perf_counter.c 74.4 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40 41 42 43 44 45 46 47 48
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
49
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
50
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
51
{
52
	return NULL;
T
Thomas Gleixner 已提交
53 54
}

55
u64 __weak hw_perf_save_disable(void)		{ return 0; }
56
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
57
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
58 59 60 61 62 63
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
64

65 66
void __weak perf_counter_print_debug(void)	{ }

67 68 69 70 71 72 73 74 75 76 77 78
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
79
	else {
80
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
81 82
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
83 84

	list_add_rcu(&counter->event_entry, &ctx->event_list);
85 86 87 88 89 90 91 92
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
93
	list_del_rcu(&counter->event_entry);
94

P
Peter Zijlstra 已提交
95 96 97
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

98 99 100 101 102 103 104 105
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

106
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 108 109 110
		sibling->group_leader = sibling;
	}
}

111 112 113 114 115 116 117 118 119
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
120
	counter->tstamp_stopped = ctx->time_now;
121 122 123 124 125 126 127 128 129 130
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
153 154 155 156 157 158
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
159
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
160 161 162 163
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
164
	unsigned long flags;
165
	u64 perf_flags;
T
Thomas Gleixner 已提交
166 167 168 169 170 171 172 173 174

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
175 176
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
177

178 179 180
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
181 182 183 184 185 186
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
187
	perf_flags = hw_perf_save_disable();
188
	list_del_counter(counter, ctx);
189
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
190 191 192 193 194 195 196 197 198 199 200

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
201 202
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
203 204 205 206 207 208
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
209
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
210 211 212 213
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
214
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
215 216 217 218 219 220 221 222 223 224
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
225
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
226 227 228 229 230
					 counter, 1);
		return;
	}

retry:
231
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
232 233 234 235 236 237
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
238
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
239 240 241 242 243 244
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
245
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
246 247
	 * succeed.
	 */
248
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
249
		ctx->nr_counters--;
250
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
251 252 253 254 255
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Get the current time for this context.
 * If this is a task context, we use the task's task clock,
 * or for a per-cpu context, we use the cpu clock.
 */
static u64 get_context_time(struct perf_counter_context *ctx, int update)
{
	struct task_struct *curr = ctx->task;

	if (!curr)
		return cpu_clock(smp_processor_id());

	return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_counter_context *ctx, int update)
{
	ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		counter->total_time_enabled = ctx->time_now -
			counter->tstamp_enabled;
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			run_end = counter->tstamp_stopped;
		else
			run_end = ctx->time_now;
		counter->total_time_running = run_end - counter->tstamp_running;
	}
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 336
		update_context_time(ctx, 1);
		update_counter_times(counter);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
381 382
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
383
		counter->state = PERF_COUNTER_STATE_OFF;
384
	}
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

407 408 409 410 411 412
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
413
	if (counter->state <= PERF_COUNTER_STATE_OFF)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

429 430
	counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;

431 432
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
433 434
	ctx->nr_active++;

435 436 437
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

438 439 440
	return 0;
}

441 442 443 444 445 446 447 448 449 450
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
451

452 453 454
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

490 491 492 493 494 495 496 497 498 499 500
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
	counter->tstamp_enabled = ctx->time_now;
	counter->tstamp_running = ctx->time_now;
	counter->tstamp_stopped = ctx->time_now;
}

T
Thomas Gleixner 已提交
501
/*
502
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
503 504 505 506 507 508
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
509
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
510
	int cpu = smp_processor_id();
511
	unsigned long flags;
512
	u64 perf_flags;
513
	int err;
T
Thomas Gleixner 已提交
514 515 516 517 518 519 520 521 522

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
523 524
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
525
	update_context_time(ctx, 1);
T
Thomas Gleixner 已提交
526 527 528 529 530

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
531
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
532

533
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
534

535 536 537 538 539 540 541 542
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

543 544 545 546 547
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
548
	if (!group_can_go_on(counter, cpuctx, 1))
549 550 551 552
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

553 554 555 556 557 558 559 560
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
561 562
		if (leader->hw_event.pinned) {
			update_group_times(leader);
563
			leader->state = PERF_COUNTER_STATE_ERROR;
564
		}
565
	}
T
Thomas Gleixner 已提交
566

567
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
568 569
		cpuctx->max_pertask--;

570
 unlock:
571 572
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
573 574
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
575 576 577 578 579 580 581 582 583 584 585
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
586 587
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
615
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
616 617 618 619 620 621 622 623 624
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
625 626
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
627 628 629
	spin_unlock_irq(&ctx->lock);
}

630 631 632 633
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
634
{
635 636 637 638 639 640
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
641

642 643 644 645 646
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
647 648
		return;

649 650
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
651
	update_context_time(ctx, 1);
652

653
	counter->prev_state = counter->state;
654 655 656
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
657
	counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658 659

	/*
660 661
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
662
	 */
663 664
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
665

666 667 668 669 670 671 672 673 674 675 676 677 678
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
679 680
		if (leader->hw_event.pinned) {
			update_group_times(leader);
681
			leader->state = PERF_COUNTER_STATE_ERROR;
682
		}
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
738
	if (counter->state == PERF_COUNTER_STATE_OFF) {
739
		counter->state = PERF_COUNTER_STATE_INACTIVE;
740 741 742
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
	}
743 744 745 746
 out:
	spin_unlock_irq(&ctx->lock);
}

747 748 749 750 751 752
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
769 770
}

771 772 773 774
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
775
	u64 flags;
776

777 778
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
779
	if (likely(!ctx->nr_counters))
780
		goto out;
781
	update_context_time(ctx, 0);
782

783
	flags = hw_perf_save_disable();
784 785 786 787
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
788
	hw_perf_restore(flags);
789
 out:
790 791 792
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
793 794 795 796 797 798
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
799
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
800 801 802 803 804 805 806 807
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
808
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
809 810 811 812

	if (likely(!cpuctx->task_ctx))
		return;

813 814
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
815 816
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
817 818 819
	cpuctx->task_ctx = NULL;
}

820
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
821
{
822
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
823 824
}

I
Ingo Molnar 已提交
825
static int
826 827 828 829 830
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
831
	struct perf_counter *counter, *partial_group;
832 833 834 835 836 837 838 839
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
840

841
	group_counter->prev_state = group_counter->state;
842 843
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
844 845 846 847

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
848
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
849
		counter->prev_state = counter->state;
850 851 852 853 854 855
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

856
	return 0;
857 858 859 860 861 862 863 864 865 866

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
867
	}
868
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
869

870
	return -EAGAIN;
871 872
}

873 874 875
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
876 877
{
	struct perf_counter *counter;
878
	u64 flags;
879
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
880

881 882
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
883
	if (likely(!ctx->nr_counters))
884
		goto out;
T
Thomas Gleixner 已提交
885

886 887 888 889 890 891 892
	/*
	 * Add any time since the last sched_out to the lost time
	 * so it doesn't get included in the total_time_enabled and
	 * total_time_running measures for counters in the context.
	 */
	ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;

893
	flags = hw_perf_save_disable();
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
913 914
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
915
			counter->state = PERF_COUNTER_STATE_ERROR;
916
		}
917 918
	}

919
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920 921 922 923 924 925 926 927
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

928 929 930 931
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
932 933 934
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

935
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936 937
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
938
		}
T
Thomas Gleixner 已提交
939
	}
940
	hw_perf_restore(flags);
941
 out:
T
Thomas Gleixner 已提交
942
	spin_unlock(&ctx->lock);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
960

961
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
962 963 964
	cpuctx->task_ctx = ctx;
}

965 966 967 968 969 970 971
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

972 973 974 975 976
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
977
	unsigned long flags;
978 979 980 981 982 983
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
984
	curr_rq_lock_irq_save(&flags);
985 986
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
987 988 989
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

990 991 992 993 994 995 996 997 998
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

999
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1000 1001
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
1002
			counter->state = PERF_COUNTER_STATE_OFF;
1003
		}
1004
	}
1005

1006 1007 1008 1009
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
1010
	curr_rq_unlock_irq_restore(&flags);
1011 1012 1013 1014 1015 1016 1017 1018 1019

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1020
	unsigned long flags;
1021 1022 1023 1024 1025 1026
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
1027
	curr_rq_lock_irq_save(&flags);
1028 1029
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
1030 1031 1032
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

1033 1034
	perf_counter_task_sched_out(curr, cpu);

1035 1036 1037 1038 1039 1040 1041 1042
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1043
		if (counter->state > PERF_COUNTER_STATE_OFF)
1044
			continue;
1045
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1046 1047
		counter->tstamp_enabled = ctx->time_now -
			counter->total_time_enabled;
I
Ingo Molnar 已提交
1048
		counter->hw_event.disabled = 0;
1049 1050 1051 1052 1053 1054 1055
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
1056
	curr_rq_unlock_irq_restore(&flags);
1057 1058 1059 1060

	return 0;
}

1061 1062 1063 1064
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1065 1066
{
	struct perf_counter *counter;
1067
	u64 perf_flags;
T
Thomas Gleixner 已提交
1068

1069
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1070 1071 1072 1073
		return;

	spin_lock(&ctx->lock);
	/*
1074
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1075
	 */
1076
	perf_flags = hw_perf_save_disable();
1077
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1078
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1079 1080
		break;
	}
1081
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1082 1083

	spin_unlock(&ctx->lock);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1095

1096 1097 1098 1099 1100 1101
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1102 1103 1104 1105 1106 1107
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1108
static void __read(void *info)
T
Thomas Gleixner 已提交
1109
{
I
Ingo Molnar 已提交
1110
	struct perf_counter *counter = info;
1111
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1112
	unsigned long flags;
I
Ingo Molnar 已提交
1113

I
Ingo Molnar 已提交
1114
	curr_rq_lock_irq_save(&flags);
1115 1116
	if (ctx->is_active)
		update_context_time(ctx, 1);
I
Ingo Molnar 已提交
1117
	counter->hw_ops->read(counter);
1118
	update_counter_times(counter);
I
Ingo Molnar 已提交
1119
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1120 1121
}

1122
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1123 1124 1125 1126 1127
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1128
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1129
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1130
					 __read, counter, 1);
1131 1132
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1133 1134
	}

1135
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1199 1200 1201 1202 1203 1204 1205 1206
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1207 1208
static void perf_pending_sync(struct perf_counter *counter);

1209 1210
static void free_counter(struct perf_counter *counter)
{
1211 1212
	perf_pending_sync(counter);

1213 1214 1215
	if (counter->destroy)
		counter->destroy(counter);

1216 1217 1218
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1229
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1230 1231
	mutex_lock(&counter->mutex);

1232
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1233 1234

	mutex_unlock(&counter->mutex);
1235
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1236

1237
	free_counter(counter);
1238
	put_context(ctx);
T
Thomas Gleixner 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1249 1250
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1251

1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1260
	mutex_lock(&counter->mutex);
1261 1262 1263 1264 1265 1266 1267 1268
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1269 1270
	mutex_unlock(&counter->mutex);

1271 1272 1273 1274 1275 1276 1277 1278
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1279 1280 1281 1282 1283 1284 1285
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1286
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1287 1288 1289 1290 1291
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1302 1303 1304 1305 1306 1307

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1320 1321 1322
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1323 1324 1325 1326 1327 1328
	default:
		err = -ENOTTY;
	}
	return err;
}

1329 1330 1331 1332 1333 1334
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1335
{
1336 1337 1338 1339 1340 1341 1342 1343 1344
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1345

1346 1347 1348 1349 1350
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1351
	++userpg->lock;
1352
	barrier();
1353 1354 1355 1356
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1357

1358
	barrier();
1359
	++userpg->lock;
1360
	preempt_enable();
1361
unlock:
1362
	rcu_read_unlock();
1363 1364 1365 1366 1367
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1380

1381 1382
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1383

1384 1385
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1386
	get_page(vmf->page);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1423
	return 0;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1473
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1474 1475 1476
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1477 1478 1479
}

static struct vm_operations_struct perf_mmap_vmops = {
1480
	.open  = perf_mmap_open,
1481
	.close = perf_mmap_close,
1482 1483 1484 1485 1486 1487
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1488 1489 1490 1491
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1492 1493 1494

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1495 1496 1497 1498

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1499 1500 1501 1502 1503
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1504 1505
		return -EINVAL;

1506
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1507 1508
		return -EINVAL;

1509 1510
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1521 1522 1523 1524

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1525 1526 1527 1528
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1529 1530 1531

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1532 1533 1534 1535 1536 1537
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1538
	mutex_unlock(&counter->mmap_mutex);
1539 1540 1541 1542

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1543 1544

	return ret;
1545 1546
}

P
Peter Zijlstra 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1563 1564 1565 1566
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1567 1568
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1569
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1570
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1571 1572
};

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1587
		atomic_set(&data->wakeup, POLL_IN);
1588 1589 1590 1591 1592 1593 1594
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1595 1596 1597 1598
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
1599 1600 1601 1602 1603

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1631
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1632

1633
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1634 1635 1636
	PENDING_TAIL,
};

1637 1638
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1639
{
1640
	struct perf_pending_entry **head;
1641

1642
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1643 1644
		return;

1645 1646 1647
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1648 1649

	do {
1650 1651
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1652 1653 1654

	set_perf_counter_pending();

1655
	put_cpu_var(perf_pending_head);
1656 1657 1658 1659
}

static int __perf_pending_run(void)
{
1660
	struct perf_pending_entry *list;
1661 1662
	int nr = 0;

1663
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1664
	while (list != PENDING_TAIL) {
1665 1666
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1667 1668 1669

		list = list->next;

1670 1671
		func = entry->func;
		entry->next = NULL;
1672 1673 1674 1675 1676 1677 1678
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1679
		func(entry);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1701
	return counter->pending.next == NULL;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1714 1715 1716 1717
/*
 * Callchain support -- arch specific
 */

1718
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1719 1720 1721 1722
{
	return NULL;
}

1723 1724 1725 1726
/*
 * Output
 */

1727 1728 1729 1730
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1731
	unsigned int		head;
1732
	int			wakeup;
1733
	int			nmi;
1734
	int			overflow;
1735 1736
};

1737 1738
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1739
	if (handle->nmi) {
1740
		handle->counter->pending_wakeup = 1;
1741
		perf_pending_queue(&handle->counter->pending,
1742
				   perf_pending_counter);
1743
	} else
1744 1745 1746
		perf_counter_wakeup(handle->counter);
}

1747
static int perf_output_begin(struct perf_output_handle *handle,
1748
			     struct perf_counter *counter, unsigned int size,
1749
			     int nmi, int overflow)
1750
{
1751
	struct perf_mmap_data *data;
1752
	unsigned int offset, head;
1753

1754 1755 1756 1757 1758
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1759 1760 1761
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1762

1763
	if (!data->nr_pages)
1764
		goto fail;
1765 1766 1767

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1768
		head += size;
1769 1770
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1771 1772
	handle->data	= data;
	handle->offset	= offset;
1773
	handle->head	= head;
1774
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1775

1776
	return 0;
1777

1778 1779
fail:
	__perf_output_wakeup(handle);
1780 1781
out:
	rcu_read_unlock();
1782

1783 1784
	return -ENOSPC;
}
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1814 1815

	WARN_ON_ONCE(handle->offset > handle->head);
1816 1817
}

P
Peter Zijlstra 已提交
1818 1819 1820
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1821
static void perf_output_end(struct perf_output_handle *handle)
1822
{
P
Peter Zijlstra 已提交
1823 1824
	int wakeup_events = handle->counter->hw_event.wakeup_events;

1825
	if (handle->overflow && wakeup_events) {
P
Peter Zijlstra 已提交
1826 1827 1828 1829 1830 1831
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1832
		__perf_output_wakeup(handle);
1833
	rcu_read_unlock();
1834 1835
}

1836 1837
static void perf_counter_output(struct perf_counter *counter,
				int nmi, struct pt_regs *regs)
1838
{
1839
	int ret;
1840
	u64 record_type = counter->hw_event.record_type;
1841 1842 1843
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1844
	struct {
1845
		u32 pid, tid;
1846
	} tid_entry;
1847 1848 1849 1850
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1851 1852
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1853
	u64 time;
1854

1855
	header.type = PERF_EVENT_COUNTER_OVERFLOW;
1856
	header.size = sizeof(header);
1857

1858 1859 1860 1861 1862
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
		header.type |= __PERF_EVENT_IP;
		header.size += sizeof(ip);
	}
1863

1864
	if (record_type & PERF_RECORD_TID) {
1865
		/* namespace issues */
1866 1867 1868 1869 1870 1871 1872
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

		header.type |= __PERF_EVENT_TID;
		header.size += sizeof(tid_entry);
	}

1873 1874 1875 1876 1877 1878 1879
	if (record_type & PERF_RECORD_GROUP) {
		header.type |= __PERF_EVENT_GROUP;
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1880 1881 1882
		callchain = perf_callchain(regs);

		if (callchain) {
1883
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1884 1885 1886 1887 1888 1889

			header.type |= __PERF_EVENT_CALLCHAIN;
			header.size += callchain_size;
		}
	}

P
Peter Zijlstra 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= __PERF_EVENT_TIME;
		header.size += sizeof(u64);
	}

1900
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1901 1902
	if (ret)
		return;
1903

1904
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1905

1906 1907
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1908

1909 1910
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1911

1912 1913 1914
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1915

1916
		perf_output_put(&handle, nr);
1917

1918 1919 1920 1921
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1922

1923 1924
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1925

1926 1927
			perf_output_put(&handle, group_entry);
		}
1928
	}
P
Peter Zijlstra 已提交
1929

1930 1931
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1932

P
Peter Zijlstra 已提交
1933 1934 1935
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1936
	perf_output_end(&handle);
1937 1938
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
1964
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
1965 1966 1967 1968 1969 1970 1971

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
1972
	perf_output_end(&handle);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
		name = dentry_path(file->f_dentry, buf, PATH_MAX);
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
	size = ALIGN(strlen(name), sizeof(u64));

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
	struct perf_mmap_event mmap_event = {
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2083 2084 2085 2086 2087 2088 2089
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
			  int nmi, struct pt_regs *regs)
{
2090 2091 2092
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2093
	counter->pending_kill = POLL_IN;
2094 2095
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2096
		counter->pending_kill = POLL_HUP;
2097 2098 2099 2100 2101 2102 2103 2104
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2105
	perf_counter_output(counter, nmi, regs);
2106
	return ret;
2107 2108
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2151 2152
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2153
	enum hrtimer_restart ret = HRTIMER_RESTART;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2169 2170 2171 2172
	if (regs) {
		if (perf_counter_overflow(counter, 0, regs))
			ret = HRTIMER_NORESTART;
	}
2173 2174 2175

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2176
	return ret;
2177 2178 2179 2180 2181
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
2182 2183
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2184 2185 2186 2187
	if (perf_counter_overflow(counter, nmi, regs))
		/* soft-disable the counter */
		;

2188 2189
}

2190
static int perf_swcounter_match(struct perf_counter *counter,
2191 2192
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2193 2194 2195 2196
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2197
	if (perf_event_raw(&counter->hw_event))
2198 2199
		return 0;

2200
	if (perf_event_type(&counter->hw_event) != type)
2201 2202
		return 0;

2203
	if (perf_event_id(&counter->hw_event) != event)
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2215 2216 2217 2218 2219 2220 2221 2222
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

2223
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2224 2225
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
2226 2227 2228
{
	struct perf_counter *counter;

2229
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2230 2231
		return;

P
Peter Zijlstra 已提交
2232 2233
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2234
		if (perf_swcounter_match(counter, type, event, regs))
2235
			perf_swcounter_add(counter, nr, nmi, regs);
2236
	}
P
Peter Zijlstra 已提交
2237
	rcu_read_unlock();
2238 2239
}

P
Peter Zijlstra 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2254 2255
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
2256 2257
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2258 2259 2260 2261 2262 2263 2264
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2265

2266 2267 2268 2269 2270
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
2271

P
Peter Zijlstra 已提交
2272 2273 2274 2275
	barrier();
	(*recursion)--;

out:
2276 2277 2278
	put_cpu_var(perf_cpu_context);
}

2279 2280 2281 2282 2283
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2300 2301 2302 2303 2304 2305
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2306 2307 2308 2309
/*
 * Software counter: cpu wall time clock
 */

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2322 2323 2324 2325 2326 2327
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2328 2329
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2339 2340
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2341
	hrtimer_cancel(&counter->hw.hrtimer);
2342
	cpu_clock_perf_counter_update(counter);
2343 2344 2345 2346
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2347
	cpu_clock_perf_counter_update(counter);
2348 2349 2350
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2351 2352 2353
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2354 2355
};

2356 2357 2358 2359
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
2360 2361 2362 2363
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2364
{
I
Ingo Molnar 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
2385 2386
}

2387
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2388
{
2389 2390 2391
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2392 2393
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2394 2395 2396 2397 2398
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2399 2400

	return 0;
I
Ingo Molnar 已提交
2401 2402 2403
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2404
{
2405 2406 2407 2408
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
2409

2410 2411 2412 2413
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
2414 2415 2416
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2417 2418 2419
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2420 2421
};

2422 2423 2424 2425
/*
 * Software counter: cpu migrations
 */

2426
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2427
{
2428 2429 2430 2431 2432
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2433 2434 2435 2436 2437 2438 2439 2440
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2441
	now = get_cpu_migrations(counter);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2455
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2456
{
2457 2458 2459
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2460
	return 0;
2461 2462 2463 2464 2465 2466 2467 2468
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2469 2470 2471
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2472 2473
};

2474 2475 2476
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2477 2478 2479 2480 2481 2482
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2483 2484 2485 2486 2487 2488 2489
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2490
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2491 2492 2493 2494 2495
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2496
	int event_id = perf_event_id(&counter->hw_event);
2497 2498 2499 2500 2501 2502 2503
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2504
	counter->hw.irq_period = counter->hw_event.irq_period;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2516 2517 2518
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2519
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2520
	const struct hw_perf_counter_ops *hw_ops = NULL;
2521
	struct hw_perf_counter *hwc = &counter->hw;
2522

2523 2524 2525 2526 2527 2528 2529
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2530
	switch (perf_event_id(&counter->hw_event)) {
2531
	case PERF_COUNT_CPU_CLOCK:
2532 2533 2534 2535
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2536
		break;
2537
	case PERF_COUNT_TASK_CLOCK:
2538 2539 2540 2541 2542 2543 2544 2545
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2546 2547 2548

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2549
		break;
2550
	case PERF_COUNT_PAGE_FAULTS:
2551 2552
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2553
	case PERF_COUNT_CONTEXT_SWITCHES:
2554
		hw_ops = &perf_ops_generic;
2555
		break;
2556
	case PERF_COUNT_CPU_MIGRATIONS:
2557 2558
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2559
		break;
2560
	}
2561 2562 2563 2564

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2565 2566 2567
	return hw_ops;
}

T
Thomas Gleixner 已提交
2568 2569 2570 2571
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2572 2573
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2574
		   struct perf_counter_context *ctx,
2575 2576
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2577
{
2578
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2579
	struct perf_counter *counter;
2580
	long err;
T
Thomas Gleixner 已提交
2581

2582
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2583
	if (!counter)
2584
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2585

2586 2587 2588 2589 2590 2591 2592
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2593
	mutex_init(&counter->mutex);
2594
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2595
	INIT_LIST_HEAD(&counter->event_entry);
2596
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2597 2598
	init_waitqueue_head(&counter->waitq);

2599 2600
	mutex_init(&counter->mmap_mutex);

2601 2602
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2603 2604
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2605
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2606
	counter->hw_ops			= NULL;
2607
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2608

2609
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2610 2611 2612
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2613
	hw_ops = NULL;
2614

2615
	if (perf_event_raw(hw_event)) {
2616
		hw_ops = hw_perf_counter_init(counter);
2617 2618 2619 2620
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2621
	case PERF_TYPE_HARDWARE:
2622
		hw_ops = hw_perf_counter_init(counter);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2633 2634 2635 2636 2637 2638
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2639

2640
	if (err) {
I
Ingo Molnar 已提交
2641
		kfree(counter);
2642
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2643
	}
2644

I
Ingo Molnar 已提交
2645
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2646 2647 2648 2649 2650

	return counter;
}

/**
2651
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2652 2653
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2654
 * @pid:		target pid
I
Ingo Molnar 已提交
2655 2656
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2657
 */
2658
SYSCALL_DEFINE5(perf_counter_open,
2659
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2660
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2661
{
2662
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2663
	struct perf_counter_hw_event hw_event;
2664
	struct perf_counter_context *ctx;
2665
	struct file *counter_file = NULL;
2666 2667
	struct file *group_file = NULL;
	int fput_needed = 0;
2668
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2669 2670
	int ret;

2671 2672 2673 2674
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2675
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2676 2677
		return -EFAULT;

2678
	/*
I
Ingo Molnar 已提交
2679 2680 2681 2682 2683 2684 2685 2686
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2687 2688 2689 2690 2691 2692
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2693
			goto err_put_context;
2694
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2695
			goto err_put_context;
2696 2697 2698

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2699 2700 2701 2702 2703 2704 2705 2706
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2707
		 */
I
Ingo Molnar 已提交
2708 2709
		if (group_leader->ctx != ctx)
			goto err_put_context;
2710 2711 2712 2713 2714
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2715 2716
	}

2717 2718
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2719 2720
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2721 2722 2723 2724
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2725 2726 2727 2728 2729 2730 2731
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2732
	mutex_lock(&ctx->mutex);
2733
	perf_install_in_context(ctx, counter, cpu);
2734
	mutex_unlock(&ctx->mutex);
2735 2736

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2737

2738 2739 2740
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2741 2742
	return ret;

2743
err_free_put_context:
T
Thomas Gleixner 已提交
2744 2745 2746 2747 2748
	kfree(counter);

err_put_context:
	put_context(ctx);

2749
	goto out_fput;
T
Thomas Gleixner 已提交
2750 2751
}

2752 2753 2754 2755 2756 2757 2758 2759 2760
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2761
	mutex_init(&ctx->mutex);
2762
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2763
	INIT_LIST_HEAD(&ctx->event_list);
2764 2765 2766 2767 2768 2769
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2770
static struct perf_counter *
2771 2772 2773 2774
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2775
	      struct perf_counter *group_leader,
2776 2777 2778 2779
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2780 2781 2782 2783 2784 2785 2786 2787 2788
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2789
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2790 2791
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2792 2793
	if (IS_ERR(child_counter))
		return child_counter;
2794 2795 2796 2797 2798

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2799
	add_counter_to_ctx(child_counter, child_ctx);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2844
	struct perf_counter *child_ctr;
2845 2846 2847

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2848 2849
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2850
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2851 2852 2853 2854
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2855
	}
2856 2857 2858
	return 0;
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2871 2872 2873 2874
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2890 2891 2892 2893 2894 2895
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2896
	struct perf_counter *sub, *tmp;
2897 2898

	/*
2899 2900 2901 2902 2903 2904
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2905
	 */
2906 2907 2908
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
2909
		update_counter_times(child_counter);
2910
	} else {
2911
		struct perf_cpu_context *cpuctx;
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2923 2924 2925

		cpuctx = &__get_cpu_var(perf_cpu_context);

2926
		group_sched_out(child_counter, cpuctx, child_ctx);
2927
		update_counter_times(child_counter);
2928

2929
		list_del_init(&child_counter->list_entry);
2930

2931
		child_ctx->nr_counters--;
2932

2933 2934 2935
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2936 2937 2938 2939 2940 2941 2942

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2943 2944 2945 2946
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2947
			if (sub->parent) {
2948
				sync_child_counter(sub, sub->parent);
2949
				free_counter(sub);
2950
			}
2951
		}
2952
		free_counter(child_counter);
2953
	}
2954 2955 2956
}

/*
2957
 * When a child task exits, feed back counter values to parent counters.
2958
 *
2959
 * Note: we may be running in child context, but the PID is not hashed
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2983
	struct perf_counter *counter;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3003
	mutex_lock(&parent_ctx->mutex);
3004 3005 3006 3007 3008 3009

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3010
		if (!counter->hw_event.inherit)
3011 3012
			continue;

3013
		if (inherit_group(counter, parent,
3014 3015 3016 3017
				  parent_ctx, child, child_ctx))
			break;
	}

3018
	mutex_unlock(&parent_ctx->mutex);
3019 3020
}

3021
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3022
{
3023
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3024

3025 3026
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3027 3028

	mutex_lock(&perf_resource_mutex);
3029
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3030
	mutex_unlock(&perf_resource_mutex);
3031

3032
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3033 3034 3035
}

#ifdef CONFIG_HOTPLUG_CPU
3036
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3037 3038 3039 3040 3041
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3042 3043
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3044
}
3045
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3046
{
3047 3048 3049 3050
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3051
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3052
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3053 3054
}
#else
3055
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3067
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3068 3069 3070 3071
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3072
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);