perf_counter.c 55.9 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
T
Thomas Gleixner 已提交
25 26 27 28 29 30

/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

31
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
32 33 34 35 36 37 38 39 40 41 42
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
43
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
44
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
45
{
46
	return NULL;
T
Thomas Gleixner 已提交
47 48
}

49
u64 __weak hw_perf_save_disable(void)		{ return 0; }
50
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
51
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
52 53 54 55 56 57
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
58

59 60
void __weak perf_counter_print_debug(void)	{ }

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

92
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
93 94 95 96
		sibling->group_leader = sibling;
	}
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
138 139 140 141 142 143
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
144
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
145 146 147 148
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
149
	unsigned long flags;
150
	u64 perf_flags;
T
Thomas Gleixner 已提交
151 152 153 154 155 156 157 158 159

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
160 161
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
162

163 164 165
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
166 167 168 169 170 171
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
172
	perf_flags = hw_perf_save_disable();
173
	list_del_counter(counter, ctx);
174
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
175 176 177 178 179 180 181 182 183 184 185

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
186 187
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
188 189 190 191 192 193
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
194
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
195 196 197 198
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
199
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
200 201 202 203 204 205 206 207 208 209
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
210
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
211 212 213 214 215
					 counter, 1);
		return;
	}

retry:
216
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
217 218 219 220 221 222
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
223
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
224 225 226 227 228 229
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
230
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
231 232
	 * succeed.
	 */
233
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
234
		ctx->nr_counters--;
235
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
236 237 238 239 240
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

334 335 336 337 338 339
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
340
	if (counter->state <= PERF_COUNTER_STATE_OFF)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

356 357
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
358 359
	ctx->nr_active++;

360 361 362
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

363 364 365
	return 0;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
413
/*
414
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
415 416 417 418 419 420
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
421
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
422
	int cpu = smp_processor_id();
423
	unsigned long flags;
424
	u64 perf_flags;
425
	int err;
T
Thomas Gleixner 已提交
426 427 428 429 430 431 432 433 434

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
435 436
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
437 438 439 440 441

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
442
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
443

444
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
445
	ctx->nr_counters++;
446
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
447

448 449 450 451 452 453 454 455
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

456 457 458 459 460
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
461
	if (!group_can_go_on(counter, cpuctx, 1))
462 463 464 465
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

466 467 468 469 470 471 472 473 474 475 476
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
477

478
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
479 480
		cpuctx->max_pertask--;

481
 unlock:
482 483
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
484 485
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
486 487 488 489 490 491 492 493 494 495 496
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
497 498
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
526
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
527 528 529 530 531 532 533 534 535
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
536 537
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
538 539 540 541 542
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

543 544 545 546
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
547
{
548 549 550 551 552 553
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
554

555 556 557 558 559
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
560 561
		return;

562 563 564
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

565
	counter->prev_state = counter->state;
566 567 568
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
569 570

	/*
571 572
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
573
	 */
574 575
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
669 670
}

671 672 673 674
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
675
	u64 flags;
676

677 678
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
679
	if (likely(!ctx->nr_counters))
680
		goto out;
681

682
	flags = hw_perf_save_disable();
683 684 685 686
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
687
	hw_perf_restore(flags);
688
 out:
689 690 691
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
692 693 694 695 696 697
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
698
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
699 700 701 702 703 704 705 706 707 708 709 710
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;

	if (likely(!cpuctx->task_ctx))
		return;

711 712
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
713 714 715
	cpuctx->task_ctx = NULL;
}

716
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
717
{
718
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
719 720
}

I
Ingo Molnar 已提交
721
static int
722 723 724 725 726
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
727
	struct perf_counter *counter, *partial_group;
728 729 730 731 732 733 734 735
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
736

737
	group_counter->prev_state = group_counter->state;
738 739
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
740 741 742 743

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
744
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
745
		counter->prev_state = counter->state;
746 747 748 749 750 751
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

752
	return 0;
753 754 755 756 757 758 759 760 761 762

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
763
	}
764
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
765

766
	return -EAGAIN;
767 768
}

769 770 771
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
772 773
{
	struct perf_counter *counter;
774
	u64 flags;
775
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
776

777 778
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
779
	if (likely(!ctx->nr_counters))
780
		goto out;
T
Thomas Gleixner 已提交
781

782
	flags = hw_perf_save_disable();
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

806
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
807 808 809 810 811 812 813 814
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

815 816 817 818
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
819 820 821
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

822
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
823 824
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
825
		}
T
Thomas Gleixner 已提交
826
	}
827
	hw_perf_restore(flags);
828
 out:
T
Thomas Gleixner 已提交
829
	spin_unlock(&ctx->lock);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
847

848
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
849 850 851
	cpuctx->task_ctx = ctx;
}

852 853 854 855 856 857 858
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

859 860 861 862 863
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
864
	unsigned long flags;
865 866 867 868 869 870
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
871
	curr_rq_lock_irq_save(&flags);
872 873
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
874 875 876
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

877 878 879 880 881 882 883 884 885
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

886 887 888 889
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
890

891 892 893 894
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
895
	curr_rq_unlock_irq_restore(&flags);
896 897 898 899 900 901 902 903 904

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
905
	unsigned long flags;
906 907 908 909 910 911
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
912
	curr_rq_lock_irq_save(&flags);
913 914
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
915 916 917
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

918 919
	perf_counter_task_sched_out(curr, cpu);

920 921 922 923 924 925 926 927
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
928
		if (counter->state > PERF_COUNTER_STATE_OFF)
929
			continue;
930
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
931
		counter->hw_event.disabled = 0;
932 933 934 935 936 937 938
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
939
	curr_rq_unlock_irq_restore(&flags);
940 941 942 943

	return 0;
}

944 945 946 947
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
948 949
{
	struct perf_counter *counter;
950
	u64 perf_flags;
T
Thomas Gleixner 已提交
951

952
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
953 954 955 956
		return;

	spin_lock(&ctx->lock);
	/*
957
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
958
	 */
959
	perf_flags = hw_perf_save_disable();
960
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
961
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
962 963
		break;
	}
964
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
965 966

	spin_unlock(&ctx->lock);
967 968 969 970 971 972 973 974 975 976 977
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
978

979 980 981 982 983 984
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
985 986 987 988 989 990
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
991
static void __read(void *info)
T
Thomas Gleixner 已提交
992
{
I
Ingo Molnar 已提交
993
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
994
	unsigned long flags;
I
Ingo Molnar 已提交
995

I
Ingo Molnar 已提交
996
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
997
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
998
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
999 1000
}

1001
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1002 1003 1004 1005 1006
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1007
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1008
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1009
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1010 1011
	}

1012
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1060
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1146
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1147 1148
	mutex_lock(&counter->mutex);

1149
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1150 1151

	mutex_unlock(&counter->mutex);
1152
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1153 1154

	kfree(counter);
1155
	put_context(ctx);
T
Thomas Gleixner 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1171 1172 1173 1174 1175 1176 1177 1178
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1179
	mutex_lock(&counter->mutex);
1180
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1214
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1235 1236 1237
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1238 1239 1240 1241 1242 1243 1244 1245
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1246 1247
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1259 1260
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1261 1262 1263
		if (!res)
			res = -EFAULT;
	} else {
1264
		res += res2;
T
Thomas Gleixner 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1277
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1323 1324 1325 1326
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1327 1328
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1329 1330
};

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

static void perf_swcounter_save_and_restart(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
}

static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
{
	struct perf_data *irqdata = counter->irqdata;

	if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
		irqdata->overrun++;
	} else {
		u64 *p = (u64 *) &irqdata->data[irqdata->len];

		*p = data;
		irqdata->len += sizeof(u64);
	}
}

static void perf_swcounter_handle_group(struct perf_counter *sibling)
{
	struct perf_counter *counter, *group_leader = sibling->group_leader;

	list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
		perf_swcounter_update(counter);
		perf_swcounter_store_irq(sibling, counter->hw_event.type);
		perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
	}
}

static void perf_swcounter_interrupt(struct perf_counter *counter,
				     int nmi, struct pt_regs *regs)
{
	perf_swcounter_save_and_restart(counter);

	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		break;

	case PERF_RECORD_IRQ:
		perf_swcounter_store_irq(counter, instruction_pointer(regs));
		break;

	case PERF_RECORD_GROUP:
		perf_swcounter_handle_group(counter);
		break;
	}

	if (nmi) {
		counter->wakeup_pending = 1;
		set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
	} else
		wake_up(&counter->waitq);
}

static int perf_swcounter_match(struct perf_counter *counter,
				enum hw_event_types event,
				struct pt_regs *regs)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	if (counter->hw_event.raw)
		return 0;

	if (counter->hw_event.type != event)
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
				     enum hw_event_types event, u64 nr,
				     int nmi, struct pt_regs *regs)
{
	struct perf_counter *counter;
	unsigned long flags;
	int neg;

	if (list_empty(&ctx->counter_list))
		return;

	spin_lock_irqsave(&ctx->lock, flags);

	/*
	 * XXX: make counter_list RCU safe
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (perf_swcounter_match(counter, event, regs)) {
			neg = atomic64_add_negative(nr, &counter->hw.count);
			if (counter->hw.irq_period && !neg)
				perf_swcounter_interrupt(counter, nmi, regs);
		}
	}

	spin_unlock_irqrestore(&ctx->lock, flags);
}

void perf_swcounter_event(enum hw_event_types event, u64 nr,
			  int nmi, struct pt_regs *regs)
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);

	perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
	if (cpuctx->task_ctx)
		perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);

	put_cpu_var(perf_cpu_context);
}

static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

/*
 * Software counter: cpu wall time clock
 */

1510
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1511
{
1512 1513 1514
	int cpu = raw_smp_processor_id();

	atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1515
	return 0;
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1530 1531
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1532
	cpu_clock_perf_counter_update(counter);
1533 1534 1535 1536
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1537
	cpu_clock_perf_counter_update(counter);
1538 1539 1540
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1541 1542 1543
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1544 1545
};

1546 1547 1548 1549
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1550 1551 1552 1553
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1554
{
I
Ingo Molnar 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1575 1576
}

I
Ingo Molnar 已提交
1577
static void task_clock_perf_counter_read(struct perf_counter *counter)
1578
{
I
Ingo Molnar 已提交
1579 1580 1581
	u64 now = task_clock_perf_counter_val(counter, 1);

	task_clock_perf_counter_update(counter, now);
1582 1583
}

1584
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1585
{
1586 1587 1588
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     task_clock_perf_counter_val(counter, 0));
1589 1590

	return 0;
I
Ingo Molnar 已提交
1591 1592 1593
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1594
{
I
Ingo Molnar 已提交
1595 1596 1597
	u64 now = task_clock_perf_counter_val(counter, 0);

	task_clock_perf_counter_update(counter, now);
1598 1599 1600
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1601 1602 1603
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1604 1605
};

1606 1607 1608 1609
/*
 * Software counter: page faults
 */

1610
static const struct hw_perf_counter_ops perf_ops_page_faults = {
1611 1612 1613
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
1614 1615
};

1616 1617 1618 1619
/*
 * Software counter: context switches
 */

1620
static u64 get_context_switches(struct perf_counter *counter)
1621
{
1622
	struct task_struct *curr = counter->ctx->task;
1623

1624 1625 1626
	if (curr)
		return curr->nvcsw + curr->nivcsw;
	return cpu_nr_switches(smp_processor_id());
1627 1628 1629 1630 1631 1632 1633 1634
}

static void context_switches_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1635
	now = get_context_switches(counter);
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void context_switches_perf_counter_read(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

1649
static int context_switches_perf_counter_enable(struct perf_counter *counter)
1650
{
1651 1652 1653
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_context_switches(counter));
1654
	return 0;
1655 1656 1657 1658 1659 1660 1661 1662
}

static void context_switches_perf_counter_disable(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_context_switches = {
I
Ingo Molnar 已提交
1663 1664 1665
	.enable		= context_switches_perf_counter_enable,
	.disable	= context_switches_perf_counter_disable,
	.read		= context_switches_perf_counter_read,
1666 1667
};

1668 1669 1670 1671
/*
 * Software counter: cpu migrations
 */

1672
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1673
{
1674 1675 1676 1677 1678
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1679 1680 1681 1682 1683 1684 1685 1686
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1687
	now = get_cpu_migrations(counter);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1701
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1702
{
1703 1704 1705
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1706
	return 0;
1707 1708 1709 1710 1711 1712 1713 1714
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1715 1716 1717
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1718 1719
};

1720 1721 1722
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
1723
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
1724
	const struct hw_perf_counter_ops *hw_ops = NULL;
1725
	struct hw_perf_counter *hwc = &counter->hw;
1726

1727 1728 1729 1730 1731 1732 1733
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1734 1735
	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
1736 1737 1738 1739
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel ||
		      counter->hw_event.exclude_hv))
			hw_ops = &perf_ops_cpu_clock;
1740
		break;
1741
	case PERF_COUNT_TASK_CLOCK:
1742 1743 1744 1745
		if (counter->hw_event.exclude_user ||
		    counter->hw_event.exclude_kernel ||
		    counter->hw_event.exclude_hv)
			break;
1746 1747 1748 1749 1750 1751 1752 1753
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1754
		break;
1755
	case PERF_COUNT_PAGE_FAULTS:
1756 1757 1758
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel))
			hw_ops = &perf_ops_page_faults;
1759
		break;
1760
	case PERF_COUNT_CONTEXT_SWITCHES:
1761 1762
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_context_switches;
1763
		break;
1764
	case PERF_COUNT_CPU_MIGRATIONS:
1765 1766
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1767
		break;
1768 1769 1770
	default:
		break;
	}
1771 1772 1773 1774

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

1775 1776 1777
	return hw_ops;
}

T
Thomas Gleixner 已提交
1778 1779 1780 1781
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1782 1783
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1784
		   struct perf_counter_context *ctx,
1785 1786
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1787
{
1788
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1789
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1790

1791
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1792 1793 1794
	if (!counter)
		return NULL;

1795 1796 1797 1798 1799 1800 1801
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1802
	mutex_init(&counter->mutex);
1803 1804
	INIT_LIST_HEAD(&counter->list_entry);
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1805 1806
	init_waitqueue_head(&counter->waitq);

1807 1808
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1809 1810 1811 1812 1813
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1814
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1815
	counter->hw_ops			= NULL;
1816
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1817

1818
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1819 1820 1821
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1822 1823 1824
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1825
	else
1826 1827
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1828 1829 1830 1831 1832
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1833 1834 1835 1836 1837

	return counter;
}

/**
1838
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
1839 1840
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1841
 * @pid:		target pid
I
Ingo Molnar 已提交
1842 1843
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1844
 */
1845
SYSCALL_DEFINE5(perf_counter_open,
1846
		const struct perf_counter_hw_event __user *, hw_event_uptr,
1847
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
1848
{
1849
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1850
	struct perf_counter_hw_event hw_event;
1851
	struct perf_counter_context *ctx;
1852
	struct file *counter_file = NULL;
1853 1854
	struct file *group_file = NULL;
	int fput_needed = 0;
1855
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1856 1857
	int ret;

1858 1859 1860 1861
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
1862
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1863 1864
		return -EFAULT;

1865
	/*
I
Ingo Molnar 已提交
1866 1867 1868 1869 1870 1871 1872 1873
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1874 1875 1876 1877 1878 1879
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1880
			goto err_put_context;
1881
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1882
			goto err_put_context;
1883 1884 1885

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1886 1887 1888 1889 1890 1891 1892 1893
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1894
		 */
I
Ingo Molnar 已提交
1895 1896
		if (group_leader->ctx != ctx)
			goto err_put_context;
1897 1898 1899 1900 1901
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1902 1903
	}

1904
	ret = -EINVAL;
1905 1906
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
1907 1908 1909 1910 1911
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1912 1913 1914 1915 1916 1917 1918
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1919
	mutex_lock(&ctx->mutex);
1920
	perf_install_in_context(ctx, counter, cpu);
1921
	mutex_unlock(&ctx->mutex);
1922 1923

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1924

1925 1926 1927
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1928 1929
	return ret;

1930
err_free_put_context:
T
Thomas Gleixner 已提交
1931 1932 1933 1934 1935
	kfree(counter);

err_put_context:
	put_context(ctx);

1936
	goto out_fput;
T
Thomas Gleixner 已提交
1937 1938
}

1939 1940 1941 1942 1943 1944 1945 1946 1947
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
1948
	mutex_init(&ctx->mutex);
1949 1950 1951 1952 1953 1954 1955
	INIT_LIST_HEAD(&ctx->counter_list);
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
1956
static struct perf_counter *
1957 1958 1959 1960
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
1961
	      struct perf_counter *group_leader,
1962 1963 1964 1965
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

1975
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
1976 1977
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
1978
	if (!child_counter)
1979
		return NULL;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2041 2042 2043
	return 0;
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2071 2072 2073 2074 2075 2076
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2077
	struct perf_counter *sub, *tmp;
2078 2079

	/*
2080 2081 2082 2083 2084 2085
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2086
	 */
2087 2088 2089 2090
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2091
		struct perf_cpu_context *cpuctx;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2103 2104 2105

		cpuctx = &__get_cpu_var(perf_cpu_context);

2106
		group_sched_out(child_counter, cpuctx, child_ctx);
2107

2108
		list_del_init(&child_counter->list_entry);
2109

2110
		child_ctx->nr_counters--;
2111

2112 2113 2114
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2115 2116 2117 2118 2119 2120 2121

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2122 2123 2124 2125
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2126
			if (sub->parent) {
2127
				sync_child_counter(sub, sub->parent);
2128 2129
				kfree(sub);
			}
2130
		}
2131
		kfree(child_counter);
2132
	}
2133 2134 2135
}

/*
2136
 * When a child task exits, feed back counter values to parent counters.
2137
 *
2138
 * Note: we may be running in child context, but the PID is not hashed
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2162
	struct perf_counter *counter;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2182
	mutex_lock(&parent_ctx->mutex);
2183 2184 2185 2186 2187 2188

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2189
		if (!counter->hw_event.inherit)
2190 2191
			continue;

2192
		if (inherit_group(counter, parent,
2193 2194 2195 2196
				  parent_ctx, child, child_ctx))
			break;
	}

2197
	mutex_unlock(&parent_ctx->mutex);
2198 2199
}

2200
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2201
{
2202
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2203

2204 2205
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2206 2207

	mutex_lock(&perf_resource_mutex);
2208
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2209
	mutex_unlock(&perf_resource_mutex);
2210

2211
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2212 2213 2214
}

#ifdef CONFIG_HOTPLUG_CPU
2215
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2216 2217 2218 2219 2220
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2221 2222
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2223
}
2224
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2225
{
2226 2227 2228 2229
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2230
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2231
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2232 2233
}
#else
2234
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2246
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2247 2248 2249 2250
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2251
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);