perf_counter.c 92.4 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50

T
Thomas Gleixner 已提交
51
/*
52
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
53
 */
54
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
55 56 57 58

/*
 * Architecture provided APIs - weak aliases:
 */
59
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
60
{
61
	return NULL;
T
Thomas Gleixner 已提交
62 63
}

64 65 66
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

67
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
68 69 70 71 72 73
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
74

75 76
void __weak perf_counter_print_debug(void)	{ }

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

101 102 103 104 105
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

106 107 108 109 110 111 112 113
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

114 115
static void put_ctx(struct perf_counter_context *ctx)
{
116 117 118
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
119 120 121
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
122
	}
123 124
}

125 126 127 128
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
129 130 131 132 133 134 135 136 137 138
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
139
	if (group_leader == counter)
140
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
141
	else {
142
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
143 144
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
145 146

	list_add_rcu(&counter->event_entry, &ctx->event_list);
147
	ctx->nr_counters++;
148 149
}

150 151
/*
 * Remove a counter from the lists for its context.
152
 * Must be called with ctx->mutex and ctx->lock held.
153
 */
154 155 156 157 158
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

159 160
	if (list_empty(&counter->list_entry))
		return;
161 162
	ctx->nr_counters--;

163
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
164
	list_del_rcu(&counter->event_entry);
165

P
Peter Zijlstra 已提交
166 167 168
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

169 170 171 172 173 174 175 176
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

177
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
178 179 180 181
		sibling->group_leader = sibling;
	}
}

182 183 184 185 186 187 188 189 190
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
191
	counter->tstamp_stopped = ctx->time;
192
	counter->pmu->disable(counter);
193 194 195 196 197 198 199 200 201
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
224 225 226 227 228 229
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
230
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
231 232 233 234
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
235
	unsigned long flags;
T
Thomas Gleixner 已提交
236

237
	local_irq_save(flags);
T
Thomas Gleixner 已提交
238 239 240 241 242
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
243 244
	if (ctx->task && cpuctx->task_ctx != ctx) {
		local_irq_restore(flags);
T
Thomas Gleixner 已提交
245
		return;
246
	}
T
Thomas Gleixner 已提交
247

248
	spin_lock(&ctx->lock);
249 250 251 252 253
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
254

255 256
	counter_sched_out(counter, cpuctx, ctx);

257
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
258 259 260 261 262 263 264 265 266 267 268

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

269
	perf_enable();
270
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
271 272 273 274 275 276
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
277
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
278 279 280
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
281 282 283 284 285 286 287
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
288
 */
289
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
290 291 292 293 294 295 296 297 298 299
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
300
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
301 302 303 304 305
					 counter, 1);
		return;
	}

retry:
306
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
307 308 309 310 311 312
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
313
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
314 315 316 317 318 319
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
320
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
321 322
	 * succeed.
	 */
323 324
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
325 326 327 328
	}
	spin_unlock_irq(&ctx->lock);
}

329
static inline u64 perf_clock(void)
330
{
331
	return cpu_clock(smp_processor_id());
332 333 334 335 336
}

/*
 * Update the record of the current time in a context.
 */
337
static void update_context_time(struct perf_counter_context *ctx)
338
{
339 340 341 342
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
343 344 345 346 347 348 349 350 351 352
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

353 354 355 356 357 358 359 360 361 362 363
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

378 379 380 381 382 383 384 385 386 387
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

388
	local_irq_save(flags);
389 390 391 392
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
393 394
	if (ctx->task && cpuctx->task_ctx != ctx) {
		local_irq_restore(flags);
395
		return;
396
	}
397

398
	spin_lock(&ctx->lock);
399 400 401 402 403 404

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
405
		update_context_time(ctx);
406
		update_counter_times(counter);
407 408 409 410 411 412 413
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

414
	spin_unlock_irqrestore(&ctx->lock, flags);
415 416 417 418
}

/*
 * Disable a counter.
419 420 421 422 423 424 425 426 427 428
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
460 461
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
462
		counter->state = PERF_COUNTER_STATE_OFF;
463
	}
464 465 466 467

	spin_unlock_irq(&ctx->lock);
}

468 469 470 471 472 473
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
474
	if (counter->state <= PERF_COUNTER_STATE_OFF)
475 476 477 478 479 480 481 482 483
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

484
	if (counter->pmu->enable(counter)) {
485 486 487 488 489
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

490
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
491

492 493
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
494 495
	ctx->nr_active++;

496 497 498
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

499 500 501
	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

550 551 552 553 554 555 556 557 558 559
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
560

561 562 563
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

599 600 601 602 603
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
604 605 606
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
607 608
}

T
Thomas Gleixner 已提交
609
/*
610
 * Cross CPU call to install and enable a performance counter
611 612
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
613 614 615 616 617 618
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
619
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
620
	int cpu = smp_processor_id();
621
	unsigned long flags;
622
	int err;
T
Thomas Gleixner 已提交
623

624
	local_irq_save(flags);
T
Thomas Gleixner 已提交
625 626 627 628
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
629 630
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
631
	 */
632
	if (ctx->task && cpuctx->task_ctx != ctx) {
633 634
		if (cpuctx->task_ctx || ctx->task != current) {
			local_irq_restore(flags);
635
			return;
636
		}
637 638
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
639

640
	spin_lock(&ctx->lock);
641
	ctx->is_active = 1;
642
	update_context_time(ctx);
T
Thomas Gleixner 已提交
643 644 645 646 647

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
648
	perf_disable();
T
Thomas Gleixner 已提交
649

650
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
651

652 653 654 655 656 657 658 659
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

660 661 662 663 664
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
665
	if (!group_can_go_on(counter, cpuctx, 1))
666 667 668 669
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

670 671 672 673 674 675 676 677
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
678 679
		if (leader->hw_event.pinned) {
			update_group_times(leader);
680
			leader->state = PERF_COUNTER_STATE_ERROR;
681
		}
682
	}
T
Thomas Gleixner 已提交
683

684
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
685 686
		cpuctx->max_pertask--;

687
 unlock:
688
	perf_enable();
689

690
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
691 692 693 694 695 696 697 698 699 700 701
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
702 703
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
730
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
731 732 733 734 735 736 737 738 739
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
740 741
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
742 743 744
	spin_unlock_irq(&ctx->lock);
}

745 746 747 748
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
749
{
750 751 752 753 754 755
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
756

757
	local_irq_save(flags);
758 759 760 761
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
762
	if (ctx->task && cpuctx->task_ctx != ctx) {
763 764
		if (cpuctx->task_ctx || ctx->task != current) {
			local_irq_restore(flags);
765
			return;
766
		}
767 768
		cpuctx->task_ctx = ctx;
	}
769

770
	spin_lock(&ctx->lock);
771
	ctx->is_active = 1;
772
	update_context_time(ctx);
773

774
	counter->prev_state = counter->state;
775 776 777
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
778
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
779 780

	/*
781 782
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
783
	 */
784 785
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
786

787
	if (!group_can_go_on(counter, cpuctx, 1)) {
788
		err = -EEXIST;
789
	} else {
790
		perf_disable();
791 792 793 794 795 796
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
797
		perf_enable();
798
	}
799 800 801 802 803 804 805 806

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
807 808
		if (leader->hw_event.pinned) {
			update_group_times(leader);
809
			leader->state = PERF_COUNTER_STATE_ERROR;
810
		}
811 812 813
	}

 unlock:
814
	spin_unlock_irqrestore(&ctx->lock, flags);
815 816 817 818
}

/*
 * Enable a counter.
819 820 821 822 823 824
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
871
	if (counter->state == PERF_COUNTER_STATE_OFF) {
872
		counter->state = PERF_COUNTER_STATE_INACTIVE;
873 874
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
875
	}
876 877 878 879
 out:
	spin_unlock_irq(&ctx->lock);
}

880
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
881
{
882 883 884 885 886 887
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

888 889
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
890 891

	return 0;
892 893
}

894 895 896 897 898
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

899 900
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
901
	if (likely(!ctx->nr_counters))
902
		goto out;
903
	update_context_time(ctx);
904

905
	perf_disable();
906
	if (ctx->nr_active) {
907 908 909 910 911 912
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
913
	}
914
	perf_enable();
915
 out:
916 917 918
	spin_unlock(&ctx->lock);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
934 935
		&& ctx1->parent_gen == ctx2->parent_gen
		&& ctx1->parent_gen != ~0ull;
936 937
}

T
Thomas Gleixner 已提交
938 939 940 941 942 943
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
944
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
945 946 947 948
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
949 950
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
951 952
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
954
	struct perf_counter_context *next_ctx;
955
	struct perf_counter_context *parent;
956
	struct pt_regs *regs;
957
	int do_switch = 1;
T
Thomas Gleixner 已提交
958

959 960 961
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);

962
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
963 964
		return;

965
	update_context_time(ctx);
966 967 968

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
969
	next_ctx = next->perf_counter_ctxp;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
992
	}
993
	rcu_read_unlock();
994

995 996 997 998
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
999 1000
}

1001 1002 1003 1004
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1005 1006
	if (!cpuctx->task_ctx)
		return;
1007 1008 1009 1010

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1011 1012 1013 1014
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1015
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1016
{
1017
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1018 1019
}

1020 1021 1022
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1023 1024
{
	struct perf_counter *counter;
1025
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1026

1027 1028
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1029
	if (likely(!ctx->nr_counters))
1030
		goto out;
T
Thomas Gleixner 已提交
1031

1032
	ctx->timestamp = perf_clock();
1033

1034
	perf_disable();
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1047 1048 1049 1050 1051 1052
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1053 1054 1055 1056 1057

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1058 1059
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1060
			counter->state = PERF_COUNTER_STATE_ERROR;
1061
		}
1062 1063
	}

1064
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1065 1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1073 1074 1075 1076
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1077 1078 1079
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1080 1081
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1082
				can_add_hw = 0;
1083 1084 1085 1086 1087
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1088
		}
T
Thomas Gleixner 已提交
1089
	}
1090
	perf_enable();
1091
 out:
T
Thomas Gleixner 已提交
1092
	spin_unlock(&ctx->lock);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1109
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1110

1111 1112
	if (likely(!ctx))
		return;
1113 1114
	if (cpuctx->task_ctx == ctx)
		return;
1115
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1116 1117 1118
	cpuctx->task_ctx = ctx;
}

1119 1120 1121 1122 1123 1124 1125
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1126 1127 1128
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1129 1130 1131
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1132 1133
{
	struct perf_counter *counter;
1134
	u64 interrupts, irq_period;
1135 1136 1137 1138 1139 1140 1141 1142
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1143 1144 1145 1146 1147 1148 1149 1150 1151
		interrupts = counter->hw.interrupts;
		counter->hw.interrupts = 0;

		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
			interrupts = 2*sysctl_perf_counter_limit/HZ;
		}

1152 1153 1154
		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

1155
		events = HZ * interrupts * counter->hw.irq_period;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

1166 1167
		perf_log_period(counter, irq_period);

1168 1169 1170 1171 1172
		counter->hw.irq_period = irq_period;
	}
	spin_unlock(&ctx->lock);
}

1173 1174 1175 1176
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1177 1178 1179
{
	struct perf_counter *counter;

1180
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1181 1182 1183 1184
		return;

	spin_lock(&ctx->lock);
	/*
1185
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1186
	 */
1187
	perf_disable();
1188
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1189
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1190 1191
		break;
	}
1192
	perf_enable();
T
Thomas Gleixner 已提交
1193 1194

	spin_unlock(&ctx->lock);
1195 1196 1197 1198
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1199 1200 1201 1202 1203 1204 1205
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1206
	ctx = curr->perf_counter_ctxp;
1207

1208
	perf_adjust_freq(&cpuctx->ctx);
1209 1210
	if (ctx)
		perf_adjust_freq(ctx);
1211

1212
	perf_counter_cpu_sched_out(cpuctx);
1213 1214
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1215

1216
	rotate_ctx(&cpuctx->ctx);
1217 1218
	if (ctx)
		rotate_ctx(ctx);
1219

1220
	perf_counter_cpu_sched_in(cpuctx, cpu);
1221 1222
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1223 1224 1225 1226 1227
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1228
static void __read(void *info)
T
Thomas Gleixner 已提交
1229
{
I
Ingo Molnar 已提交
1230
	struct perf_counter *counter = info;
1231
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1232
	unsigned long flags;
I
Ingo Molnar 已提交
1233

1234
	local_irq_save(flags);
1235
	if (ctx->is_active)
1236
		update_context_time(ctx);
1237
	counter->pmu->read(counter);
1238
	update_counter_times(counter);
1239
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1240 1241
}

1242
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1243 1244 1245 1246 1247
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1248
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1249
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1250
					 __read, counter, 1);
1251 1252
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1253 1254
	}

1255
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1274 1275 1276 1277
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
1278
	struct perf_counter_context *parent_ctx;
T
Thomas Gleixner 已提交
1279
	struct task_struct *task;
1280
	int err;
T
Thomas Gleixner 已提交
1281 1282 1283 1284 1285 1286

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1287
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1303
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1320 1321 1322 1323 1324 1325 1326
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1327
	/* Reuse ptrace permission checks for now. */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry_lock:
	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more and we can
		 * unclone it if necessary.
		 * Once it's not a clone things will be stable.
		 */
		spin_lock_irq(&ctx->lock);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irq(&ctx->lock);
			goto retry;
		}
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
		spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1365
	}
1366
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1367

1368 1369
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1370 1371 1372
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1373
		__perf_counter_init_context(ctx, task);
1374 1375
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1376 1377 1378 1379 1380
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1381
			goto retry_lock;
1382
		}
1383
		get_task_struct(task);
1384 1385
	}

1386
	put_task_struct(task);
T
Thomas Gleixner 已提交
1387
	return ctx;
1388 1389 1390 1391

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1392 1393
}

P
Peter Zijlstra 已提交
1394 1395 1396 1397 1398 1399 1400 1401
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1402 1403
static void perf_pending_sync(struct perf_counter *counter);

1404 1405
static void free_counter(struct perf_counter *counter)
{
1406 1407
	perf_pending_sync(counter);

1408
	atomic_dec(&nr_counters);
1409 1410 1411 1412 1413 1414 1415
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1416 1417 1418
	if (counter->destroy)
		counter->destroy(counter);

1419
	put_ctx(counter->ctx);
1420 1421 1422
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1433
	WARN_ON_ONCE(ctx->parent_ctx);
1434
	mutex_lock(&ctx->mutex);
1435
	perf_counter_remove_from_context(counter);
1436
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1437

1438 1439 1440 1441 1442
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1443
	free_counter(counter);
T
Thomas Gleixner 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1454 1455
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1465
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1466
	mutex_lock(&counter->child_mutex);
1467 1468 1469 1470 1471 1472 1473 1474
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1475
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1476

1477 1478 1479 1480 1481 1482 1483 1484
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1485 1486 1487 1488 1489 1490 1491
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1492
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1493 1494 1495 1496 1497
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1498
	struct perf_mmap_data *data;
1499
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1500 1501 1502 1503

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1504
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1505
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1506 1507 1508 1509 1510 1511

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1512 1513
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1514
	(void)perf_counter_read(counter);
1515
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1525
	WARN_ON_ONCE(ctx->parent_ctx);
1526
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1527 1528 1529 1530 1531
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1532
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1533 1534
}

1535 1536 1537 1538 1539 1540
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1541 1542 1543 1544 1545
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1546
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1547
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1548 1549 1550
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1551
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556 1557 1558
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1559
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1560
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1561 1562 1563
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1564
	mutex_unlock(&counter->child_mutex);
1565 1566
}

1567 1568 1569
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1570 1571
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1572 1573 1574

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1575
		func = perf_counter_enable;
1576 1577
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1578
		func = perf_counter_disable;
1579
		break;
1580
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1581
		func = perf_counter_reset;
1582
		break;
P
Peter Zijlstra 已提交
1583 1584 1585

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1586
	default:
P
Peter Zijlstra 已提交
1587
		return -ENOTTY;
1588
	}
P
Peter Zijlstra 已提交
1589 1590 1591 1592 1593 1594 1595

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1596 1597
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1622 1623 1624 1625 1626 1627
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1628
{
1629 1630 1631 1632 1633 1634 1635 1636 1637
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1638

1639 1640 1641 1642 1643
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1644
	++userpg->lock;
1645
	barrier();
1646 1647 1648 1649
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1650

1651
	barrier();
1652
	++userpg->lock;
1653
	preempt_enable();
1654
unlock:
1655
	rcu_read_unlock();
1656 1657 1658 1659 1660
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1673

1674 1675
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1676

1677 1678
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1679
	get_page(vmf->page);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1713
	atomic_set(&data->lock, -1);
1714 1715 1716

	rcu_assign_pointer(counter->data, data);

1717
	return 0;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1765
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1766 1767
	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1768 1769 1770
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1771
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1772 1773 1774
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1775 1776 1777
}

static struct vm_operations_struct perf_mmap_vmops = {
1778
	.open  = perf_mmap_open,
1779
	.close = perf_mmap_close,
1780 1781 1782 1783 1784 1785
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1786
	struct user_struct *user = current_user();
1787 1788
	unsigned long vma_size;
	unsigned long nr_pages;
1789
	unsigned long user_locked, user_lock_limit;
1790
	unsigned long locked, lock_limit;
1791
	long user_extra, extra;
1792
	int ret = 0;
1793 1794 1795

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1796 1797 1798 1799

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1800 1801 1802 1803 1804
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1805 1806
		return -EINVAL;

1807
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1808 1809
		return -EINVAL;

1810 1811
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1812

1813
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1814 1815 1816 1817 1818 1819 1820
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1821 1822
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1823 1824 1825 1826 1827 1828

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1829
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1830

1831 1832 1833
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1834 1835 1836

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1837
	locked = vma->vm_mm->locked_vm + extra;
1838

1839 1840 1841 1842
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1843 1844 1845

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1846 1847 1848 1849
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1850
	atomic_long_add(user_extra, &user->locked_vm);
1851 1852
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1853
unlock:
1854
	mutex_unlock(&counter->mmap_mutex);
1855 1856 1857 1858

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1859 1860

	return ret;
1861 1862
}

P
Peter Zijlstra 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1879 1880 1881 1882
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1883 1884
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1885
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1886
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1887 1888
};

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1899 1900 1901 1902 1903

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1931
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1932

1933
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1934 1935 1936
	PENDING_TAIL,
};

1937 1938
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1939
{
1940
	struct perf_pending_entry **head;
1941

1942
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1943 1944
		return;

1945 1946 1947
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1948 1949

	do {
1950 1951
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1952 1953 1954

	set_perf_counter_pending();

1955
	put_cpu_var(perf_pending_head);
1956 1957 1958 1959
}

static int __perf_pending_run(void)
{
1960
	struct perf_pending_entry *list;
1961 1962
	int nr = 0;

1963
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1964
	while (list != PENDING_TAIL) {
1965 1966
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1967 1968 1969

		list = list->next;

1970 1971
		func = entry->func;
		entry->next = NULL;
1972 1973 1974 1975 1976 1977 1978
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1979
		func(entry);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2001
	return counter->pending.next == NULL;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2014 2015 2016 2017
/*
 * Callchain support -- arch specific
 */

2018
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2019 2020 2021 2022
{
	return NULL;
}

2023 2024 2025 2026
/*
 * Output
 */

2027 2028 2029 2030
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
2031
	unsigned int		head;
2032
	int			nmi;
2033
	int			overflow;
2034 2035
	int			locked;
	unsigned long		flags;
2036 2037
};

2038
static void perf_output_wakeup(struct perf_output_handle *handle)
2039
{
2040 2041
	atomic_set(&handle->data->poll, POLL_IN);

2042
	if (handle->nmi) {
2043
		handle->counter->pending_wakeup = 1;
2044
		perf_pending_queue(&handle->counter->pending,
2045
				   perf_pending_counter);
2046
	} else
2047 2048 2049
		perf_counter_wakeup(handle->counter);
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2076
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

2087
	data->done_head = data->head;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2098
	while ((head = atomic_xchg(&data->done_head, 0)))
2099 2100 2101
		data->user_page->data_head = head;

	/*
2102
	 * NMI can happen here, which means we can miss a done_head update.
2103 2104
	 */

2105
	cpu = atomic_xchg(&data->lock, -1);
2106 2107 2108 2109 2110
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2111
	if (unlikely(atomic_read(&data->done_head))) {
2112 2113 2114
		/*
		 * Since we had it locked, we can lock it again.
		 */
2115
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2116 2117 2118 2119 2120
			cpu_relax();

		goto again;
	}

2121
	if (atomic_xchg(&data->wakeup, 0))
2122 2123 2124 2125 2126
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2127
static int perf_output_begin(struct perf_output_handle *handle,
2128
			     struct perf_counter *counter, unsigned int size,
2129
			     int nmi, int overflow)
2130
{
2131
	struct perf_mmap_data *data;
2132
	unsigned int offset, head;
2133

2134 2135 2136 2137 2138 2139
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2140 2141 2142 2143 2144
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2145
	handle->data	 = data;
2146 2147 2148
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2149

2150
	if (!data->nr_pages)
2151
		goto fail;
2152

2153 2154
	perf_output_lock(handle);

2155 2156
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2157
		head += size;
2158 2159
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2160
	handle->offset	= offset;
2161
	handle->head	= head;
2162 2163 2164

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2165

2166
	return 0;
2167

2168
fail:
2169
	perf_output_wakeup(handle);
2170 2171
out:
	rcu_read_unlock();
2172

2173 2174
	return -ENOSPC;
}
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2204

2205 2206 2207 2208 2209
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2210 2211
}

P
Peter Zijlstra 已提交
2212 2213 2214
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2215
static void perf_output_end(struct perf_output_handle *handle)
2216
{
2217 2218 2219 2220
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2221

2222
	if (handle->overflow && wakeup_events) {
2223
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2224
		if (events >= wakeup_events) {
2225
			atomic_sub(wakeup_events, &data->events);
2226
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2227
		}
2228 2229 2230
	}

	perf_output_unlock(handle);
2231
	rcu_read_unlock();
2232 2233
}

2234
static void perf_counter_output(struct perf_counter *counter,
2235
				int nmi, struct pt_regs *regs, u64 addr)
2236
{
2237
	int ret;
2238
	u64 record_type = counter->hw_event.record_type;
2239 2240 2241
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2242
	struct {
2243
		u32 pid, tid;
2244
	} tid_entry;
2245 2246 2247 2248
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2249 2250
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2251
	u64 time;
2252 2253 2254
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2255

2256
	header.type = 0;
2257
	header.size = sizeof(header);
2258

2259
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2260
	header.misc |= perf_misc_flags(regs);
2261

2262
	if (record_type & PERF_RECORD_IP) {
2263
		ip = perf_instruction_pointer(regs);
2264
		header.type |= PERF_RECORD_IP;
2265 2266
		header.size += sizeof(ip);
	}
2267

2268
	if (record_type & PERF_RECORD_TID) {
2269
		/* namespace issues */
2270 2271 2272
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2273
		header.type |= PERF_RECORD_TID;
2274 2275 2276
		header.size += sizeof(tid_entry);
	}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2287 2288 2289 2290 2291
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2292 2293 2294 2295 2296
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2297 2298 2299 2300 2301 2302 2303
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2304
	if (record_type & PERF_RECORD_GROUP) {
2305
		header.type |= PERF_RECORD_GROUP;
2306 2307 2308 2309 2310
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2311 2312 2313
		callchain = perf_callchain(regs);

		if (callchain) {
2314
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2315

2316
			header.type |= PERF_RECORD_CALLCHAIN;
2317 2318 2319 2320
			header.size += callchain_size;
		}
	}

2321
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2322 2323
	if (ret)
		return;
2324

2325
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2326

2327 2328
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2329

2330 2331
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2332

2333 2334 2335
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2336 2337 2338
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2339 2340 2341
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2342 2343 2344
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2345 2346 2347
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2348 2349 2350
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2351

2352
		perf_output_put(&handle, nr);
2353

2354 2355 2356
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2357
				sub->pmu->read(sub);
2358

2359 2360
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2361

2362 2363
			perf_output_put(&handle, group_entry);
		}
2364
	}
P
Peter Zijlstra 已提交
2365

2366 2367
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2368

2369
	perf_output_end(&handle);
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2437
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2438 2439 2440 2441 2442 2443 2444 2445

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2446 2447
	if (cpuctx->task_ctx)
		perf_counter_comm_ctx(cpuctx->task_ctx, comm_event);
2448 2449 2450 2451 2452
	put_cpu_var(perf_cpu_context);
}

void perf_counter_comm(struct task_struct *task)
{
2453 2454 2455 2456
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2457

2458
	comm_event = (struct perf_comm_event){
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2495
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2496 2497 2498 2499 2500 2501 2502

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2503
	perf_output_end(&handle);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2551
		name = d_path(&file->f_path, buf, PATH_MAX);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2562
	size = ALIGN(strlen(name)+1, sizeof(u64));
2563 2564 2565 2566 2567 2568 2569 2570

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2571 2572
	if (cpuctx->task_ctx)
		perf_counter_mmap_ctx(cpuctx->task_ctx, mmap_event);
2573 2574 2575 2576 2577 2578 2579 2580
	put_cpu_var(perf_cpu_context);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2581 2582 2583 2584 2585 2586
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2604 2605 2606 2607 2608 2609
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2624
/*
2625 2626
 * Log irq_period changes so that analyzing tools can re-normalize the
 * event flow.
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

	if (counter->hw.irq_period == period)
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
		.time = sched_clock(),
	};

I
Ingo Molnar 已提交
2680
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2681 2682 2683 2684 2685 2686 2687
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2688 2689 2690 2691 2692
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2693
			  int nmi, struct pt_regs *regs, u64 addr)
2694
{
2695
	int events = atomic_read(&counter->event_limit);
2696
	int throttle = counter->pmu->unthrottle != NULL;
2697 2698
	int ret = 0;

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	if (!throttle) {
		counter->hw.interrupts++;
	} else if (counter->hw.interrupts != MAX_INTERRUPTS) {
		counter->hw.interrupts++;
		if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
			counter->hw.interrupts = MAX_INTERRUPTS;
			perf_log_throttle(counter, 0);
			ret = 1;
		}
	}
2709

2710 2711 2712 2713 2714
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2715
	counter->pending_kill = POLL_IN;
2716 2717
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2718
		counter->pending_kill = POLL_HUP;
2719 2720 2721 2722 2723 2724 2725 2726
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2727
	perf_counter_output(counter, nmi, regs, addr);
2728
	return ret;
2729 2730
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2773 2774
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2775
	enum hrtimer_restart ret = HRTIMER_RESTART;
2776 2777
	struct perf_counter *counter;
	struct pt_regs *regs;
2778
	u64 period;
2779 2780

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2781
	counter->pmu->read(counter);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2792
	if (regs) {
2793
		if (perf_counter_overflow(counter, 0, regs, 0))
2794 2795
			ret = HRTIMER_NORESTART;
	}
2796

2797 2798
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2799

2800
	return ret;
2801 2802 2803
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2804
				    int nmi, struct pt_regs *regs, u64 addr)
2805
{
2806 2807
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2808
	if (perf_counter_overflow(counter, nmi, regs, addr))
2809 2810 2811
		/* soft-disable the counter */
		;

2812 2813
}

2814
static int perf_swcounter_match(struct perf_counter *counter,
2815 2816
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2817 2818 2819 2820
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2821
	if (perf_event_raw(&counter->hw_event))
2822 2823
		return 0;

2824
	if (perf_event_type(&counter->hw_event) != type)
2825 2826
		return 0;

2827
	if (perf_event_id(&counter->hw_event) != event)
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2839
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2840
			       int nmi, struct pt_regs *regs, u64 addr)
2841 2842 2843
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2844
		perf_swcounter_overflow(counter, nmi, regs, addr);
2845 2846
}

2847
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2848
				     enum perf_event_types type, u32 event,
2849 2850
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2851 2852 2853
{
	struct perf_counter *counter;

2854
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2855 2856
		return;

P
Peter Zijlstra 已提交
2857 2858
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2859
		if (perf_swcounter_match(counter, type, event, regs))
2860
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2861
	}
P
Peter Zijlstra 已提交
2862
	rcu_read_unlock();
2863 2864
}

P
Peter Zijlstra 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2879
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2880 2881
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2882 2883
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2884 2885 2886 2887 2888 2889 2890
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2891

2892 2893
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2894 2895
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2896
					 nr, nmi, regs, addr);
2897
	}
2898

P
Peter Zijlstra 已提交
2899 2900 2901 2902
	barrier();
	(*recursion)--;

out:
2903 2904 2905
	put_cpu_var(perf_cpu_context);
}

2906 2907
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2908
{
2909
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2928
static const struct pmu perf_ops_generic = {
2929 2930 2931 2932 2933
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2934 2935 2936 2937
/*
 * Software counter: cpu wall time clock
 */

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2950 2951 2952 2953 2954 2955
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2956 2957
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2958
	if (hwc->irq_period) {
2959
		u64 period = max_t(u64, 10000, hwc->irq_period);
2960
		__hrtimer_start_range_ns(&hwc->hrtimer,
2961
				ns_to_ktime(period), 0,
2962 2963 2964 2965 2966 2967
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2968 2969
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2970 2971
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2972
	cpu_clock_perf_counter_update(counter);
2973 2974 2975 2976
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2977
	cpu_clock_perf_counter_update(counter);
2978 2979
}

2980
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2981 2982 2983
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2984 2985
};

2986 2987 2988 2989
/*
 * Software counter: task time clock
 */

2990
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2991
{
2992
	u64 prev;
I
Ingo Molnar 已提交
2993 2994
	s64 delta;

2995
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2996 2997
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2998 2999
}

3000
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3001
{
3002
	struct hw_perf_counter *hwc = &counter->hw;
3003 3004 3005
	u64 now;

	now = counter->ctx->time;
3006

3007
	atomic64_set(&hwc->prev_count, now);
3008 3009
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3010
	if (hwc->irq_period) {
3011
		u64 period = max_t(u64, 10000, hwc->irq_period);
3012
		__hrtimer_start_range_ns(&hwc->hrtimer,
3013
				ns_to_ktime(period), 0,
3014 3015
				HRTIMER_MODE_REL, 0);
	}
3016 3017

	return 0;
I
Ingo Molnar 已提交
3018 3019 3020
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3021
{
3022 3023
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
3024 3025
	task_clock_perf_counter_update(counter, counter->ctx->time);

3026
}
I
Ingo Molnar 已提交
3027

3028 3029
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3042 3043
}

3044
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3045 3046 3047
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3048 3049
};

3050 3051 3052 3053
/*
 * Software counter: cpu migrations
 */

3054
static inline u64 get_cpu_migrations(struct perf_counter *counter)
3055
{
3056 3057 3058 3059 3060
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
3061 3062 3063 3064 3065 3066 3067 3068
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
3069
	now = get_cpu_migrations(counter);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

3083
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3084
{
3085 3086 3087
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
3088
	return 0;
3089 3090 3091 3092 3093 3094 3095
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

3096
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
3097 3098 3099
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
3100 3101
};

3102 3103 3104
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3105 3106 3107 3108 3109
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3110
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3111
}
3112
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3113 3114 3115 3116 3117 3118

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3119
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
3120 3121
}

3122
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3123
{
3124
	int event_id = perf_event_id(&counter->hw_event);
3125 3126 3127 3128 3129 3130 3131
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3132
	counter->hw.irq_period = counter->hw_event.irq_period;
3133 3134 3135 3136

	return &perf_ops_generic;
}
#else
3137
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3138 3139 3140 3141 3142
{
	return NULL;
}
#endif

3143
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3144
{
3145
	const struct pmu *pmu = NULL;
3146

3147 3148 3149 3150 3151 3152 3153
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3154
	switch (perf_event_id(&counter->hw_event)) {
3155
	case PERF_COUNT_CPU_CLOCK:
3156
		pmu = &perf_ops_cpu_clock;
3157

3158
		break;
3159
	case PERF_COUNT_TASK_CLOCK:
3160 3161 3162 3163 3164
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3165
			pmu = &perf_ops_task_clock;
3166
		else
3167
			pmu = &perf_ops_cpu_clock;
3168

3169
		break;
3170
	case PERF_COUNT_PAGE_FAULTS:
3171 3172
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3173
	case PERF_COUNT_CONTEXT_SWITCHES:
3174
		pmu = &perf_ops_generic;
3175
		break;
3176
	case PERF_COUNT_CPU_MIGRATIONS:
3177
		if (!counter->hw_event.exclude_kernel)
3178
			pmu = &perf_ops_cpu_migrations;
3179
		break;
3180
	}
3181

3182
	return pmu;
3183 3184
}

T
Thomas Gleixner 已提交
3185 3186 3187 3188
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3189 3190
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3191
		   struct perf_counter_context *ctx,
3192 3193
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3194
{
3195
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3196
	struct perf_counter *counter;
3197
	struct hw_perf_counter *hwc;
3198
	long err;
T
Thomas Gleixner 已提交
3199

3200
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3201
	if (!counter)
3202
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3203

3204 3205 3206 3207 3208 3209 3210
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3211 3212 3213
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3214
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3215
	INIT_LIST_HEAD(&counter->event_entry);
3216
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3217 3218
	init_waitqueue_head(&counter->waitq);

3219 3220
	mutex_init(&counter->mmap_mutex);

I
Ingo Molnar 已提交
3221 3222
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3223
	counter->group_leader		= group_leader;
3224
	counter->pmu			= NULL;
3225
	counter->ctx			= ctx;
3226 3227
	counter->oncpu			= -1;

3228
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3229 3230 3231
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3232
	pmu = NULL;
3233

3234 3235
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
3236
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3237 3238 3239
	else
		hwc->irq_period = hw_event->irq_period;

3240 3241 3242 3243 3244 3245
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

3246
	if (perf_event_raw(hw_event)) {
3247
		pmu = hw_perf_counter_init(counter);
3248 3249 3250 3251
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3252
	case PERF_TYPE_HARDWARE:
3253
		pmu = hw_perf_counter_init(counter);
3254 3255 3256
		break;

	case PERF_TYPE_SOFTWARE:
3257
		pmu = sw_perf_counter_init(counter);
3258 3259 3260
		break;

	case PERF_TYPE_TRACEPOINT:
3261
		pmu = tp_perf_counter_init(counter);
3262 3263
		break;
	}
3264 3265
done:
	err = 0;
3266
	if (!pmu)
3267
		err = -EINVAL;
3268 3269
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3270

3271
	if (err) {
I
Ingo Molnar 已提交
3272
		kfree(counter);
3273
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3274
	}
3275

3276
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3277

3278
	atomic_inc(&nr_counters);
3279 3280 3281 3282 3283 3284 3285
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3286 3287 3288 3289
	return counter;
}

/**
3290
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3291 3292
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3293
 * @pid:		target pid
I
Ingo Molnar 已提交
3294 3295
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3296
 */
3297
SYSCALL_DEFINE5(perf_counter_open,
3298
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3299
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3300
{
3301
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3302
	struct perf_counter_hw_event hw_event;
3303
	struct perf_counter_context *ctx;
3304
	struct file *counter_file = NULL;
3305 3306
	struct file *group_file = NULL;
	int fput_needed = 0;
3307
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3308 3309
	int ret;

3310 3311 3312 3313
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3314
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3315 3316
		return -EFAULT;

3317
	/*
I
Ingo Molnar 已提交
3318 3319 3320 3321 3322 3323 3324 3325
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3326 3327 3328 3329 3330 3331
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3332
			goto err_put_context;
3333
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3334
			goto err_put_context;
3335 3336 3337

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3338 3339 3340 3341 3342 3343 3344 3345
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3346
		 */
I
Ingo Molnar 已提交
3347 3348
		if (group_leader->ctx != ctx)
			goto err_put_context;
3349 3350 3351 3352 3353
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3354 3355
	}

3356 3357
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3358 3359
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3360 3361 3362 3363
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3364 3365 3366 3367 3368 3369 3370
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3371
	WARN_ON_ONCE(ctx->parent_ctx);
3372
	mutex_lock(&ctx->mutex);
3373
	perf_install_in_context(ctx, counter, cpu);
3374
	++ctx->generation;
3375
	mutex_unlock(&ctx->mutex);
3376

3377 3378 3379 3380 3381 3382
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3383
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3384

3385 3386 3387
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3388 3389
	return ret;

3390
err_free_put_context:
T
Thomas Gleixner 已提交
3391 3392 3393
	kfree(counter);

err_put_context:
3394
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3395

3396
	goto out_fput;
T
Thomas Gleixner 已提交
3397 3398
}

3399 3400 3401
/*
 * inherit a counter from parent task to child task:
 */
3402
static struct perf_counter *
3403 3404 3405 3406
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3407
	      struct perf_counter *group_leader,
3408 3409 3410 3411
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3412 3413 3414 3415 3416 3417 3418 3419 3420
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3421
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3422 3423
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3424 3425
	if (IS_ERR(child_counter))
		return child_counter;
3426
	get_ctx(child_ctx);
3427

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3438 3439 3440
	/*
	 * Link it up in the child's context:
	 */
3441
	add_counter_to_ctx(child_counter, child_ctx);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3457 3458 3459
	/*
	 * Link this into the parent counter's child list
	 */
3460
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3461
	mutex_lock(&parent_counter->child_mutex);
3462
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3463
	mutex_unlock(&parent_counter->child_mutex);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3476
	struct perf_counter *child_ctr;
3477 3478 3479

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3480 3481
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3482
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3483 3484 3485 3486
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3487
	}
3488 3489 3490
	return 0;
}

3491 3492 3493
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3494
	u64 child_val;
3495 3496 3497 3498 3499 3500 3501

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3502 3503 3504 3505
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3506 3507 3508 3509

	/*
	 * Remove this counter from the parent's list
	 */
3510
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3511
	mutex_lock(&parent_counter->child_mutex);
3512
	list_del_init(&child_counter->child_list);
3513
	mutex_unlock(&parent_counter->child_mutex);
3514 3515 3516 3517 3518 3519 3520 3521

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3522 3523 3524 3525 3526 3527 3528
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3529
	update_counter_times(child_counter);
3530
	perf_counter_remove_from_context(child_counter);
3531

3532 3533 3534 3535 3536 3537
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3538 3539
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3540
		free_counter(child_counter);
3541
	}
3542 3543 3544
}

/*
3545
 * When a child task exits, feed back counter values to parent counters.
3546 3547 3548 3549 3550
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3551
	unsigned long flags;
3552

3553
	if (likely(!child->perf_counter_ctxp))
3554 3555
		return;

3556
	local_irq_save(flags);
3557 3558 3559 3560 3561 3562 3563
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
3564
	__perf_counter_task_sched_out(child_ctx);
3565 3566 3567 3568 3569 3570 3571

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3572
	child->perf_counter_ctxp = NULL;
3573 3574 3575 3576 3577 3578 3579 3580 3581
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
3582
	spin_unlock(&child_ctx->lock);
3583 3584 3585 3586
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3587
again:
3588 3589 3590
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3591 3592 3593 3594 3595 3596 3597 3598

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3599 3600 3601 3602

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3603 3604 3605 3606 3607
}

/*
 * Initialize the perf_counter context in task_struct
 */
3608
int perf_counter_init_task(struct task_struct *child)
3609 3610
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3611
	struct perf_counter_context *cloned_ctx;
3612
	struct perf_counter *counter;
3613
	struct task_struct *parent = current;
3614
	int inherited_all = 1;
3615
	u64 cloned_gen;
3616
	int ret = 0;
3617

3618
	child->perf_counter_ctxp = NULL;
3619

3620 3621 3622
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3623
	if (likely(!parent->perf_counter_ctxp))
3624 3625
		return 0;

3626 3627
	/*
	 * This is executed from the parent task context, so inherit
3628 3629
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3630 3631
	 */

3632 3633
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3634
		return -ENOMEM;
3635

3636 3637
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
3638
	get_task_struct(child);
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	/*
	 * If the parent's context is a clone, temporarily set its
	 * parent_gen to an impossible value (all 1s) so it won't get
	 * swapped under us.  The rcu_read_lock makes sure that
	 * parent_ctx continues to exist even if it gets swapped to
	 * another process and then freed while we are trying to get
	 * its lock.
	 */
	rcu_read_lock();
 retry:
	parent_ctx = rcu_dereference(parent->perf_counter_ctxp);
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */
	spin_lock_irq(&parent_ctx->lock);
	if (parent_ctx != rcu_dereference(parent->perf_counter_ctxp)) {
		spin_unlock_irq(&parent_ctx->lock);
		goto retry;
	}
	cloned_gen = parent_ctx->parent_gen;
	if (parent_ctx->parent_ctx)
		parent_ctx->parent_gen = ~0ull;
	spin_unlock_irq(&parent_ctx->lock);
	rcu_read_unlock();

3668 3669 3670 3671
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3672
	mutex_lock(&parent_ctx->mutex);
3673 3674 3675 3676 3677

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3678 3679 3680 3681
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3682 3683
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3684
			continue;
3685
		}
3686

3687 3688 3689
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3690
			inherited_all = 0;
3691
			break;
3692 3693 3694 3695 3696 3697 3698
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
3699 3700 3701 3702
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
3703
		 */
3704 3705 3706 3707
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
			child_ctx->parent_gen = cloned_gen;
3708 3709 3710 3711 3712
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3713 3714
	}

3715
	mutex_unlock(&parent_ctx->mutex);
3716

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	/*
	 * Restore the clone status of the parent.
	 */
	if (parent_ctx->parent_ctx) {
		spin_lock_irq(&parent_ctx->lock);
		if (parent_ctx->parent_ctx)
			parent_ctx->parent_gen = cloned_gen;
		spin_unlock_irq(&parent_ctx->lock);
	}

3727
	return ret;
3728 3729
}

3730
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3731
{
3732
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3733

3734 3735
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3736

3737
	spin_lock(&perf_resource_lock);
3738
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3739
	spin_unlock(&perf_resource_lock);
3740

3741
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3742 3743 3744
}

#ifdef CONFIG_HOTPLUG_CPU
3745
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3746 3747 3748 3749 3750
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3751 3752
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3753
}
3754
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3755
{
3756 3757 3758 3759
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3760
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3761
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3762 3763
}
#else
3764
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3776
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3777 3778 3779 3780
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3781
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3795
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3822
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3832
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3854
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3855
	perf_overcommit = val;
3856
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);