perf_counter.c 76.6 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
7 8
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
9 10 11
 */

#include <linux/fs.h>
12
#include <linux/mm.h>
T
Thomas Gleixner 已提交
13 14
#include <linux/cpu.h>
#include <linux/smp.h>
15
#include <linux/file.h>
T
Thomas Gleixner 已提交
16 17 18 19
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
20 21 22
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
23 24 25
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
26
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
27
#include <linux/perf_counter.h>
28
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
29

30 31
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
32 33 34 35 36
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

37
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
38 39 40
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

41 42 43 44
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

45 46
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */

T
Thomas Gleixner 已提交
47 48 49 50 51 52 53 54
/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
55
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
56
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
57
{
58
	return NULL;
T
Thomas Gleixner 已提交
59 60
}

61
u64 __weak hw_perf_save_disable(void)		{ return 0; }
62
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
63
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
64 65 66 67 68 69
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
70

71 72
void __weak perf_counter_print_debug(void)	{ }

73 74 75 76 77 78 79 80 81 82 83 84
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
85
	else {
86
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
87 88
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
89 90

	list_add_rcu(&counter->event_entry, &ctx->event_list);
91 92 93 94 95 96 97 98
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
99
	list_del_rcu(&counter->event_entry);
100

P
Peter Zijlstra 已提交
101 102 103
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

104 105 106 107 108 109 110 111
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

112
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
113 114 115 116
		sibling->group_leader = sibling;
	}
}

117 118 119 120 121 122 123 124 125
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
126
	counter->tstamp_stopped = ctx->time;
127 128 129 130 131 132 133 134 135 136
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
159 160 161 162 163 164
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
165
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
166 167 168 169
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
170
	unsigned long flags;
171
	u64 perf_flags;
T
Thomas Gleixner 已提交
172 173 174 175 176 177 178 179 180

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

181
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
182

183 184 185
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
186 187 188 189 190 191
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
192
	perf_flags = hw_perf_save_disable();
193
	list_del_counter(counter, ctx);
194
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
195 196 197 198 199 200 201 202 203 204 205

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

206
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
207 208 209 210 211 212
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
213
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
214 215 216 217
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
218
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
219 220 221 222 223 224 225 226 227 228
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
229
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
230 231 232 233 234
					 counter, 1);
		return;
	}

retry:
235
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
236 237 238 239 240 241
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
242
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
243 244 245 246 247 248
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
249
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
250 251
	 * succeed.
	 */
252
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
253
		ctx->nr_counters--;
254
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
255 256 257 258 259
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

260
static inline u64 perf_clock(void)
261
{
262
	return cpu_clock(smp_processor_id());
263 264 265 266 267
}

/*
 * Update the record of the current time in a context.
 */
268
static void update_context_time(struct perf_counter_context *ctx)
269
{
270 271 272 273
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
274 275 276 277 278 279 280 281 282 283
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

284 285 286 287 288 289 290 291 292 293 294
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

326
	spin_lock_irqsave(&ctx->lock, flags);
327 328 329 330 331 332

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333
		update_context_time(ctx);
334
		update_counter_times(counter);
335 336 337 338 339 340 341
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

342
	spin_unlock_irqrestore(&ctx->lock, flags);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
378 379
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
380
		counter->state = PERF_COUNTER_STATE_OFF;
381
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

404 405 406 407 408 409
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
410
	if (counter->state <= PERF_COUNTER_STATE_OFF)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

426
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427

428 429
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
430 431
	ctx->nr_active++;

432 433 434
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

435 436 437
	return 0;
}

438 439 440 441 442 443 444 445 446 447
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
448

449 450 451
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

487 488 489 490 491 492
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
493 494 495
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
496 497
}

T
Thomas Gleixner 已提交
498
/*
499
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
500 501 502 503 504 505
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
506
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
507
	int cpu = smp_processor_id();
508
	unsigned long flags;
509
	u64 perf_flags;
510
	int err;
T
Thomas Gleixner 已提交
511 512 513 514 515 516 517 518 519

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

520
	spin_lock_irqsave(&ctx->lock, flags);
521
	update_context_time(ctx);
T
Thomas Gleixner 已提交
522 523 524 525 526

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
527
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
528

529
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
530

531 532 533 534 535 536 537 538
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

539 540 541 542 543
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
544
	if (!group_can_go_on(counter, cpuctx, 1))
545 546 547 548
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

549 550 551 552 553 554 555 556
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
557 558
		if (leader->hw_event.pinned) {
			update_group_times(leader);
559
			leader->state = PERF_COUNTER_STATE_ERROR;
560
		}
561
	}
T
Thomas Gleixner 已提交
562

563
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
564 565
		cpuctx->max_pertask--;

566
 unlock:
567 568
	hw_perf_restore(perf_flags);

569
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
570 571 572 573 574 575 576 577 578 579 580
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
581 582
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
610
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
611 612 613 614 615 616 617 618 619
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
620 621
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
622 623 624
	spin_unlock_irq(&ctx->lock);
}

625 626 627 628
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
629
{
630 631 632 633 634 635
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
636

637 638 639 640 641
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
642 643
		return;

644
	spin_lock_irqsave(&ctx->lock, flags);
645
	update_context_time(ctx);
646

647
	counter->prev_state = counter->state;
648 649 650
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
651
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652 653

	/*
654 655
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
656
	 */
657 658
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
659

660 661 662 663 664 665 666 667 668 669 670 671 672
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
673 674
		if (leader->hw_event.pinned) {
			update_group_times(leader);
675
			leader->state = PERF_COUNTER_STATE_ERROR;
676
		}
677 678 679
	}

 unlock:
680
	spin_unlock_irqrestore(&ctx->lock, flags);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
731
	if (counter->state == PERF_COUNTER_STATE_OFF) {
732
		counter->state = PERF_COUNTER_STATE_INACTIVE;
733 734
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
735
	}
736 737 738 739
 out:
	spin_unlock_irq(&ctx->lock);
}

740 741 742 743 744 745
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
762 763
}

764 765 766 767
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
768
	u64 flags;
769

770 771
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
772
	if (likely(!ctx->nr_counters))
773
		goto out;
774
	update_context_time(ctx);
775

776
	flags = hw_perf_save_disable();
777 778 779 780
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
781
	hw_perf_restore(flags);
782
 out:
783 784 785
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
786 787 788 789 790 791
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
792
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
793 794 795 796 797 798 799 800
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
801
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
802 803 804 805

	if (likely(!cpuctx->task_ctx))
		return;

806 807
	update_context_time(ctx);

808
	regs = task_pt_regs(task);
809
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810 811
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
812 813 814
	cpuctx->task_ctx = NULL;
}

815
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816
{
817
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 819
}

I
Ingo Molnar 已提交
820
static int
821 822 823 824 825
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
826
	struct perf_counter *counter, *partial_group;
827 828 829 830 831 832 833 834
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
835

836
	group_counter->prev_state = group_counter->state;
837 838
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
839 840 841 842

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
843
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844
		counter->prev_state = counter->state;
845 846 847 848 849 850
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

851
	return 0;
852 853 854 855 856 857 858 859 860 861

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862
	}
863
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
864

865
	return -EAGAIN;
866 867
}

868 869 870
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
871 872
{
	struct perf_counter *counter;
873
	u64 flags;
874
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
875

876 877
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
878
	if (likely(!ctx->nr_counters))
879
		goto out;
T
Thomas Gleixner 已提交
880

881
	ctx->timestamp = perf_clock();
882

883
	flags = hw_perf_save_disable();
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
903 904
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
905
			counter->state = PERF_COUNTER_STATE_ERROR;
906
		}
907 908
	}

909
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 911 912 913 914 915 916 917
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

918 919 920 921
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
922 923 924
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

925
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 927
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
928
		}
T
Thomas Gleixner 已提交
929
	}
930
	hw_perf_restore(flags);
931
 out:
T
Thomas Gleixner 已提交
932
	spin_unlock(&ctx->lock);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
950

951
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
952 953 954
	cpuctx->task_ctx = ctx;
}

955 956 957 958 959 960 961
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

962 963 964 965 966
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
967
	unsigned long flags;
968 969 970 971 972 973
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

974
	local_irq_save(flags);
975 976 977 978 979 980 981 982 983 984 985
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

986
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987 988
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
989
			counter->state = PERF_COUNTER_STATE_OFF;
990
		}
991
	}
992

993 994
	hw_perf_restore(perf_flags);

995
	spin_unlock_irqrestore(&ctx->lock, flags);
996 997 998 999 1000 1001 1002 1003 1004

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1005
	unsigned long flags;
1006 1007 1008 1009 1010 1011
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1012
	local_irq_save(flags);
1013 1014
	cpu = smp_processor_id();

1015 1016
	perf_counter_task_sched_out(curr, cpu);

1017 1018 1019 1020 1021 1022 1023 1024
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025
		if (counter->state > PERF_COUNTER_STATE_OFF)
1026
			continue;
1027
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1028 1029
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1030
		counter->hw_event.disabled = 0;
1031 1032 1033 1034 1035 1036 1037
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1038
	local_irq_restore(flags);
1039 1040 1041 1042

	return 0;
}

1043 1044 1045 1046
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1047 1048
{
	struct perf_counter *counter;
1049
	u64 perf_flags;
T
Thomas Gleixner 已提交
1050

1051
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1052 1053 1054 1055
		return;

	spin_lock(&ctx->lock);
	/*
1056
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1057
	 */
1058
	perf_flags = hw_perf_save_disable();
1059
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1061 1062
		break;
	}
1063
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1064 1065

	spin_unlock(&ctx->lock);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1077

1078 1079 1080 1081 1082 1083
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1084 1085 1086 1087 1088 1089
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1090
static void __read(void *info)
T
Thomas Gleixner 已提交
1091
{
I
Ingo Molnar 已提交
1092
	struct perf_counter *counter = info;
1093
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1094
	unsigned long flags;
I
Ingo Molnar 已提交
1095

1096
	local_irq_save(flags);
1097
	if (ctx->is_active)
1098
		update_context_time(ctx);
I
Ingo Molnar 已提交
1099
	counter->hw_ops->read(counter);
1100
	update_counter_times(counter);
1101
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1102 1103
}

1104
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1105 1106 1107 1108 1109
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1110
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1111
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1112
					 __read, counter, 1);
1113 1114
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1115 1116
	}

1117
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1137
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1181 1182 1183 1184 1185 1186 1187 1188
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1189 1190
static void perf_pending_sync(struct perf_counter *counter);

1191 1192
static void free_counter(struct perf_counter *counter)
{
1193 1194
	perf_pending_sync(counter);

1195 1196 1197 1198 1199 1200 1201
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1202 1203 1204
	if (counter->destroy)
		counter->destroy(counter);

1205 1206 1207
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1218
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1219 1220
	mutex_lock(&counter->mutex);

1221
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1222 1223

	mutex_unlock(&counter->mutex);
1224
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1225

1226
	free_counter(counter);
1227
	put_context(ctx);
T
Thomas Gleixner 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1238 1239
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1240

1241 1242 1243 1244 1245 1246 1247 1248
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1249
	mutex_lock(&counter->mutex);
1250 1251 1252 1253 1254 1255 1256 1257
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1258 1259
	mutex_unlock(&counter->mutex);

1260 1261 1262 1263 1264 1265 1266 1267
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1268 1269 1270 1271 1272 1273 1274
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1275
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1276 1277 1278 1279 1280
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	struct perf_mmap_data *data;
	unsigned int events;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
		events = atomic_xchg(&data->wakeup, 0);
	else
		events = POLL_HUP;
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1291 1292 1293 1294 1295 1296

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1309 1310 1311
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1312 1313 1314 1315 1316 1317
	default:
		err = -ENOTTY;
	}
	return err;
}

1318 1319 1320 1321 1322 1323
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1324
{
1325 1326 1327 1328 1329 1330 1331 1332 1333
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1334

1335 1336 1337 1338 1339
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1340
	++userpg->lock;
1341
	barrier();
1342 1343 1344 1345
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1346

1347
	barrier();
1348
	++userpg->lock;
1349
	preempt_enable();
1350
unlock:
1351
	rcu_read_unlock();
1352 1353 1354 1355 1356
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1369

1370 1371
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1372

1373 1374
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1375
	get_page(vmf->page);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1412
	return 0;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1462
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1463 1464 1465
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1466 1467 1468
}

static struct vm_operations_struct perf_mmap_vmops = {
1469
	.open  = perf_mmap_open,
1470
	.close = perf_mmap_close,
1471 1472 1473 1474 1475 1476
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1477 1478 1479 1480
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1481 1482 1483

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1484 1485 1486 1487

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1488 1489 1490 1491 1492
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1493 1494
		return -EINVAL;

1495
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1496 1497
		return -EINVAL;

1498 1499
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1510 1511 1512 1513

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1514 1515 1516 1517
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1518 1519 1520

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1521 1522 1523 1524 1525 1526
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1527
	mutex_unlock(&counter->mmap_mutex);
1528 1529 1530 1531

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1532 1533

	return ret;
1534 1535
}

P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1552 1553 1554 1555
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1556 1557
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1558
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1559
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1560 1561
};

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	struct perf_mmap_data *data;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data) {
P
Peter Zijlstra 已提交
1576
		atomic_set(&data->wakeup, POLL_IN);
1577 1578 1579 1580 1581 1582 1583
		/*
		 * Ensure all data writes are issued before updating the
		 * user-space data head information. The matching rmb()
		 * will be in userspace after reading this value.
		 */
		smp_wmb();
		data->user_page->data_head = atomic_read(&data->head);
1584 1585 1586 1587
	}
	rcu_read_unlock();

	wake_up_all(&counter->waitq);
1588 1589 1590 1591 1592

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1620
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1621

1622
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1623 1624 1625
	PENDING_TAIL,
};

1626 1627
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1628
{
1629
	struct perf_pending_entry **head;
1630

1631
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1632 1633
		return;

1634 1635 1636
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1637 1638

	do {
1639 1640
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1641 1642 1643

	set_perf_counter_pending();

1644
	put_cpu_var(perf_pending_head);
1645 1646 1647 1648
}

static int __perf_pending_run(void)
{
1649
	struct perf_pending_entry *list;
1650 1651
	int nr = 0;

1652
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1653
	while (list != PENDING_TAIL) {
1654 1655
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1656 1657 1658

		list = list->next;

1659 1660
		func = entry->func;
		entry->next = NULL;
1661 1662 1663 1664 1665 1666 1667
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1668
		func(entry);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1690
	return counter->pending.next == NULL;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1703 1704 1705 1706
/*
 * Callchain support -- arch specific
 */

1707
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1708 1709 1710 1711
{
	return NULL;
}

1712 1713 1714 1715
/*
 * Output
 */

1716 1717 1718 1719
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1720
	unsigned int		head;
1721
	int			wakeup;
1722
	int			nmi;
1723
	int			overflow;
1724 1725
};

1726 1727
static inline void __perf_output_wakeup(struct perf_output_handle *handle)
{
1728
	if (handle->nmi) {
1729
		handle->counter->pending_wakeup = 1;
1730
		perf_pending_queue(&handle->counter->pending,
1731
				   perf_pending_counter);
1732
	} else
1733 1734 1735
		perf_counter_wakeup(handle->counter);
}

1736
static int perf_output_begin(struct perf_output_handle *handle,
1737
			     struct perf_counter *counter, unsigned int size,
1738
			     int nmi, int overflow)
1739
{
1740
	struct perf_mmap_data *data;
1741
	unsigned int offset, head;
1742

1743 1744 1745 1746 1747
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1748 1749 1750
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1751

1752
	if (!data->nr_pages)
1753
		goto fail;
1754 1755 1756

	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1757
		head += size;
1758 1759
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1760 1761
	handle->data	= data;
	handle->offset	= offset;
1762
	handle->head	= head;
1763
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1764

1765
	return 0;
1766

1767 1768
fail:
	__perf_output_wakeup(handle);
1769 1770
out:
	rcu_read_unlock();
1771

1772 1773
	return -ENOSPC;
}
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1803 1804

	WARN_ON_ONCE(handle->offset > handle->head);
1805 1806
}

P
Peter Zijlstra 已提交
1807 1808 1809
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1810
static void perf_output_end(struct perf_output_handle *handle)
1811
{
P
Peter Zijlstra 已提交
1812 1813
	int wakeup_events = handle->counter->hw_event.wakeup_events;

1814
	if (handle->overflow && wakeup_events) {
P
Peter Zijlstra 已提交
1815 1816 1817 1818 1819 1820
		int events = atomic_inc_return(&handle->data->events);
		if (events >= wakeup_events) {
			atomic_sub(wakeup_events, &handle->data->events);
			__perf_output_wakeup(handle);
		}
	} else if (handle->wakeup)
1821
		__perf_output_wakeup(handle);
1822
	rcu_read_unlock();
1823 1824
}

1825
static void perf_counter_output(struct perf_counter *counter,
1826
				int nmi, struct pt_regs *regs, u64 addr)
1827
{
1828
	int ret;
1829
	u64 record_type = counter->hw_event.record_type;
1830 1831 1832
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1833
	struct {
1834
		u32 pid, tid;
1835
	} tid_entry;
1836 1837 1838 1839
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1840 1841
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1842
	u64 time;
1843

1844
	header.type = 0;
1845
	header.size = sizeof(header);
1846

1847 1848
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1849 1850
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1851 1852
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1853
		header.type |= PERF_RECORD_IP;
1854 1855
		header.size += sizeof(ip);
	}
1856

1857
	if (record_type & PERF_RECORD_TID) {
1858
		/* namespace issues */
1859 1860 1861
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1862
		header.type |= PERF_RECORD_TID;
1863 1864 1865
		header.size += sizeof(tid_entry);
	}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

1876 1877 1878 1879 1880
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

1881
	if (record_type & PERF_RECORD_GROUP) {
1882
		header.type |= PERF_RECORD_GROUP;
1883 1884 1885 1886 1887
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1888 1889 1890
		callchain = perf_callchain(regs);

		if (callchain) {
1891
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1892

1893
			header.type |= PERF_RECORD_CALLCHAIN;
1894 1895 1896 1897
			header.size += callchain_size;
		}
	}

1898
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1899 1900
	if (ret)
		return;
1901

1902
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1903

1904 1905
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1906

1907 1908
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1909

1910 1911 1912
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1913 1914 1915
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

1916 1917 1918
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1919

1920
		perf_output_put(&handle, nr);
1921

1922 1923 1924 1925
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
				sub->hw_ops->read(sub);
1926

1927 1928
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1929

1930 1931
			perf_output_put(&handle, group_entry);
		}
1932
	}
P
Peter Zijlstra 已提交
1933

1934 1935
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
1936

1937
	perf_output_end(&handle);
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2005
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2021 2022 2023 2024 2025 2026
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2063
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2064 2065 2066 2067 2068 2069 2070

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2071
	perf_output_end(&handle);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2119
		name = d_path(&file->f_path, buf, PATH_MAX);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2130
	size = ALIGN(strlen(name)+1, sizeof(u64));
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2149 2150 2151 2152 2153 2154
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2172 2173 2174 2175 2176 2177
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2192 2193 2194 2195 2196
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2197
			  int nmi, struct pt_regs *regs, u64 addr)
2198
{
2199 2200 2201
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2202
	counter->pending_kill = POLL_IN;
2203 2204
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2205
		counter->pending_kill = POLL_HUP;
2206 2207 2208 2209 2210 2211 2212 2213
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2214
	perf_counter_output(counter, nmi, regs, addr);
2215
	return ret;
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2260 2261
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2262
	enum hrtimer_restart ret = HRTIMER_RESTART;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2278
	if (regs) {
2279
		if (perf_counter_overflow(counter, 0, regs, 0))
2280 2281
			ret = HRTIMER_NORESTART;
	}
2282 2283 2284

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2285
	return ret;
2286 2287 2288
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2289
				    int nmi, struct pt_regs *regs, u64 addr)
2290
{
2291 2292
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2293
	if (perf_counter_overflow(counter, nmi, regs, addr))
2294 2295 2296
		/* soft-disable the counter */
		;

2297 2298
}

2299
static int perf_swcounter_match(struct perf_counter *counter,
2300 2301
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2302 2303 2304 2305
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2306
	if (perf_event_raw(&counter->hw_event))
2307 2308
		return 0;

2309
	if (perf_event_type(&counter->hw_event) != type)
2310 2311
		return 0;

2312
	if (perf_event_id(&counter->hw_event) != event)
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2324
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2325
			       int nmi, struct pt_regs *regs, u64 addr)
2326 2327 2328
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2329
		perf_swcounter_overflow(counter, nmi, regs, addr);
2330 2331
}

2332
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2333
				     enum perf_event_types type, u32 event,
2334 2335
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2336 2337 2338
{
	struct perf_counter *counter;

2339
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2340 2341
		return;

P
Peter Zijlstra 已提交
2342 2343
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2344
		if (perf_swcounter_match(counter, type, event, regs))
2345
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2346
	}
P
Peter Zijlstra 已提交
2347
	rcu_read_unlock();
2348 2349
}

P
Peter Zijlstra 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2364
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2365 2366
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2367 2368
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2369 2370 2371 2372 2373 2374 2375
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2376

2377 2378
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2379 2380
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2381
					 nr, nmi, regs, addr);
2382
	}
2383

P
Peter Zijlstra 已提交
2384 2385 2386 2387
	barrier();
	(*recursion)--;

out:
2388 2389 2390
	put_cpu_var(perf_cpu_context);
}

2391 2392
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2393
{
2394
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2413 2414 2415 2416 2417 2418
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2419 2420 2421 2422
/*
 * Software counter: cpu wall time clock
 */

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2435 2436 2437 2438 2439 2440
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2441 2442
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2452 2453
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2454
	hrtimer_cancel(&counter->hw.hrtimer);
2455
	cpu_clock_perf_counter_update(counter);
2456 2457 2458 2459
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2460
	cpu_clock_perf_counter_update(counter);
2461 2462 2463
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2464 2465 2466
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2467 2468
};

2469 2470 2471 2472
/*
 * Software counter: task time clock
 */

2473
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2474
{
2475
	u64 prev;
I
Ingo Molnar 已提交
2476 2477
	s64 delta;

2478
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2479 2480
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2481 2482
}

2483
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2484
{
2485
	struct hw_perf_counter *hwc = &counter->hw;
2486 2487 2488
	u64 now;

	now = counter->ctx->time;
2489

2490
	atomic64_set(&hwc->prev_count, now);
2491 2492
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2493 2494 2495 2496 2497
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2498 2499

	return 0;
I
Ingo Molnar 已提交
2500 2501 2502
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2503
{
2504
	hrtimer_cancel(&counter->hw.hrtimer);
2505 2506
	task_clock_perf_counter_update(counter, counter->ctx->time);

2507
}
I
Ingo Molnar 已提交
2508

2509 2510
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2523 2524 2525
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
2526 2527 2528
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2529 2530
};

2531 2532 2533 2534
/*
 * Software counter: cpu migrations
 */

2535
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2536
{
2537 2538 2539 2540 2541
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2542 2543 2544 2545 2546 2547 2548 2549
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2550
	now = get_cpu_migrations(counter);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2564
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2565
{
2566 2567 2568
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2569
	return 0;
2570 2571 2572 2573 2574 2575 2576 2577
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2578 2579 2580
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2581 2582
};

2583 2584 2585
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2586 2587 2588 2589 2590
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2591
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2592 2593 2594 2595 2596 2597 2598
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2599
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2600 2601 2602 2603 2604
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
2605
	int event_id = perf_event_id(&counter->hw_event);
2606 2607 2608 2609 2610 2611 2612
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2613
	counter->hw.irq_period = counter->hw_event.irq_period;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

2625 2626 2627
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
2628
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2629
	const struct hw_perf_counter_ops *hw_ops = NULL;
2630
	struct hw_perf_counter *hwc = &counter->hw;
2631

2632 2633 2634 2635 2636 2637 2638
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2639
	switch (perf_event_id(&counter->hw_event)) {
2640
	case PERF_COUNT_CPU_CLOCK:
2641 2642 2643 2644
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2645
		break;
2646
	case PERF_COUNT_TASK_CLOCK:
2647 2648 2649 2650 2651 2652 2653 2654
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
2655 2656 2657

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2658
		break;
2659
	case PERF_COUNT_PAGE_FAULTS:
2660 2661
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2662
	case PERF_COUNT_CONTEXT_SWITCHES:
2663
		hw_ops = &perf_ops_generic;
2664
		break;
2665
	case PERF_COUNT_CPU_MIGRATIONS:
2666 2667
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
2668
		break;
2669
	}
2670 2671 2672 2673

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

2674 2675 2676
	return hw_ops;
}

T
Thomas Gleixner 已提交
2677 2678 2679 2680
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2681 2682
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2683
		   struct perf_counter_context *ctx,
2684 2685
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2686
{
2687
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
2688
	struct perf_counter *counter;
2689
	long err;
T
Thomas Gleixner 已提交
2690

2691
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2692
	if (!counter)
2693
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2694

2695 2696 2697 2698 2699 2700 2701
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2702
	mutex_init(&counter->mutex);
2703
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2704
	INIT_LIST_HEAD(&counter->event_entry);
2705
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2706 2707
	init_waitqueue_head(&counter->waitq);

2708 2709
	mutex_init(&counter->mmap_mutex);

2710 2711
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2712 2713
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2714
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
2715
	counter->hw_ops			= NULL;
2716
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2717

2718
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2719 2720 2721
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2722
	hw_ops = NULL;
2723

2724
	if (perf_event_raw(hw_event)) {
2725
		hw_ops = hw_perf_counter_init(counter);
2726 2727 2728 2729
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2730
	case PERF_TYPE_HARDWARE:
2731
		hw_ops = hw_perf_counter_init(counter);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2742 2743 2744 2745 2746 2747
done:
	err = 0;
	if (!hw_ops)
		err = -EINVAL;
	else if (IS_ERR(hw_ops))
		err = PTR_ERR(hw_ops);
2748

2749
	if (err) {
I
Ingo Molnar 已提交
2750
		kfree(counter);
2751
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2752
	}
2753

I
Ingo Molnar 已提交
2754
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2755

2756 2757 2758 2759 2760 2761 2762
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2763 2764 2765 2766
	return counter;
}

/**
2767
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2768 2769
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2770
 * @pid:		target pid
I
Ingo Molnar 已提交
2771 2772
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2773
 */
2774
SYSCALL_DEFINE5(perf_counter_open,
2775
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2776
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2777
{
2778
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2779
	struct perf_counter_hw_event hw_event;
2780
	struct perf_counter_context *ctx;
2781
	struct file *counter_file = NULL;
2782 2783
	struct file *group_file = NULL;
	int fput_needed = 0;
2784
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2785 2786
	int ret;

2787 2788 2789 2790
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2791
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2792 2793
		return -EFAULT;

2794
	/*
I
Ingo Molnar 已提交
2795 2796 2797 2798 2799 2800 2801 2802
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2803 2804 2805 2806 2807 2808
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2809
			goto err_put_context;
2810
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2811
			goto err_put_context;
2812 2813 2814

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2815 2816 2817 2818 2819 2820 2821 2822
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2823
		 */
I
Ingo Molnar 已提交
2824 2825
		if (group_leader->ctx != ctx)
			goto err_put_context;
2826 2827 2828 2829 2830
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2831 2832
	}

2833 2834
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2835 2836
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2837 2838 2839 2840
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2841 2842 2843 2844 2845 2846 2847
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2848
	mutex_lock(&ctx->mutex);
2849
	perf_install_in_context(ctx, counter, cpu);
2850
	mutex_unlock(&ctx->mutex);
2851 2852

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2853

2854 2855 2856
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2857 2858
	return ret;

2859
err_free_put_context:
T
Thomas Gleixner 已提交
2860 2861 2862 2863 2864
	kfree(counter);

err_put_context:
	put_context(ctx);

2865
	goto out_fput;
T
Thomas Gleixner 已提交
2866 2867
}

2868 2869 2870 2871 2872 2873 2874 2875 2876
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2877
	mutex_init(&ctx->mutex);
2878
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2879
	INIT_LIST_HEAD(&ctx->event_list);
2880 2881 2882 2883 2884 2885
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2886
static struct perf_counter *
2887 2888 2889 2890
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2891
	      struct perf_counter *group_leader,
2892 2893 2894 2895
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2896 2897 2898 2899 2900 2901 2902 2903 2904
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2905
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2906 2907
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2908 2909
	if (IS_ERR(child_counter))
		return child_counter;
2910 2911 2912 2913 2914

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2915
	add_counter_to_ctx(child_counter, child_ctx);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
2960
	struct perf_counter *child_ctr;
2961 2962 2963

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
2964 2965
	if (IS_ERR(leader))
		return PTR_ERR(leader);
2966
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2967 2968 2969 2970
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
2971
	}
2972 2973 2974
	return 0;
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
2987 2988 2989 2990
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3006 3007 3008 3009 3010 3011
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
3012
	struct perf_counter *sub, *tmp;
3013 3014

	/*
3015 3016 3017 3018 3019 3020
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3021
	 */
3022 3023 3024
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
3025
		update_counter_times(child_counter);
3026
	} else {
3027
		struct perf_cpu_context *cpuctx;
3028 3029 3030 3031 3032 3033 3034 3035 3036
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3037
		local_irq_save(flags);
3038
		perf_flags = hw_perf_save_disable();
3039 3040 3041

		cpuctx = &__get_cpu_var(perf_cpu_context);

3042
		group_sched_out(child_counter, cpuctx, child_ctx);
3043
		update_counter_times(child_counter);
3044

3045
		list_del_init(&child_counter->list_entry);
3046

3047
		child_ctx->nr_counters--;
3048

3049
		hw_perf_restore(perf_flags);
3050
		local_irq_restore(flags);
3051
	}
3052 3053 3054 3055 3056 3057 3058

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3059 3060 3061 3062
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3063
			if (sub->parent) {
3064
				sync_child_counter(sub, sub->parent);
3065
				free_counter(sub);
3066
			}
3067
		}
3068
		free_counter(child_counter);
3069
	}
3070 3071 3072
}

/*
3073
 * When a child task exits, feed back counter values to parent counters.
3074
 *
3075
 * Note: we may be running in child context, but the PID is not hashed
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3099
	struct perf_counter *counter;
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3119
	mutex_lock(&parent_ctx->mutex);
3120 3121 3122 3123 3124 3125

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3126
		if (!counter->hw_event.inherit)
3127 3128
			continue;

3129
		if (inherit_group(counter, parent,
3130 3131 3132 3133
				  parent_ctx, child, child_ctx))
			break;
	}

3134
	mutex_unlock(&parent_ctx->mutex);
3135 3136
}

3137
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3138
{
3139
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3140

3141 3142
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3143 3144

	mutex_lock(&perf_resource_mutex);
3145
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3146
	mutex_unlock(&perf_resource_mutex);
3147

3148
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3149 3150 3151
}

#ifdef CONFIG_HOTPLUG_CPU
3152
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3153 3154 3155 3156 3157
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3158 3159
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3160
}
3161
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3162
{
3163 3164 3165 3166
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3167
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3168
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3169 3170
}
#else
3171
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3183
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3184 3185 3186 3187
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3188
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);