perf_counter.c 89.9 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50

T
Thomas Gleixner 已提交
51
/*
52
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
53
 */
54
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
55 56 57 58

/*
 * Architecture provided APIs - weak aliases:
 */
59
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
60
{
61
	return NULL;
T
Thomas Gleixner 已提交
62 63
}

64 65 66
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

67
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
68 69 70 71 72 73
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
74

75 76
void __weak perf_counter_print_debug(void)	{ }

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

101 102 103 104 105
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

106 107 108 109 110 111 112 113
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

114 115
static void put_ctx(struct perf_counter_context *ctx)
{
116 117 118
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
119 120 121
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
122
	}
123 124
}

125 126 127 128
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
129 130 131 132 133 134 135 136 137 138
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
139
	if (group_leader == counter)
140
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
141
	else {
142
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
143 144
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
145 146

	list_add_rcu(&counter->event_entry, &ctx->event_list);
147
	ctx->nr_counters++;
148 149
}

150 151
/*
 * Remove a counter from the lists for its context.
152
 * Must be called with ctx->mutex and ctx->lock held.
153
 */
154 155 156 157 158
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

159 160
	if (list_empty(&counter->list_entry))
		return;
161 162
	ctx->nr_counters--;

163
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
164
	list_del_rcu(&counter->event_entry);
165

P
Peter Zijlstra 已提交
166 167 168
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

169 170 171 172 173 174 175 176
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

177
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
178 179 180 181
		sibling->group_leader = sibling;
	}
}

182 183 184 185 186 187 188 189 190
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
191
	counter->tstamp_stopped = ctx->time;
192
	counter->pmu->disable(counter);
193 194 195 196 197 198 199 200 201
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
224 225 226 227 228 229
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
230
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
231 232 233 234
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
235
	unsigned long flags;
T
Thomas Gleixner 已提交
236 237 238 239 240 241 242 243 244

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

245
	spin_lock_irqsave(&ctx->lock, flags);
246 247 248 249 250
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
251

252 253
	counter_sched_out(counter, cpuctx, ctx);

254
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
255 256 257 258 259 260 261 262 263 264 265

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

266
	perf_enable();
267
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
268 269 270 271 272 273
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
274
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
275 276 277
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
278 279 280 281 282 283 284
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
285
 */
286
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
287 288 289 290 291 292 293 294 295 296
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
297
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
298 299 300 301 302
					 counter, 1);
		return;
	}

retry:
303
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
304 305 306 307 308 309
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
310
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
311 312 313 314 315 316
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
317
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
318 319
	 * succeed.
	 */
320 321
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
322 323 324 325
	}
	spin_unlock_irq(&ctx->lock);
}

326
static inline u64 perf_clock(void)
327
{
328
	return cpu_clock(smp_processor_id());
329 330 331 332 333
}

/*
 * Update the record of the current time in a context.
 */
334
static void update_context_time(struct perf_counter_context *ctx)
335
{
336 337 338 339
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
340 341 342 343 344 345 346 347 348 349
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

350 351 352 353 354 355 356 357 358 359 360
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

392
	spin_lock_irqsave(&ctx->lock, flags);
393 394 395 396 397 398

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
399
		update_context_time(ctx);
400
		update_counter_times(counter);
401 402 403 404 405 406 407
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

408
	spin_unlock_irqrestore(&ctx->lock, flags);
409 410 411 412
}

/*
 * Disable a counter.
413 414 415 416 417 418 419 420 421 422
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
454 455
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
456
		counter->state = PERF_COUNTER_STATE_OFF;
457
	}
458 459 460 461

	spin_unlock_irq(&ctx->lock);
}

462 463 464 465 466 467
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
468
	if (counter->state <= PERF_COUNTER_STATE_OFF)
469 470 471 472 473 474 475 476 477
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

478
	if (counter->pmu->enable(counter)) {
479 480 481 482 483
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

484
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
485

486 487
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
488 489
	ctx->nr_active++;

490 491 492
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

493 494 495
	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

544 545 546 547 548 549 550 551 552 553
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
554

555 556 557
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

593 594 595 596 597
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
598 599 600
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
601 602
}

T
Thomas Gleixner 已提交
603
/*
604
 * Cross CPU call to install and enable a performance counter
605 606
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
607 608 609 610 611 612
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
613
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
614
	int cpu = smp_processor_id();
615
	unsigned long flags;
616
	int err;
T
Thomas Gleixner 已提交
617 618 619 620 621

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
622 623
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
624
	 */
625 626 627 628 629
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
630

631
	spin_lock_irqsave(&ctx->lock, flags);
632
	ctx->is_active = 1;
633
	update_context_time(ctx);
T
Thomas Gleixner 已提交
634 635 636 637 638

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
639
	perf_disable();
T
Thomas Gleixner 已提交
640

641
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
642

643 644 645 646 647 648 649 650
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

651 652 653 654 655
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
656
	if (!group_can_go_on(counter, cpuctx, 1))
657 658 659 660
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

661 662 663 664 665 666 667 668
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
669 670
		if (leader->hw_event.pinned) {
			update_group_times(leader);
671
			leader->state = PERF_COUNTER_STATE_ERROR;
672
		}
673
	}
T
Thomas Gleixner 已提交
674

675
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
676 677
		cpuctx->max_pertask--;

678
 unlock:
679
	perf_enable();
680

681
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
682 683 684 685 686 687 688 689 690 691 692
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
693 694
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
721
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
722 723 724 725 726 727 728 729 730
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
731 732
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
733 734 735
	spin_unlock_irq(&ctx->lock);
}

736 737 738 739
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
740
{
741 742 743 744 745 746
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
747

748 749 750 751
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
752 753 754 755 756
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
757

758
	spin_lock_irqsave(&ctx->lock, flags);
759
	ctx->is_active = 1;
760
	update_context_time(ctx);
761

762
	counter->prev_state = counter->state;
763 764 765
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
766
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
767 768

	/*
769 770
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
771
	 */
772 773
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
774

775
	if (!group_can_go_on(counter, cpuctx, 1)) {
776
		err = -EEXIST;
777
	} else {
778
		perf_disable();
779 780 781 782 783 784
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
785
		perf_enable();
786
	}
787 788 789 790 791 792 793 794

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
795 796
		if (leader->hw_event.pinned) {
			update_group_times(leader);
797
			leader->state = PERF_COUNTER_STATE_ERROR;
798
		}
799 800 801
	}

 unlock:
802
	spin_unlock_irqrestore(&ctx->lock, flags);
803 804 805 806
}

/*
 * Enable a counter.
807 808 809 810 811 812
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
859
	if (counter->state == PERF_COUNTER_STATE_OFF) {
860
		counter->state = PERF_COUNTER_STATE_INACTIVE;
861 862
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
863
	}
864 865 866 867
 out:
	spin_unlock_irq(&ctx->lock);
}

868
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
869
{
870 871 872 873 874 875
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

876 877
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
878 879

	return 0;
880 881
}

882 883 884 885 886
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

887 888
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
889
	if (likely(!ctx->nr_counters))
890
		goto out;
891
	update_context_time(ctx);
892

893
	perf_disable();
894
	if (ctx->nr_active) {
895 896 897 898 899 900
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
901
	}
902
	perf_enable();
903
 out:
904 905 906
	spin_unlock(&ctx->lock);
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
922
		&& ctx1->parent_gen == ctx2->parent_gen;
923 924
}

T
Thomas Gleixner 已提交
925 926 927 928 929 930
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
931
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
932 933 934 935
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
936 937
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
938 939
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
940
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
941
	struct perf_counter_context *next_ctx;
942
	struct perf_counter_context *parent;
943
	struct pt_regs *regs;
944
	int do_switch = 1;
T
Thomas Gleixner 已提交
945

946 947 948
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);

949
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
950 951
		return;

952
	update_context_time(ctx);
953 954 955

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
956
	next_ctx = next->perf_counter_ctxp;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
979
	}
980
	rcu_read_unlock();
981

982 983 984 985
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
986 987
}

988 989 990 991
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

992 993
	if (!cpuctx->task_ctx)
		return;
994 995 996 997
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

998
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
999
{
1000
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1001 1002
}

1003 1004 1005
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1006 1007
{
	struct perf_counter *counter;
1008
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1009

1010 1011
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1012
	if (likely(!ctx->nr_counters))
1013
		goto out;
T
Thomas Gleixner 已提交
1014

1015
	ctx->timestamp = perf_clock();
1016

1017
	perf_disable();
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1030 1031 1032 1033 1034 1035
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1036 1037 1038 1039 1040

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1041 1042
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1043
			counter->state = PERF_COUNTER_STATE_ERROR;
1044
		}
1045 1046
	}

1047
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1048 1049 1050 1051 1052 1053 1054 1055
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1056 1057 1058 1059
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1060 1061 1062
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1063 1064
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1065
				can_add_hw = 0;
1066 1067 1068 1069 1070
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1071
		}
T
Thomas Gleixner 已提交
1072
	}
1073
	perf_enable();
1074
 out:
T
Thomas Gleixner 已提交
1075
	spin_unlock(&ctx->lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1092
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1093

1094 1095
	if (likely(!ctx))
		return;
1096 1097
	if (cpuctx->task_ctx == ctx)
		return;
1098
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1099 1100 1101
	cpuctx->task_ctx = ctx;
}

1102 1103 1104 1105 1106 1107 1108
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1109 1110 1111
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1112 1113 1114
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1115 1116
{
	struct perf_counter *counter;
1117
	u64 interrupts, irq_period;
1118 1119 1120 1121 1122 1123 1124 1125
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1126 1127 1128 1129 1130 1131 1132 1133 1134
		interrupts = counter->hw.interrupts;
		counter->hw.interrupts = 0;

		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
			interrupts = 2*sysctl_perf_counter_limit/HZ;
		}

1135 1136 1137
		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

1138
		events = HZ * interrupts * counter->hw.irq_period;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

1149 1150
		perf_log_period(counter, irq_period);

1151 1152 1153 1154 1155
		counter->hw.irq_period = irq_period;
	}
	spin_unlock(&ctx->lock);
}

1156 1157 1158 1159
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1160 1161 1162
{
	struct perf_counter *counter;

1163
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1164 1165 1166 1167
		return;

	spin_lock(&ctx->lock);
	/*
1168
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1169
	 */
1170
	perf_disable();
1171
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1172
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1173 1174
		break;
	}
1175
	perf_enable();
T
Thomas Gleixner 已提交
1176 1177

	spin_unlock(&ctx->lock);
1178 1179 1180 1181
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1182 1183 1184 1185 1186 1187 1188
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1189
	ctx = curr->perf_counter_ctxp;
1190

1191
	perf_adjust_freq(&cpuctx->ctx);
1192 1193
	if (ctx)
		perf_adjust_freq(ctx);
1194

1195
	perf_counter_cpu_sched_out(cpuctx);
1196 1197
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1198

1199
	rotate_ctx(&cpuctx->ctx);
1200 1201
	if (ctx)
		rotate_ctx(ctx);
1202

1203
	perf_counter_cpu_sched_in(cpuctx, cpu);
1204 1205
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1206 1207 1208 1209 1210
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1211
static void __read(void *info)
T
Thomas Gleixner 已提交
1212
{
I
Ingo Molnar 已提交
1213
	struct perf_counter *counter = info;
1214
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1215
	unsigned long flags;
I
Ingo Molnar 已提交
1216

1217
	local_irq_save(flags);
1218
	if (ctx->is_active)
1219
		update_context_time(ctx);
1220
	counter->pmu->read(counter);
1221
	update_counter_times(counter);
1222
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1223 1224
}

1225
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1226 1227 1228 1229 1230
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1231
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1232
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1233
					 __read, counter, 1);
1234 1235
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1236 1237
	}

1238
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1257 1258 1259 1260
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
1261
	struct perf_counter_context *parent_ctx;
T
Thomas Gleixner 已提交
1262
	struct task_struct *task;
1263
	int err;
T
Thomas Gleixner 已提交
1264 1265 1266 1267 1268 1269

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1270
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1286
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1303 1304 1305 1306 1307 1308 1309
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1310
	/* Reuse ptrace permission checks for now. */
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry_lock:
	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more and we can
		 * unclone it if necessary.
		 * Once it's not a clone things will be stable.
		 */
		spin_lock_irq(&ctx->lock);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irq(&ctx->lock);
			goto retry;
		}
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		++ctx->generation;
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
		spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1349
	}
1350
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1351

1352 1353
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1354 1355 1356
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1357
		__perf_counter_init_context(ctx, task);
1358 1359
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1360 1361 1362 1363 1364
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1365
			goto retry_lock;
1366
		}
1367
		get_task_struct(task);
1368 1369
	}

1370
	put_task_struct(task);
T
Thomas Gleixner 已提交
1371
	return ctx;
1372 1373 1374 1375

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1376 1377
}

P
Peter Zijlstra 已提交
1378 1379 1380 1381 1382 1383 1384 1385
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1386 1387
static void perf_pending_sync(struct perf_counter *counter);

1388 1389
static void free_counter(struct perf_counter *counter)
{
1390 1391
	perf_pending_sync(counter);

1392
	atomic_dec(&nr_counters);
1393 1394 1395 1396 1397 1398 1399
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1400 1401 1402
	if (counter->destroy)
		counter->destroy(counter);

1403
	put_ctx(counter->ctx);
1404 1405 1406
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1417
	mutex_lock(&ctx->mutex);
1418
	perf_counter_remove_from_context(counter);
1419
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1420

1421 1422 1423 1424 1425
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1426
	free_counter(counter);
T
Thomas Gleixner 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1437 1438
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1439

1440 1441 1442 1443 1444 1445 1446 1447
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1448
	mutex_lock(&counter->child_mutex);
1449 1450 1451 1452 1453 1454 1455 1456
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1457
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1467 1468 1469 1470 1471 1472 1473
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1474
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1475 1476 1477 1478 1479
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1480
	struct perf_mmap_data *data;
1481
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1482 1483 1484 1485

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1486
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1487
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1488 1489 1490 1491 1492 1493

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1494 1495
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1496
	(void)perf_counter_read(counter);
1497
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1507
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1508 1509 1510 1511 1512
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1513
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1514 1515
}

1516 1517 1518 1519 1520 1521
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1522 1523 1524 1525 1526
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1527
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1528 1529 1530
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1531
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536 1537 1538
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1539
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1540 1541 1542
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1543
	mutex_unlock(&counter->child_mutex);
1544 1545
}

1546 1547 1548
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1549 1550
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1551 1552 1553

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1554
		func = perf_counter_enable;
1555 1556
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1557
		func = perf_counter_disable;
1558
		break;
1559
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1560
		func = perf_counter_reset;
1561
		break;
P
Peter Zijlstra 已提交
1562 1563 1564

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1565
	default:
P
Peter Zijlstra 已提交
1566
		return -ENOTTY;
1567
	}
P
Peter Zijlstra 已提交
1568 1569 1570 1571 1572 1573 1574

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1575 1576
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1601 1602 1603 1604 1605 1606
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1607
{
1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1617

1618 1619 1620 1621 1622
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1623
	++userpg->lock;
1624
	barrier();
1625 1626 1627 1628
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1629

1630
	barrier();
1631
	++userpg->lock;
1632
	preempt_enable();
1633
unlock:
1634
	rcu_read_unlock();
1635 1636 1637 1638 1639
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1652

1653 1654
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1655

1656 1657
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1658
	get_page(vmf->page);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1692
	atomic_set(&data->lock, -1);
1693 1694 1695

	rcu_assign_pointer(counter->data, data);

1696
	return 0;
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1746 1747 1748
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1749
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1750 1751 1752
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1753 1754 1755
}

static struct vm_operations_struct perf_mmap_vmops = {
1756
	.open  = perf_mmap_open,
1757
	.close = perf_mmap_close,
1758 1759 1760 1761 1762 1763
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1764
	struct user_struct *user = current_user();
1765 1766
	unsigned long vma_size;
	unsigned long nr_pages;
1767
	unsigned long user_locked, user_lock_limit;
1768
	unsigned long locked, lock_limit;
1769
	long user_extra, extra;
1770
	int ret = 0;
1771 1772 1773

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1774 1775 1776 1777

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1778 1779 1780 1781 1782
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1783 1784
		return -EINVAL;

1785
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1786 1787
		return -EINVAL;

1788 1789
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1790

1791 1792 1793 1794 1795 1796 1797
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1798 1799
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1800 1801 1802 1803 1804 1805

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1806
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1807

1808 1809 1810
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1811 1812 1813

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1814
	locked = vma->vm_mm->locked_vm + extra;
1815

1816 1817 1818 1819
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1820 1821 1822

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1823 1824 1825 1826
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1827
	atomic_long_add(user_extra, &user->locked_vm);
1828 1829
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1830
unlock:
1831
	mutex_unlock(&counter->mmap_mutex);
1832 1833 1834 1835

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1836 1837

	return ret;
1838 1839
}

P
Peter Zijlstra 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1856 1857 1858 1859
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1860 1861
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1862
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1863
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1864 1865
};

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1876 1877 1878 1879 1880

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1908
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1909

1910
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1911 1912 1913
	PENDING_TAIL,
};

1914 1915
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1916
{
1917
	struct perf_pending_entry **head;
1918

1919
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1920 1921
		return;

1922 1923 1924
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1925 1926

	do {
1927 1928
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1929 1930 1931

	set_perf_counter_pending();

1932
	put_cpu_var(perf_pending_head);
1933 1934 1935 1936
}

static int __perf_pending_run(void)
{
1937
	struct perf_pending_entry *list;
1938 1939
	int nr = 0;

1940
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1941
	while (list != PENDING_TAIL) {
1942 1943
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1944 1945 1946

		list = list->next;

1947 1948
		func = entry->func;
		entry->next = NULL;
1949 1950 1951 1952 1953 1954 1955
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1956
		func(entry);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1978
	return counter->pending.next == NULL;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1991 1992 1993 1994
/*
 * Callchain support -- arch specific
 */

1995
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1996 1997 1998 1999
{
	return NULL;
}

2000 2001 2002 2003
/*
 * Output
 */

2004 2005 2006 2007
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
2008
	unsigned int		head;
2009
	int			nmi;
2010
	int			overflow;
2011 2012
	int			locked;
	unsigned long		flags;
2013 2014
};

2015
static void perf_output_wakeup(struct perf_output_handle *handle)
2016
{
2017 2018
	atomic_set(&handle->data->poll, POLL_IN);

2019
	if (handle->nmi) {
2020
		handle->counter->pending_wakeup = 1;
2021
		perf_pending_queue(&handle->counter->pending,
2022
				   perf_pending_counter);
2023
	} else
2024 2025 2026
		perf_counter_wakeup(handle->counter);
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2053
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

2064
	data->done_head = data->head;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2075
	while ((head = atomic_xchg(&data->done_head, 0)))
2076 2077 2078
		data->user_page->data_head = head;

	/*
2079
	 * NMI can happen here, which means we can miss a done_head update.
2080 2081
	 */

2082
	cpu = atomic_xchg(&data->lock, -1);
2083 2084 2085 2086 2087
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2088
	if (unlikely(atomic_read(&data->done_head))) {
2089 2090 2091
		/*
		 * Since we had it locked, we can lock it again.
		 */
2092
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2093 2094 2095 2096 2097
			cpu_relax();

		goto again;
	}

2098
	if (atomic_xchg(&data->wakeup, 0))
2099 2100 2101 2102 2103
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2104
static int perf_output_begin(struct perf_output_handle *handle,
2105
			     struct perf_counter *counter, unsigned int size,
2106
			     int nmi, int overflow)
2107
{
2108
	struct perf_mmap_data *data;
2109
	unsigned int offset, head;
2110

2111 2112 2113 2114 2115 2116
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2117 2118 2119 2120 2121
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2122
	handle->data	 = data;
2123 2124 2125
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2126

2127
	if (!data->nr_pages)
2128
		goto fail;
2129

2130 2131
	perf_output_lock(handle);

2132 2133
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2134
		head += size;
2135 2136
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2137
	handle->offset	= offset;
2138
	handle->head	= head;
2139 2140 2141

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2142

2143
	return 0;
2144

2145
fail:
2146
	perf_output_wakeup(handle);
2147 2148
out:
	rcu_read_unlock();
2149

2150 2151
	return -ENOSPC;
}
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2181

2182 2183 2184 2185 2186
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2187 2188
}

P
Peter Zijlstra 已提交
2189 2190 2191
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2192
static void perf_output_end(struct perf_output_handle *handle)
2193
{
2194 2195 2196 2197
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2198

2199
	if (handle->overflow && wakeup_events) {
2200
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2201
		if (events >= wakeup_events) {
2202
			atomic_sub(wakeup_events, &data->events);
2203
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2204
		}
2205 2206 2207
	}

	perf_output_unlock(handle);
2208
	rcu_read_unlock();
2209 2210
}

2211
static void perf_counter_output(struct perf_counter *counter,
2212
				int nmi, struct pt_regs *regs, u64 addr)
2213
{
2214
	int ret;
2215
	u64 record_type = counter->hw_event.record_type;
2216 2217 2218
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2219
	struct {
2220
		u32 pid, tid;
2221
	} tid_entry;
2222 2223 2224 2225
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2226 2227
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2228
	u64 time;
2229 2230 2231
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2232

2233
	header.type = 0;
2234
	header.size = sizeof(header);
2235

2236
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2237
	header.misc |= perf_misc_flags(regs);
2238

2239
	if (record_type & PERF_RECORD_IP) {
2240
		ip = perf_instruction_pointer(regs);
2241
		header.type |= PERF_RECORD_IP;
2242 2243
		header.size += sizeof(ip);
	}
2244

2245
	if (record_type & PERF_RECORD_TID) {
2246
		/* namespace issues */
2247 2248 2249
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2250
		header.type |= PERF_RECORD_TID;
2251 2252 2253
		header.size += sizeof(tid_entry);
	}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2264 2265 2266 2267 2268
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2269 2270 2271 2272 2273
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2274 2275 2276 2277 2278 2279 2280
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2281
	if (record_type & PERF_RECORD_GROUP) {
2282
		header.type |= PERF_RECORD_GROUP;
2283 2284 2285 2286 2287
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2288 2289 2290
		callchain = perf_callchain(regs);

		if (callchain) {
2291
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2292

2293
			header.type |= PERF_RECORD_CALLCHAIN;
2294 2295 2296 2297
			header.size += callchain_size;
		}
	}

2298
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2299 2300
	if (ret)
		return;
2301

2302
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2303

2304 2305
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2306

2307 2308
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2309

2310 2311 2312
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2313 2314 2315
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2316 2317 2318
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2319 2320 2321
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2322 2323 2324
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2325 2326 2327
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2328

2329
		perf_output_put(&handle, nr);
2330

2331 2332 2333
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2334
				sub->pmu->read(sub);
2335

2336 2337
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2338

2339 2340
			perf_output_put(&handle, group_entry);
		}
2341
	}
P
Peter Zijlstra 已提交
2342

2343 2344
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2345

2346
	perf_output_end(&handle);
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2414
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

2425
	perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2426 2427 2428 2429
}

void perf_counter_comm(struct task_struct *task)
{
2430 2431 2432 2433
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2434 2435 2436
	if (!current->perf_counter_ctxp)
		return;

2437
	comm_event = (struct perf_comm_event){
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2474
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2475 2476 2477 2478 2479 2480 2481

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2482
	perf_output_end(&handle);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2530
		name = d_path(&file->f_path, buf, PATH_MAX);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2541
	size = ALIGN(strlen(name)+1, sizeof(u64));
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2552
	perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2553 2554 2555 2556 2557 2558 2559

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2560 2561 2562 2563
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;
2564 2565
	if (!current->perf_counter_ctxp)
		return;
2566 2567

	mmap_event = (struct perf_mmap_event){
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2585 2586 2587 2588 2589 2590
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2605
/*
2606 2607
 * Log irq_period changes so that analyzing tools can re-normalize the
 * event flow.
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

	if (counter->hw.irq_period == period)
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
		.time = sched_clock(),
	};

I
Ingo Molnar 已提交
2661
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2662 2663 2664 2665 2666 2667 2668
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2669 2670 2671 2672 2673
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2674
			  int nmi, struct pt_regs *regs, u64 addr)
2675
{
2676
	int events = atomic_read(&counter->event_limit);
2677
	int throttle = counter->pmu->unthrottle != NULL;
2678 2679
	int ret = 0;

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	if (!throttle) {
		counter->hw.interrupts++;
	} else if (counter->hw.interrupts != MAX_INTERRUPTS) {
		counter->hw.interrupts++;
		if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
			counter->hw.interrupts = MAX_INTERRUPTS;
			perf_log_throttle(counter, 0);
			ret = 1;
		}
	}
2690

2691 2692 2693 2694 2695
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2696
	counter->pending_kill = POLL_IN;
2697 2698
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2699
		counter->pending_kill = POLL_HUP;
2700 2701 2702 2703 2704 2705 2706 2707
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2708
	perf_counter_output(counter, nmi, regs, addr);
2709
	return ret;
2710 2711
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2754 2755
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2756
	enum hrtimer_restart ret = HRTIMER_RESTART;
2757 2758
	struct perf_counter *counter;
	struct pt_regs *regs;
2759
	u64 period;
2760 2761

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2762
	counter->pmu->read(counter);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2773
	if (regs) {
2774
		if (perf_counter_overflow(counter, 0, regs, 0))
2775 2776
			ret = HRTIMER_NORESTART;
	}
2777

2778 2779
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2780

2781
	return ret;
2782 2783 2784
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2785
				    int nmi, struct pt_regs *regs, u64 addr)
2786
{
2787 2788
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2789
	if (perf_counter_overflow(counter, nmi, regs, addr))
2790 2791 2792
		/* soft-disable the counter */
		;

2793 2794
}

2795
static int perf_swcounter_match(struct perf_counter *counter,
2796 2797
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2798 2799 2800 2801
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2802
	if (perf_event_raw(&counter->hw_event))
2803 2804
		return 0;

2805
	if (perf_event_type(&counter->hw_event) != type)
2806 2807
		return 0;

2808
	if (perf_event_id(&counter->hw_event) != event)
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2820
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2821
			       int nmi, struct pt_regs *regs, u64 addr)
2822 2823 2824
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2825
		perf_swcounter_overflow(counter, nmi, regs, addr);
2826 2827
}

2828
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2829
				     enum perf_event_types type, u32 event,
2830 2831
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2832 2833 2834
{
	struct perf_counter *counter;

2835
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2836 2837
		return;

P
Peter Zijlstra 已提交
2838 2839
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2840
		if (perf_swcounter_match(counter, type, event, regs))
2841
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2842
	}
P
Peter Zijlstra 已提交
2843
	rcu_read_unlock();
2844 2845
}

P
Peter Zijlstra 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2860
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2861 2862
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2863 2864
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2865 2866 2867 2868 2869 2870 2871
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2872

2873 2874
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2875 2876
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2877
					 nr, nmi, regs, addr);
2878
	}
2879

P
Peter Zijlstra 已提交
2880 2881 2882 2883
	barrier();
	(*recursion)--;

out:
2884 2885 2886
	put_cpu_var(perf_cpu_context);
}

2887 2888
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2889
{
2890
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2909
static const struct pmu perf_ops_generic = {
2910 2911 2912 2913 2914
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2915 2916 2917 2918
/*
 * Software counter: cpu wall time clock
 */

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2931 2932 2933 2934 2935 2936
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2937 2938
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2939
	if (hwc->irq_period) {
2940
		u64 period = max_t(u64, 10000, hwc->irq_period);
2941
		__hrtimer_start_range_ns(&hwc->hrtimer,
2942
				ns_to_ktime(period), 0,
2943 2944 2945 2946 2947 2948
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2949 2950
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2951 2952
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2953
	cpu_clock_perf_counter_update(counter);
2954 2955 2956 2957
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2958
	cpu_clock_perf_counter_update(counter);
2959 2960
}

2961
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2962 2963 2964
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2965 2966
};

2967 2968 2969 2970
/*
 * Software counter: task time clock
 */

2971
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2972
{
2973
	u64 prev;
I
Ingo Molnar 已提交
2974 2975
	s64 delta;

2976
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2977 2978
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2979 2980
}

2981
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2982
{
2983
	struct hw_perf_counter *hwc = &counter->hw;
2984 2985 2986
	u64 now;

	now = counter->ctx->time;
2987

2988
	atomic64_set(&hwc->prev_count, now);
2989 2990
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2991
	if (hwc->irq_period) {
2992
		u64 period = max_t(u64, 10000, hwc->irq_period);
2993
		__hrtimer_start_range_ns(&hwc->hrtimer,
2994
				ns_to_ktime(period), 0,
2995 2996
				HRTIMER_MODE_REL, 0);
	}
2997 2998

	return 0;
I
Ingo Molnar 已提交
2999 3000 3001
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3002
{
3003 3004
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
3005 3006
	task_clock_perf_counter_update(counter, counter->ctx->time);

3007
}
I
Ingo Molnar 已提交
3008

3009 3010
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3023 3024
}

3025
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3026 3027 3028
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3029 3030
};

3031 3032 3033 3034
/*
 * Software counter: cpu migrations
 */

3035
static inline u64 get_cpu_migrations(struct perf_counter *counter)
3036
{
3037 3038 3039 3040 3041
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
3042 3043 3044 3045 3046 3047 3048 3049
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
3050
	now = get_cpu_migrations(counter);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

3064
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3065
{
3066 3067 3068
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
3069
	return 0;
3070 3071 3072 3073 3074 3075 3076
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

3077
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
3078 3079 3080
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
3081 3082
};

3083 3084 3085
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3086 3087 3088 3089 3090
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3091
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3092
}
3093
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3094 3095 3096 3097 3098 3099

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3100
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
3101 3102
}

3103
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3104
{
3105
	int event_id = perf_event_id(&counter->hw_event);
3106 3107 3108 3109 3110 3111 3112
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3113
	counter->hw.irq_period = counter->hw_event.irq_period;
3114 3115 3116 3117

	return &perf_ops_generic;
}
#else
3118
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3119 3120 3121 3122 3123
{
	return NULL;
}
#endif

3124
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3125
{
3126
	const struct pmu *pmu = NULL;
3127

3128 3129 3130 3131 3132 3133 3134
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3135
	switch (perf_event_id(&counter->hw_event)) {
3136
	case PERF_COUNT_CPU_CLOCK:
3137
		pmu = &perf_ops_cpu_clock;
3138

3139
		break;
3140
	case PERF_COUNT_TASK_CLOCK:
3141 3142 3143 3144 3145
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3146
			pmu = &perf_ops_task_clock;
3147
		else
3148
			pmu = &perf_ops_cpu_clock;
3149

3150
		break;
3151
	case PERF_COUNT_PAGE_FAULTS:
3152 3153
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3154
	case PERF_COUNT_CONTEXT_SWITCHES:
3155
		pmu = &perf_ops_generic;
3156
		break;
3157
	case PERF_COUNT_CPU_MIGRATIONS:
3158
		if (!counter->hw_event.exclude_kernel)
3159
			pmu = &perf_ops_cpu_migrations;
3160
		break;
3161
	}
3162

3163
	return pmu;
3164 3165
}

T
Thomas Gleixner 已提交
3166 3167 3168 3169
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3170 3171
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3172
		   struct perf_counter_context *ctx,
3173 3174
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3175
{
3176
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3177
	struct perf_counter *counter;
3178
	struct hw_perf_counter *hwc;
3179
	long err;
T
Thomas Gleixner 已提交
3180

3181
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3182
	if (!counter)
3183
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3184

3185 3186 3187 3188 3189 3190 3191
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3192 3193 3194
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3195
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3196
	INIT_LIST_HEAD(&counter->event_entry);
3197
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3198 3199
	init_waitqueue_head(&counter->waitq);

3200 3201
	mutex_init(&counter->mmap_mutex);

I
Ingo Molnar 已提交
3202 3203
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3204
	counter->group_leader		= group_leader;
3205
	counter->pmu			= NULL;
3206
	counter->ctx			= ctx;
3207 3208
	counter->oncpu			= -1;

3209
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3210 3211 3212
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3213
	pmu = NULL;
3214

3215 3216
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
3217
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3218 3219 3220
	else
		hwc->irq_period = hw_event->irq_period;

3221 3222 3223 3224 3225 3226
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

3227
	if (perf_event_raw(hw_event)) {
3228
		pmu = hw_perf_counter_init(counter);
3229 3230 3231 3232
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3233
	case PERF_TYPE_HARDWARE:
3234
		pmu = hw_perf_counter_init(counter);
3235 3236 3237
		break;

	case PERF_TYPE_SOFTWARE:
3238
		pmu = sw_perf_counter_init(counter);
3239 3240 3241
		break;

	case PERF_TYPE_TRACEPOINT:
3242
		pmu = tp_perf_counter_init(counter);
3243 3244
		break;
	}
3245 3246
done:
	err = 0;
3247
	if (!pmu)
3248
		err = -EINVAL;
3249 3250
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3251

3252
	if (err) {
I
Ingo Molnar 已提交
3253
		kfree(counter);
3254
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3255
	}
3256

3257
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3258

3259
	atomic_inc(&nr_counters);
3260 3261 3262 3263 3264 3265 3266
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3267 3268 3269 3270
	return counter;
}

/**
3271
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3272 3273
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3274
 * @pid:		target pid
I
Ingo Molnar 已提交
3275 3276
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3277
 */
3278
SYSCALL_DEFINE5(perf_counter_open,
3279
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3280
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3281
{
3282
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3283
	struct perf_counter_hw_event hw_event;
3284
	struct perf_counter_context *ctx;
3285
	struct file *counter_file = NULL;
3286 3287
	struct file *group_file = NULL;
	int fput_needed = 0;
3288
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3289 3290
	int ret;

3291 3292 3293 3294
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3295
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3296 3297
		return -EFAULT;

3298
	/*
I
Ingo Molnar 已提交
3299 3300 3301 3302 3303 3304 3305 3306
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3307 3308 3309 3310 3311 3312
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3313
			goto err_put_context;
3314
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3315
			goto err_put_context;
3316 3317 3318

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3319 3320 3321 3322 3323 3324 3325 3326
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3327
		 */
I
Ingo Molnar 已提交
3328 3329
		if (group_leader->ctx != ctx)
			goto err_put_context;
3330 3331 3332 3333 3334
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3335 3336
	}

3337 3338
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3339 3340
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3341 3342 3343 3344
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3345 3346 3347 3348 3349 3350 3351
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3352
	mutex_lock(&ctx->mutex);
3353
	perf_install_in_context(ctx, counter, cpu);
3354
	mutex_unlock(&ctx->mutex);
3355

3356 3357 3358 3359 3360 3361
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3362
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3363

3364 3365 3366
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3367 3368
	return ret;

3369
err_free_put_context:
T
Thomas Gleixner 已提交
3370 3371 3372
	kfree(counter);

err_put_context:
3373
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3374

3375
	goto out_fput;
T
Thomas Gleixner 已提交
3376 3377
}

3378 3379 3380
/*
 * inherit a counter from parent task to child task:
 */
3381
static struct perf_counter *
3382 3383 3384 3385
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3386
	      struct perf_counter *group_leader,
3387 3388 3389 3390
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3391 3392 3393 3394 3395 3396 3397 3398 3399
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3400
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3401 3402
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3403 3404
	if (IS_ERR(child_counter))
		return child_counter;
3405
	get_ctx(child_ctx);
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3417 3418 3419
	/*
	 * Link it up in the child's context:
	 */
3420
	add_counter_to_ctx(child_counter, child_ctx);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3436 3437 3438
	/*
	 * Link this into the parent counter's child list
	 */
3439
	mutex_lock(&parent_counter->child_mutex);
3440
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3441
	mutex_unlock(&parent_counter->child_mutex);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3454
	struct perf_counter *child_ctr;
3455 3456 3457

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3458 3459
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3460
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3461 3462 3463 3464
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3465
	}
3466 3467 3468
	return 0;
}

3469 3470 3471
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3472
	u64 child_val;
3473 3474 3475 3476 3477 3478 3479

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3480 3481 3482 3483
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3484 3485 3486 3487

	/*
	 * Remove this counter from the parent's list
	 */
3488
	mutex_lock(&parent_counter->child_mutex);
3489
	list_del_init(&child_counter->child_list);
3490
	mutex_unlock(&parent_counter->child_mutex);
3491 3492 3493 3494 3495 3496 3497 3498

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3499 3500 3501 3502 3503 3504 3505
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3506
	update_counter_times(child_counter);
3507
	perf_counter_remove_from_context(child_counter);
3508

3509 3510 3511 3512 3513 3514
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3515 3516
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3517
		free_counter(child_counter);
3518
	}
3519 3520 3521
}

/*
3522
 * When a child task exits, feed back counter values to parent counters.
3523 3524 3525 3526 3527
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3528
	unsigned long flags;
3529

3530
	child_ctx = child->perf_counter_ctxp;
3531

3532
	if (likely(!child_ctx))
3533 3534
		return;

3535 3536
	local_irq_save(flags);
	__perf_counter_task_sched_out(child_ctx);
3537 3538 3539 3540 3541 3542 3543

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3544
	child->perf_counter_ctxp = NULL;
3545
	spin_unlock(&child_ctx->lock);
3546 3547 3548 3549
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3550
again:
3551 3552 3553
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3554 3555 3556 3557 3558 3559 3560 3561

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3562 3563 3564 3565

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3566 3567 3568 3569 3570
}

/*
 * Initialize the perf_counter context in task_struct
 */
3571
int perf_counter_init_task(struct task_struct *child)
3572 3573
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3574
	struct perf_counter *counter;
3575
	struct task_struct *parent = current;
3576
	int inherited_all = 1;
3577
	int ret = 0;
3578

3579
	child->perf_counter_ctxp = NULL;
3580

3581 3582 3583
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3584 3585 3586 3587
	parent_ctx = parent->perf_counter_ctxp;
	if (likely(!parent_ctx || !parent_ctx->nr_counters))
		return 0;

3588 3589
	/*
	 * This is executed from the parent task context, so inherit
3590 3591
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3592 3593
	 */

3594 3595
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3596
		return -ENOMEM;
3597

3598 3599
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
3600
	get_task_struct(child);
3601

3602 3603 3604 3605
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3606
	mutex_lock(&parent_ctx->mutex);
3607 3608 3609 3610 3611

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3612 3613 3614 3615
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3616 3617
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3618
			continue;
3619
		}
3620

3621 3622 3623
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3624
			inherited_all = 0;
3625
			break;
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
		 */
		if (parent_ctx->parent_ctx) {
			child_ctx->parent_ctx = parent_ctx->parent_ctx;
			child_ctx->parent_gen = parent_ctx->parent_gen;
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3642 3643
	}

3644
	mutex_unlock(&parent_ctx->mutex);
3645 3646

	return ret;
3647 3648
}

3649
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3650
{
3651
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3652

3653 3654
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3655

3656
	spin_lock(&perf_resource_lock);
3657
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3658
	spin_unlock(&perf_resource_lock);
3659

3660
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3661 3662 3663
}

#ifdef CONFIG_HOTPLUG_CPU
3664
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3665 3666 3667 3668 3669
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3670 3671
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3672
}
3673
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3674
{
3675 3676 3677 3678
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3679
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3680
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3681 3682
}
#else
3683
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3695
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3696 3697 3698 3699
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3700
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3714
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3741
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3751
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3773
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3774
	perf_overcommit = val;
3775
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);