 2756 2757
}

#ifdef CONFIG_HOTPLUG_CPU
2758
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2759 2760 2761 2762 2763
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2764 2765
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2766
}
2767
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2768
{
2769 2770 2771 2772
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2773
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2774
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2775 2776
}
#else
2777
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2789
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2790 2791 2792 2793
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2794
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);