sched.c 203.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
L
Linus Torvalds 已提交
70

71
#include <asm/tlb.h>
72
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
73

74 75 76 77 78 79 80
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
81
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
82 83
}

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

144 145 146 147 148 149 150 151 152 153 154 155
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
156
/*
I
Ingo Molnar 已提交
157
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
158
 */
I
Ingo Molnar 已提交
159 160 161 162 163
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

164 165 166
struct rt_bandwidth {
	ktime_t rt_period;
	u64 rt_runtime;
P
Peter Zijlstra 已提交
167
	spinlock_t rt_runtime_lock;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	struct hrtimer rt_period_timer;
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
202 203
	spin_lock_init(&rt_b->rt_runtime_lock);

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

241
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
242

243 244
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
245 246
struct cfs_rq;

P
Peter Zijlstra 已提交
247 248
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
249
/* task group related information */
250
struct task_group {
251
#ifdef CONFIG_CGROUP_SCHED
252 253
	struct cgroup_subsys_state css;
#endif
254 255

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256 257 258 259 260
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
261 262 263 264 265 266
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

267
	struct rt_bandwidth rt_bandwidth;
268
#endif
269

270
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
271
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
272 273
};

274
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
275 276 277 278 279
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

280 281
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
282 283 284 285 286
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
287

P
Peter Zijlstra 已提交
288 289
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
290
#endif
P
Peter Zijlstra 已提交
291

292
/* task_group_lock serializes add/remove of task groups and also changes to
293 294
 * a task group's cpu shares.
 */
295
static DEFINE_SPINLOCK(task_group_lock);
296

297 298 299
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

300 301 302 303 304 305 306 307 308 309
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
310
/* Default task group.
I
Ingo Molnar 已提交
311
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
312
 */
313
struct task_group init_task_group = {
314
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
315
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
316
	.cfs_rq = init_cfs_rq_p,
317
#endif
P
Peter Zijlstra 已提交
318

319
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
320 321
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
322
#endif
323
};
S
Srivatsa Vaddagiri 已提交
324 325

/* return group to which a task belongs */
326
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
327
{
328
	struct task_group *tg;
329

330
#ifdef CONFIG_USER_SCHED
331
	tg = p->user->tg;
332
#elif defined(CONFIG_CGROUP_SCHED)
333 334
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
335
#else
I
Ingo Molnar 已提交
336
	tg = &init_task_group;
337
#endif
338
	return tg;
S
Srivatsa Vaddagiri 已提交
339 340 341
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
342
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
343
{
344
#ifdef CONFIG_FAIR_GROUP_SCHED
345 346
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
347
#endif
P
Peter Zijlstra 已提交
348

349
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
350 351
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
352
#endif
S
Srivatsa Vaddagiri 已提交
353 354
}

355 356 357 358 359 360 361 362 363 364
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
365 366
#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 369
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
370

371
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
372

I
Ingo Molnar 已提交
373 374 375 376 377 378
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
379
	u64 min_vruntime;
I
Ingo Molnar 已提交
380 381 382 383 384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
387
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
388 389 390

	unsigned long nr_spread_over;

391
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
392 393
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
394 395
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
396 397 398 399 400 401
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
402 403
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
404 405
#endif
};
L
Linus Torvalds 已提交
406

I
Ingo Molnar 已提交
407 408 409
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
410
	unsigned long rt_nr_running;
411
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
412 413
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
414
#ifdef CONFIG_SMP
415
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
416
	int overloaded;
P
Peter Zijlstra 已提交
417
#endif
P
Peter Zijlstra 已提交
418
	int rt_throttled;
P
Peter Zijlstra 已提交
419
	u64 rt_time;
P
Peter Zijlstra 已提交
420 421
	u64 rt_runtime;
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
422

423
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
424 425
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
426 427 428 429 430
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
431 432
};

G
Gregory Haskins 已提交
433 434 435 436
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
437 438
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
439 440 441 442 443 444 445 446
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
447

I
Ingo Molnar 已提交
448
	/*
449 450 451 452
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
453
	atomic_t rto_count;
G
Gregory Haskins 已提交
454 455
};

456 457 458 459
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
460 461 462 463
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
464 465 466 467 468 469 470
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
471
struct rq {
472 473
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
474 475 476 477 478 479

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
480 481
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
482
	unsigned char idle_at_tick;
483
#ifdef CONFIG_NO_HZ
484
	unsigned long last_tick_seen;
485 486
	unsigned char in_nohz_recently;
#endif
487 488
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
489 490 491 492
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
493 494
	struct rt_rq rt;

I
Ingo Molnar 已提交
495
#ifdef CONFIG_FAIR_GROUP_SCHED
496 497
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
498 499
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
500
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508 509 510
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

511
	struct task_struct *curr, *idle;
512
	unsigned long next_balance;
L
Linus Torvalds 已提交
513
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
514 515 516 517

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

518
	unsigned int clock_warps, clock_overflows, clock_underflows;
519 520
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
521
	u64 tick_timestamp;
I
Ingo Molnar 已提交
522

L
Linus Torvalds 已提交
523 524 525
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
526
	struct root_domain *rd;
L
Linus Torvalds 已提交
527 528 529 530 531
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
532 533
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
534

535
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
536 537 538
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
539 540 541 542 543 544
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
545 546 547 548 549
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
550 551 552 553
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
554 555

	/* schedule() stats */
556 557 558
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
559 560

	/* try_to_wake_up() stats */
561 562
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
563 564

	/* BKL stats */
565
	unsigned int bkl_count;
L
Linus Torvalds 已提交
566
#endif
567
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
568 569
};

570
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
571

I
Ingo Molnar 已提交
572 573 574 575 576
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

577 578 579 580 581 582 583 584 585
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
612
/*
I
Ingo Molnar 已提交
613 614
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
615
 */
I
Ingo Molnar 已提交
616
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
617 618 619 620 621 622
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
623 624 625
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
626 627 628 629 630 631 632 633 634 635
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
636 637 638 639 640 641
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
642 643
			else
				clock++;
I
Ingo Molnar 已提交
644 645 646 647 648 649 650 651 652 653
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
654
}
I
Ingo Molnar 已提交
655

I
Ingo Molnar 已提交
656 657 658 659
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
660 661
}

N
Nick Piggin 已提交
662 663
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
664
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
665 666 667 668
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
669 670
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
671 672 673 674 675 676

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
690
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
691 692
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
693 694
	SCHED_FEAT_AFFINE_WAKEUPS	= 8,
	SCHED_FEAT_CACHE_HOT_BUDDY	= 16,
I
Ingo Molnar 已提交
695 696 697
	SCHED_FEAT_SYNC_WAKEUPS		= 32,
	SCHED_FEAT_HRTICK		= 64,
	SCHED_FEAT_DOUBLE_TICK		= 128,
I
Ingo Molnar 已提交
698 699 700
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
701
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
702
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
703
		SCHED_FEAT_START_DEBIT		* 1 |
I
Ingo Molnar 已提交
704 705
		SCHED_FEAT_AFFINE_WAKEUPS	* 1 |
		SCHED_FEAT_CACHE_HOT_BUDDY	* 1 |
I
Ingo Molnar 已提交
706
		SCHED_FEAT_SYNC_WAKEUPS		* 1 |
P
Peter Zijlstra 已提交
707
		SCHED_FEAT_HRTICK		* 1 |
I
Ingo Molnar 已提交
708
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
709 710 711

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

712 713 714 715 716 717
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
718
/*
P
Peter Zijlstra 已提交
719
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
720 721
 * default: 1s
 */
P
Peter Zijlstra 已提交
722
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
723

724 725
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
726 727 728 729 730
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
731

732 733 734 735 736 737 738 739 740 741 742 743
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
744

745 746 747 748 749
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

750
/*
751 752 753 754
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
755
 */
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
778 779 780
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
781
	struct rq *rq;
782

783 784 785 786
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
787 788 789 790 791 792
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
793
	now = rq->clock;
794
	local_irq_restore(flags);
795 796 797

	return now;
}
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
816
EXPORT_SYMBOL_GPL(cpu_clock);
817

L
Linus Torvalds 已提交
818
#ifndef prepare_arch_switch
819 820 821 822 823 824
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

825 826 827 828 829
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

830
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
831
static inline int task_running(struct rq *rq, struct task_struct *p)
832
{
833
	return task_current(rq, p);
834 835
}

836
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
837 838 839
{
}

840
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
841
{
842 843 844 845
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
846 847 848 849 850 851 852
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

853 854 855 856
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
857
static inline int task_running(struct rq *rq, struct task_struct *p)
858 859 860 861
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
862
	return task_current(rq, p);
863 864 865
#endif
}

866
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 885 886 887 888 889 890 891 892 893 894 895
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
896
#endif
897 898
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
899

900 901 902 903
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
904
static inline struct rq *__task_rq_lock(struct task_struct *p)
905 906
	__acquires(rq->lock)
{
907 908 909 910 911
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
912 913 914 915
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
916 917
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
918
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
919 920
 * explicitly disabling preemption.
 */
921
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
922 923
	__acquires(rq->lock)
{
924
	struct rq *rq;
L
Linus Torvalds 已提交
925

926 927 928 929 930 931
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
932 933 934 935
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
936
static void __task_rq_unlock(struct rq *rq)
937 938 939 940 941
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

942
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
943 944 945 946 947 948
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
949
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
950
 */
A
Alexey Dobriyan 已提交
951
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
952 953
	__acquires(rq->lock)
{
954
	struct rq *rq;
L
Linus Torvalds 已提交
955 956 957 958 959 960 961 962

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

963
/*
964
 * We are going deep-idle (irqs are disabled):
965
 */
966
void sched_clock_idle_sleep_event(void)
967
{
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
984

985 986 987 988 989 990 991 992 993 994 995
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
996
	touch_softlockup_watchdog();
997
}
998
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
999

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1180
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1186
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1187 1188
		return;

P
Peter Zijlstra 已提交
1189
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1254
#else
P
Peter Zijlstra 已提交
1255
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1256 1257
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1258
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1259 1260 1261
}
#endif

1262 1263 1264 1265 1266 1267 1268 1269
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1270 1271 1272
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1273
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1274

1275
static unsigned long
1276 1277 1278 1279 1280 1281
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1282
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1283 1284 1285 1286 1287

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1288
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1289
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1290 1291
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1292
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293

1294
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1295 1296 1297 1298 1299 1300 1301 1302
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1303
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1304 1305
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1306
	lw->inv_weight = 0;
1307 1308
}

1309
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1310 1311
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1312
	lw->inv_weight = 0;
1313 1314
}

1315 1316 1317 1318
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1319
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1320 1321 1322 1323
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1335 1336 1337
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1338 1339
 */
static const int prio_to_weight[40] = {
1340 1341 1342 1343 1344 1345 1346 1347
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1348 1349
};

1350 1351 1352 1353 1354 1355 1356
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1357
static const u32 prio_to_wmult[40] = {
1358 1359 1360 1361 1362 1363 1364 1365
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1366
};
1367

I
Ingo Molnar 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1393

1394 1395 1396 1397 1398 1399
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1400 1401 1402 1403 1404 1405 1406
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1407 1408
#include "sched_stats.h"
#include "sched_idletask.c"
1409 1410
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1411 1412 1413 1414 1415 1416
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1428 1429
{
	rq->nr_running++;
1430
	inc_load(rq, p);
1431 1432
}

1433
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1434 1435
{
	rq->nr_running--;
1436
	dec_load(rq, p);
1437 1438
}

1439 1440 1441
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1442 1443 1444 1445
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1446

I
Ingo Molnar 已提交
1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1455

I
Ingo Molnar 已提交
1456 1457
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1458 1459
}

1460
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1461
{
I
Ingo Molnar 已提交
1462
	sched_info_queued(p);
1463
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1464
	p->se.on_rq = 1;
1465 1466
}

1467
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1468
{
1469
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1470
	p->se.on_rq = 0;
1471 1472
}

1473
/*
I
Ingo Molnar 已提交
1474
 * __normal_prio - return the priority that is based on the static prio
1475 1476 1477
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1478
	return p->static_prio;
1479 1480
}

1481 1482 1483 1484 1485 1486 1487
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1488
static inline int normal_prio(struct task_struct *p)
1489 1490 1491
{
	int prio;

1492
	if (task_has_rt_policy(p))
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1506
static int effective_prio(struct task_struct *p)
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1519
/*
I
Ingo Molnar 已提交
1520
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1521
 */
I
Ingo Molnar 已提交
1522
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1523
{
1524
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1525
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1526

1527
	enqueue_task(rq, p, wakeup);
1528
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1534
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1535
{
1536
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1537 1538
		rq->nr_uninterruptible++;

1539
	dequeue_task(rq, p, sleep);
1540
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1547
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1548 1549 1550 1551
{
	return cpu_curr(task_cpu(p)) == p;
}

1552 1553 1554
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1555
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1556 1557 1558 1559
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1560
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1561
#ifdef CONFIG_SMP
1562 1563 1564 1565 1566 1567
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1568 1569
	task_thread_info(p)->cpu = cpu;
#endif
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1584
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1585

1586 1587 1588
/*
 * Is this task likely cache-hot:
 */
1589
static int
1590 1591 1592 1593
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1594 1595 1596
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1597
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1598 1599
		return 1;

1600 1601 1602
	if (p->sched_class != &fair_sched_class)
		return 0;

1603 1604 1605 1606 1607
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1608 1609 1610 1611 1612 1613
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1614
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1615
{
I
Ingo Molnar 已提交
1616 1617
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1618 1619
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1620
	u64 clock_offset;
I
Ingo Molnar 已提交
1621 1622

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1623 1624 1625 1626

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1627 1628 1629 1630
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1631 1632 1633 1634 1635
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1636
#endif
1637 1638
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1639 1640

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1641 1642
}

1643
struct migration_req {
L
Linus Torvalds 已提交
1644 1645
	struct list_head list;

1646
	struct task_struct *task;
L
Linus Torvalds 已提交
1647 1648 1649
	int dest_cpu;

	struct completion done;
1650
};
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1656
static int
1657
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1658
{
1659
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1665
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1674

L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1687
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1688 1689
{
	unsigned long flags;
I
Ingo Molnar 已提交
1690
	int running, on_rq;
1691
	struct rq *rq;
L
Linus Torvalds 已提交
1692

1693 1694 1695 1696 1697 1698 1699 1700
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1750

1751 1752 1753 1754 1755 1756 1757
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1773
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1785 1786
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1787 1788 1789 1790
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1791
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1792
{
1793
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1794
	unsigned long total = weighted_cpuload(cpu);
1795

1796
	if (type == 0)
I
Ingo Molnar 已提交
1797
		return total;
1798

I
Ingo Molnar 已提交
1799
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1800 1801 1802
}

/*
1803 1804
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1805
 */
A
Alexey Dobriyan 已提交
1806
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1807
{
1808
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1809
	unsigned long total = weighted_cpuload(cpu);
1810

N
Nick Piggin 已提交
1811
	if (type == 0)
I
Ingo Molnar 已提交
1812
		return total;
1813

I
Ingo Molnar 已提交
1814
	return max(rq->cpu_load[type-1], total);
1815 1816 1817 1818 1819
}

/*
 * Return the average load per task on the cpu's run queue
 */
1820
static unsigned long cpu_avg_load_per_task(int cpu)
1821
{
1822
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1823
	unsigned long total = weighted_cpuload(cpu);
1824 1825
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1826
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1827 1828
}

N
Nick Piggin 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1846 1847
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1848
			continue;
1849

N
Nick Piggin 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1866 1867
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1868 1869 1870 1871 1872 1873 1874 1875

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1876
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1877 1878 1879 1880 1881 1882 1883

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1884
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1885
 */
I
Ingo Molnar 已提交
1886 1887
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1888
{
1889
	cpumask_t tmp;
N
Nick Piggin 已提交
1890 1891 1892 1893
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1894 1895 1896 1897
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1898
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1924

1925
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1926 1927 1928
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1929 1930
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1931 1932
		if (tmp->flags & flag)
			sd = tmp;
1933
	}
N
Nick Piggin 已提交
1934 1935 1936 1937

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1938 1939 1940 1941 1942 1943
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1944 1945 1946

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1947 1948 1949 1950
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1951

1952
		new_cpu = find_idlest_cpu(group, t, cpu);
1953 1954 1955 1956 1957
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1958

1959
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1991
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1992
{
1993
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1994 1995
	unsigned long flags;
	long old_state;
1996
	struct rq *rq;
L
Linus Torvalds 已提交
1997

1998 1999 2000
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2001
	smp_wmb();
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2007
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2008 2009 2010
		goto out_running;

	cpu = task_cpu(p);
2011
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2018 2019 2020
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2027
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2049 2050
out_activate:
#endif /* CONFIG_SMP */
2051 2052 2053 2054 2055 2056 2057 2058 2059
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2060
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2061
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2062 2063 2064
	success = 1;

out_running:
I
Ingo Molnar 已提交
2065 2066
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2067
	p->state = TASK_RUNNING;
2068 2069 2070 2071
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2078
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2079
{
2080
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2081 2082 2083
}
EXPORT_SYMBOL(wake_up_process);

2084
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2092 2093 2094 2095 2096 2097 2098
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2099
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2100 2101
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2102 2103 2104

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2105 2106 2107 2108 2109 2110
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2111
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2112
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2113
#endif
N
Nick Piggin 已提交
2114

P
Peter Zijlstra 已提交
2115
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2116
	p->se.on_rq = 0;
N
Nick Piggin 已提交
2117

2118 2119 2120 2121
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127 2128
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2143
	set_task_cpu(p, cpu);
2144 2145 2146 2147 2148

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2149 2150
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2151

2152
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2153
	if (likely(sched_info_on()))
2154
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2155
#endif
2156
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2157 2158
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2159
#ifdef CONFIG_PREEMPT
2160
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2161
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2162
#endif
N
Nick Piggin 已提交
2163
	put_cpu();
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2173
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2174 2175
{
	unsigned long flags;
I
Ingo Molnar 已提交
2176
	struct rq *rq;
L
Linus Torvalds 已提交
2177 2178

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2179
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2180
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2181 2182 2183

	p->prio = effective_prio(p);

2184
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2185
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2186 2187
	} else {
		/*
I
Ingo Molnar 已提交
2188 2189
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2190
		 */
2191
		p->sched_class->task_new(rq, p);
2192
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2193
	}
I
Ingo Molnar 已提交
2194
	check_preempt_curr(rq, p);
2195 2196 2197 2198
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2199
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2200 2201
}

2202 2203 2204
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2205 2206
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2207 2208 2209 2210 2211 2212 2213 2214 2215
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2216
 * @notifier: notifier struct to unregister
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2260 2261 2262
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2263
 * @prev: the current task that is being switched out
2264 2265 2266 2267 2268 2269 2270 2271 2272
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2273 2274 2275
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2276
{
2277
	fire_sched_out_preempt_notifiers(prev, next);
2278 2279 2280 2281
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2282 2283
/**
 * finish_task_switch - clean up after a task-switch
2284
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2285 2286
 * @prev: the thread we just switched away from.
 *
2287 2288 2289 2290
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2291 2292
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2293
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2294 2295 2296
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2297
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2298 2299 2300
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2301
	long prev_state;
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2307
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2308 2309
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2310
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2316
	prev_state = prev->state;
2317 2318
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2319 2320 2321 2322
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2323

2324
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2325 2326
	if (mm)
		mmdrop(mm);
2327
	if (unlikely(prev_state == TASK_DEAD)) {
2328 2329 2330
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2331
		 */
2332
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2333
		put_task_struct(prev);
2334
	}
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2341
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2342 2343
	__releases(rq->lock)
{
2344 2345
	struct rq *rq = this_rq();

2346 2347 2348 2349 2350
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2351
	if (current->set_child_tid)
2352
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2359
static inline void
2360
context_switch(struct rq *rq, struct task_struct *prev,
2361
	       struct task_struct *next)
L
Linus Torvalds 已提交
2362
{
I
Ingo Molnar 已提交
2363
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2364

2365
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2366 2367
	mm = next->mm;
	oldmm = prev->active_mm;
2368 2369 2370 2371 2372 2373 2374
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2375
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2376 2377 2378 2379 2380 2381
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2382
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2383 2384 2385
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2386 2387 2388 2389 2390 2391 2392
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2393
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2394
#endif
L
Linus Torvalds 已提交
2395 2396 2397 2398

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2399 2400 2401 2402 2403 2404 2405
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2429
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2444 2445
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2446

2447
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2457
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2478
/*
I
Ingo Molnar 已提交
2479 2480
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2481
 */
I
Ingo Molnar 已提交
2482
static void update_cpu_load(struct rq *this_rq)
2483
{
2484
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2497 2498 2499 2500 2501 2502 2503
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2504 2505
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2506 2507
}

I
Ingo Molnar 已提交
2508 2509
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2516
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2517 2518 2519
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2520
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2521 2522 2523 2524
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2525
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531 2532
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2533 2534
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2543
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2557
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2558 2559 2560 2561
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2562 2563
	int ret = 0;

2564 2565 2566 2567 2568
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2569
	if (unlikely(!spin_trylock(&busiest->lock))) {
2570
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2571 2572 2573
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2574
			ret = 1;
L
Linus Torvalds 已提交
2575 2576 2577
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2578
	return ret;
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2584
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2585 2586
 * the cpu_allowed mask is restored.
 */
2587
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2588
{
2589
	struct migration_req req;
L
Linus Torvalds 已提交
2590
	unsigned long flags;
2591
	struct rq *rq;
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2602

L
Linus Torvalds 已提交
2603 2604 2605 2606 2607
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2608

L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2616 2617
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2618 2619 2620 2621
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2622
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2623
	put_cpu();
N
Nick Piggin 已提交
2624 2625
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2626 2627 2628 2629 2630 2631
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2632 2633
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2634
{
2635
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2636
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2637
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2638 2639 2640 2641
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2642
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2648
static
2649
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2650
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2651
		     int *all_pinned)
L
Linus Torvalds 已提交
2652 2653 2654 2655 2656 2657 2658
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2659 2660
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2661
		return 0;
2662
	}
2663 2664
	*all_pinned = 0;

2665 2666
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2667
		return 0;
2668
	}
L
Linus Torvalds 已提交
2669

2670 2671 2672 2673 2674 2675
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2676 2677
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2678
#ifdef CONFIG_SCHEDSTATS
2679
		if (task_hot(p, rq->clock, sd)) {
2680
			schedstat_inc(sd, lb_hot_gained[idle]);
2681 2682
			schedstat_inc(p, se.nr_forced_migrations);
		}
2683 2684 2685 2686
#endif
		return 1;
	}

2687 2688
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2689
		return 0;
2690
	}
L
Linus Torvalds 已提交
2691 2692 2693
	return 1;
}

2694 2695 2696 2697 2698
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2699
{
2700
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2701 2702
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2703

2704
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2705 2706
		goto out;

2707 2708
	pinned = 1;

L
Linus Torvalds 已提交
2709
	/*
I
Ingo Molnar 已提交
2710
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2711
	 */
I
Ingo Molnar 已提交
2712 2713
	p = iterator->start(iterator->arg);
next:
2714
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2715
		goto out;
2716
	/*
2717
	 * To help distribute high priority tasks across CPUs we don't
2718 2719 2720
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2721 2722
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2723
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2724 2725 2726
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2727 2728
	}

I
Ingo Molnar 已提交
2729
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2730
	pulled++;
I
Ingo Molnar 已提交
2731
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2732

2733
	/*
2734
	 * We only want to steal up to the prescribed amount of weighted load.
2735
	 */
2736
	if (rem_load_move > 0) {
2737 2738
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2739 2740
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2741 2742 2743
	}
out:
	/*
2744
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2745 2746 2747 2748
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2749 2750 2751

	if (all_pinned)
		*all_pinned = pinned;
2752 2753

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2754 2755
}

I
Ingo Molnar 已提交
2756
/*
P
Peter Williams 已提交
2757 2758 2759
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2760 2761 2762 2763
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2764
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2765 2766 2767
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2768
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2769
	unsigned long total_load_moved = 0;
2770
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2771 2772

	do {
P
Peter Williams 已提交
2773 2774
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2775
				max_load_move - total_load_moved,
2776
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2777
		class = class->next;
P
Peter Williams 已提交
2778
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2779

P
Peter Williams 已提交
2780 2781 2782
	return total_load_moved > 0;
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2819
	const struct sched_class *class;
P
Peter Williams 已提交
2820 2821

	for (class = sched_class_highest; class; class = class->next)
2822
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2823 2824 2825
			return 1;

	return 0;
I
Ingo Molnar 已提交
2826 2827
}

L
Linus Torvalds 已提交
2828 2829
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2830 2831
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2832 2833 2834
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2835 2836
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2837 2838 2839
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2840
	unsigned long max_pull;
2841 2842
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2843
	int load_idx, group_imb = 0;
2844 2845 2846 2847 2848 2849
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2850 2851

	max_load = this_load = total_load = total_pwr = 0;
2852 2853
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2854
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2855
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2856
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2857 2858 2859
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2860 2861

	do {
2862
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2863 2864
		int local_group;
		int i;
2865
		int __group_imb = 0;
2866
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2867
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2868 2869 2870

		local_group = cpu_isset(this_cpu, group->cpumask);

2871 2872 2873
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2874
		/* Tally up the load of all CPUs in the group */
2875
		sum_weighted_load = sum_nr_running = avg_load = 0;
2876 2877
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2878 2879

		for_each_cpu_mask(i, group->cpumask) {
2880 2881 2882 2883 2884 2885
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2886

2887
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2888 2889
				*sd_idle = 0;

L
Linus Torvalds 已提交
2890
			/* Bias balancing toward cpus of our domain */
2891 2892 2893 2894 2895 2896
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2897
				load = target_load(i, load_idx);
2898
			} else {
N
Nick Piggin 已提交
2899
				load = source_load(i, load_idx);
2900 2901 2902 2903 2904
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2905 2906

			avg_load += load;
2907
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2908
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2909 2910
		}

2911 2912 2913
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2914 2915
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2916
		 */
2917 2918
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2919 2920 2921 2922
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2923
		total_load += avg_load;
2924
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2925 2926

		/* Adjust by relative CPU power of the group */
2927 2928
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2929

2930 2931 2932
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2933
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2934

L
Linus Torvalds 已提交
2935 2936 2937
		if (local_group) {
			this_load = avg_load;
			this = group;
2938 2939 2940
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2941
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2942 2943
			max_load = avg_load;
			busiest = group;
2944 2945
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2946
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2947
		}
2948 2949 2950 2951 2952 2953

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2954 2955 2956
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2957 2958 2959 2960 2961 2962 2963 2964 2965

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2966
		/*
2967 2968
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2969 2970
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2971
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2972
			goto group_next;
2973

I
Ingo Molnar 已提交
2974
		/*
2975
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2976 2977 2978 2979 2980
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2981 2982
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2983 2984
			group_min = group;
			min_nr_running = sum_nr_running;
2985 2986
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2987
		}
2988

I
Ingo Molnar 已提交
2989
		/*
2990
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3002
		}
3003 3004
group_next:
#endif
L
Linus Torvalds 已提交
3005 3006 3007
		group = group->next;
	} while (group != sd->groups);

3008
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3017
	busiest_load_per_task /= busiest_nr_running;
3018 3019 3020
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3021 3022 3023 3024 3025 3026 3027 3028
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3029
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3030 3031
	 * appear as very large values with unsigned longs.
	 */
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3044 3045

	/* Don't want to pull so many tasks that a group would go idle */
3046
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3047

L
Linus Torvalds 已提交
3048
	/* How much load to actually move to equalise the imbalance */
3049 3050
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3051 3052
			/ SCHED_LOAD_SCALE;

3053 3054 3055 3056 3057 3058
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3059
	if (*imbalance < busiest_load_per_task) {
3060
		unsigned long tmp, pwr_now, pwr_move;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3072

I
Ingo Molnar 已提交
3073 3074
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3075
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3085 3086 3087 3088
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3089 3090 3091
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3092 3093
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3094
		if (max_load > tmp)
3095
			pwr_move += busiest->__cpu_power *
3096
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3097 3098

		/* Amount of load we'd add */
3099
		if (max_load * busiest->__cpu_power <
3100
				busiest_load_per_task * SCHED_LOAD_SCALE)
3101 3102
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3103
		else
3104 3105 3106 3107
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3108 3109 3110
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3111 3112
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117
	}

	return busiest;

out_balanced:
3118
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3119
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3120
		goto ret;
L
Linus Torvalds 已提交
3121

3122 3123 3124 3125 3126
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3127
ret:
L
Linus Torvalds 已提交
3128 3129 3130 3131 3132 3133 3134
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3135
static struct rq *
I
Ingo Molnar 已提交
3136
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3137
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3138
{
3139
	struct rq *busiest = NULL, *rq;
3140
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3141 3142 3143
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3144
		unsigned long wl;
3145 3146 3147 3148

		if (!cpu_isset(i, *cpus))
			continue;

3149
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3150
		wl = weighted_cpuload(i);
3151

I
Ingo Molnar 已提交
3152
		if (rq->nr_running == 1 && wl > imbalance)
3153
			continue;
L
Linus Torvalds 已提交
3154

I
Ingo Molnar 已提交
3155 3156
		if (wl > max_load) {
			max_load = wl;
3157
			busiest = rq;
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163
		}
	}

	return busiest;
}

3164 3165 3166 3167 3168 3169
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3170 3171 3172 3173
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3174
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3175
			struct sched_domain *sd, enum cpu_idle_type idle,
3176
			int *balance)
L
Linus Torvalds 已提交
3177
{
P
Peter Williams 已提交
3178
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3179 3180
	struct sched_group *group;
	unsigned long imbalance;
3181
	struct rq *busiest;
3182
	cpumask_t cpus = CPU_MASK_ALL;
3183
	unsigned long flags;
N
Nick Piggin 已提交
3184

3185 3186 3187
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3188
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3189
	 * portraying it as CPU_NOT_IDLE.
3190
	 */
I
Ingo Molnar 已提交
3191
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3192
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3193
		sd_idle = 1;
L
Linus Torvalds 已提交
3194

3195
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3196

3197 3198
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3199 3200
				   &cpus, balance);

3201
	if (*balance == 0)
3202 3203
		goto out_balanced;

L
Linus Torvalds 已提交
3204 3205 3206 3207 3208
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3209
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3210 3211 3212 3213 3214
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3215
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3216 3217 3218

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3219
	ld_moved = 0;
L
Linus Torvalds 已提交
3220 3221 3222 3223
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3224
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3225 3226
		 * correctly treated as an imbalance.
		 */
3227
		local_irq_save(flags);
N
Nick Piggin 已提交
3228
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3229
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3230
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3231
		double_rq_unlock(this_rq, busiest);
3232
		local_irq_restore(flags);
3233

3234 3235 3236
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3237
		if (ld_moved && this_cpu != smp_processor_id())
3238 3239
			resched_cpu(this_cpu);

3240
		/* All tasks on this runqueue were pinned by CPU affinity */
3241 3242 3243 3244
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3245
			goto out_balanced;
3246
		}
L
Linus Torvalds 已提交
3247
	}
3248

P
Peter Williams 已提交
3249
	if (!ld_moved) {
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3255
			spin_lock_irqsave(&busiest->lock, flags);
3256 3257 3258 3259 3260

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3261
				spin_unlock_irqrestore(&busiest->lock, flags);
3262 3263 3264 3265
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3266 3267 3268
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3269
				active_balance = 1;
L
Linus Torvalds 已提交
3270
			}
3271
			spin_unlock_irqrestore(&busiest->lock, flags);
3272
			if (active_balance)
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3279
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3280
		}
3281
	} else
L
Linus Torvalds 已提交
3282 3283
		sd->nr_balance_failed = 0;

3284
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3285 3286
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3287 3288 3289 3290 3291 3292 3293 3294 3295
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3296 3297
	}

P
Peter Williams 已提交
3298
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3299
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3300
		return -1;
P
Peter Williams 已提交
3301
	return ld_moved;
L
Linus Torvalds 已提交
3302 3303 3304 3305

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3306
	sd->nr_balance_failed = 0;
3307 3308

out_one_pinned:
L
Linus Torvalds 已提交
3309
	/* tune up the balancing interval */
3310 3311
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3312 3313
		sd->balance_interval *= 2;

3314
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3315
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3316
		return -1;
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322 3323
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3324
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3325 3326
 * this_rq is locked.
 */
3327
static int
3328
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3329 3330
{
	struct sched_group *group;
3331
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3332
	unsigned long imbalance;
P
Peter Williams 已提交
3333
	int ld_moved = 0;
N
Nick Piggin 已提交
3334
	int sd_idle = 0;
3335
	int all_pinned = 0;
3336
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3337

3338 3339 3340 3341
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3342
	 * portraying it as CPU_NOT_IDLE.
3343 3344 3345
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3346
		sd_idle = 1;
L
Linus Torvalds 已提交
3347

3348
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3349
redo:
I
Ingo Molnar 已提交
3350
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3351
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3352
	if (!group) {
I
Ingo Molnar 已提交
3353
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3354
		goto out_balanced;
L
Linus Torvalds 已提交
3355 3356
	}

I
Ingo Molnar 已提交
3357
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3358
				&cpus);
N
Nick Piggin 已提交
3359
	if (!busiest) {
I
Ingo Molnar 已提交
3360
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3361
		goto out_balanced;
L
Linus Torvalds 已提交
3362 3363
	}

N
Nick Piggin 已提交
3364 3365
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3366
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3367

P
Peter Williams 已提交
3368
	ld_moved = 0;
3369 3370 3371
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3372 3373
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3374
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3375 3376
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3377
		spin_unlock(&busiest->lock);
3378

3379
		if (unlikely(all_pinned)) {
3380 3381 3382 3383
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3384 3385
	}

P
Peter Williams 已提交
3386
	if (!ld_moved) {
I
Ingo Molnar 已提交
3387
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3388 3389
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3390 3391
			return -1;
	} else
3392
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3393

P
Peter Williams 已提交
3394
	return ld_moved;
3395 3396

out_balanced:
I
Ingo Molnar 已提交
3397
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3398
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3399
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3400
		return -1;
3401
	sd->nr_balance_failed = 0;
3402

3403
	return 0;
L
Linus Torvalds 已提交
3404 3405 3406 3407 3408 3409
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3410
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3411 3412
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3413 3414
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3415 3416

	for_each_domain(this_cpu, sd) {
3417 3418 3419 3420 3421 3422
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3423
			/* If we've pulled tasks over stop searching: */
3424
			pulled_task = load_balance_newidle(this_cpu,
3425 3426 3427 3428 3429 3430 3431
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3432
	}
I
Ingo Molnar 已提交
3433
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3434 3435 3436 3437 3438
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3439
	}
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3450
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3451
{
3452
	int target_cpu = busiest_rq->push_cpu;
3453 3454
	struct sched_domain *sd;
	struct rq *target_rq;
3455

3456
	/* Is there any task to move? */
3457 3458 3459 3460
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3461 3462

	/*
3463
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3464
	 * we need to fix it. Originally reported by
3465
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3466
	 */
3467
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3468

3469 3470
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3471 3472
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3473 3474

	/* Search for an sd spanning us and the target CPU. */
3475
	for_each_domain(target_cpu, sd) {
3476
		if ((sd->flags & SD_LOAD_BALANCE) &&
3477
		    cpu_isset(busiest_cpu, sd->span))
3478
				break;
3479
	}
3480

3481
	if (likely(sd)) {
3482
		schedstat_inc(sd, alb_count);
3483

P
Peter Williams 已提交
3484 3485
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3486 3487 3488 3489
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3490
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3491 3492
}

3493 3494 3495
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3496
	cpumask_t cpu_mask;
3497 3498 3499 3500 3501
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3502
/*
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3513
 *
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3570 3571 3572 3573 3574
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3575
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3576
{
3577 3578
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3579 3580
	unsigned long interval;
	struct sched_domain *sd;
3581
	/* Earliest time when we have to do rebalance again */
3582
	unsigned long next_balance = jiffies + 60*HZ;
3583
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3584

3585
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3586 3587 3588 3589
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3590
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3591 3592 3593 3594 3595 3596
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3597 3598 3599
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3600

3601 3602 3603 3604 3605
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3606
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3607
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3608 3609
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3610 3611 3612
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3613
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3614
			}
3615
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3616
		}
3617 3618 3619
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3620
		if (time_after(next_balance, sd->last_balance + interval)) {
3621
			next_balance = sd->last_balance + interval;
3622 3623
			update_next_balance = 1;
		}
3624 3625 3626 3627 3628 3629 3630 3631

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3632
	}
3633 3634 3635 3636 3637 3638 3639 3640

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3641 3642 3643 3644 3645 3646 3647 3648 3649
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3650 3651 3652 3653
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3654

I
Ingo Molnar 已提交
3655
	rebalance_domains(this_cpu, idle);
3656 3657 3658 3659 3660 3661 3662

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3663 3664
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3665 3666 3667 3668
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3669
		cpu_clear(this_cpu, cpus);
3670 3671 3672 3673 3674 3675 3676 3677 3678
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3679
			rebalance_domains(balance_cpu, CPU_IDLE);
3680 3681

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3682 3683
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3696
static inline void trigger_load_balance(struct rq *rq, int cpu)
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3748
}
I
Ingo Molnar 已提交
3749 3750 3751

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3752 3753 3754
/*
 * on UP we do not need to balance between CPUs:
 */
3755
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3756 3757
{
}
I
Ingo Molnar 已提交
3758

L
Linus Torvalds 已提交
3759 3760 3761 3762 3763 3764 3765
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3766 3767
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3768
 */
3769
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3770 3771
{
	unsigned long flags;
3772 3773
	u64 ns, delta_exec;
	struct rq *rq;
3774

3775 3776
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3777
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3778 3779
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3780 3781 3782 3783
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3784

L
Linus Torvalds 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3808 3809 3810 3811 3812
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3813
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3847
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3848 3849
	cputime64_t tmp;

3850 3851
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3852

L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858 3859 3860
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3861
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3862
		cpustat->system = cputime64_add(cpustat->system, tmp);
3863
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3891
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896 3897 3898

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3899
	} else
L
Linus Torvalds 已提交
3900 3901 3902
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3914
	struct task_struct *curr = rq->curr;
3915
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3916 3917

	spin_lock(&rq->lock);
3918
	__update_rq_clock(rq);
3919 3920 3921
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3922
	if (unlikely(rq->clock < next_tick)) {
3923
		rq->clock = next_tick;
3924 3925
		rq->clock_underflows++;
	}
3926
	rq->tick_timestamp = rq->clock;
3927
	update_last_tick_seen(rq);
3928
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3929
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
3930
	spin_unlock(&rq->lock);
3931

3932
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3933 3934
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3935
#endif
L
Linus Torvalds 已提交
3936 3937 3938 3939
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3940
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3941 3942 3943 3944
{
	/*
	 * Underflow?
	 */
3945 3946
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3947 3948 3949 3950
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3951 3952
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3953 3954 3955
}
EXPORT_SYMBOL(add_preempt_count);

3956
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3957 3958 3959 3960
{
	/*
	 * Underflow?
	 */
3961 3962
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3963 3964 3965
	/*
	 * Is the spinlock portion underflowing?
	 */
3966 3967 3968 3969
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3977
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3978
 */
I
Ingo Molnar 已提交
3979
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3980
{
3981 3982 3983 3984 3985
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3986 3987 3988
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3989 3990 3991 3992 3993

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3994
}
L
Linus Torvalds 已提交
3995

I
Ingo Molnar 已提交
3996 3997 3998 3999 4000
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4001
	/*
I
Ingo Molnar 已提交
4002
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4003 4004 4005
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4006 4007 4008
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4009 4010
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4011
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4012 4013
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4014 4015
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4016 4017
	}
#endif
I
Ingo Molnar 已提交
4018 4019 4020 4021 4022 4023
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4024
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4025
{
4026
	const struct sched_class *class;
I
Ingo Molnar 已提交
4027
	struct task_struct *p;
L
Linus Torvalds 已提交
4028 4029

	/*
I
Ingo Molnar 已提交
4030 4031
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4032
	 */
I
Ingo Molnar 已提交
4033
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4034
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4035 4036
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4037 4038
	}

I
Ingo Molnar 已提交
4039 4040
	class = sched_class_highest;
	for ( ; ; ) {
4041
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4051

I
Ingo Molnar 已提交
4052 4053 4054 4055 4056 4057
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4058
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4074

P
Peter Zijlstra 已提交
4075 4076
	hrtick_clear(rq);

4077 4078 4079 4080
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4081
	__update_rq_clock(rq);
4082 4083
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4084 4085 4086

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4087
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4088
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4089
		} else {
4090
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4091
		}
I
Ingo Molnar 已提交
4092
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4093 4094
	}

4095 4096 4097 4098
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4099

I
Ingo Molnar 已提交
4100
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4101 4102
		idle_balance(cpu, rq);

4103
	prev->sched_class->put_prev_task(rq, prev);
4104
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4105 4106

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4107

L
Linus Torvalds 已提交
4108 4109 4110 4111 4112
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4113
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4114 4115 4116 4117 4118 4119
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4120 4121 4122
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4123 4124 4125
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4126
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4127

L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134 4135
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4136
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4137
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4145

L
Linus Torvalds 已提交
4146 4147
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4148
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4149
	 */
N
Nick Piggin 已提交
4150
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4151 4152
		return;

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4166

4167 4168 4169 4170 4171 4172
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4173 4174 4175 4176
}
EXPORT_SYMBOL(preempt_schedule);

/*
4177
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4187

4188
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4189 4190
	BUG_ON(ti->preempt_count || !irqs_disabled());

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4206

4207 4208 4209 4210 4211 4212
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4213 4214 4215 4216
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4217 4218
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4219
{
4220
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4221 4222 4223 4224
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4225 4226
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4227 4228 4229
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4230
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4231 4232 4233 4234 4235
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4236
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4237

4238
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4239 4240
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4241
		if (curr->func(curr, mode, sync, key) &&
4242
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4252
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4253
 */
4254
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4255
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4268
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4274
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4286
void
I
Ingo Molnar 已提交
4287
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4304
void complete(struct completion *x)
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4310
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4311 4312 4313 4314
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4315
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4321
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4322 4323 4324 4325
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4326 4327
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4328 4329 4330 4331 4332 4333 4334
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4335 4336 4337 4338
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4339 4340 4341 4342
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4348
				return timeout;
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354 4355 4356
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4357 4358
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4359 4360 4361 4362
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4363
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4364
	spin_unlock_irq(&x->wait.lock);
4365 4366
	return timeout;
}
L
Linus Torvalds 已提交
4367

4368
void __sched wait_for_completion(struct completion *x)
4369 4370
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4371
}
4372
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4373

4374
unsigned long __sched
4375
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4376
{
4377
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4378
}
4379
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4380

4381
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4382
{
4383 4384 4385 4386
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4387
}
4388
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4389

4390
unsigned long __sched
4391 4392
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4393
{
4394
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4395
}
4396
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4397

M
Matthew Wilcox 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4407 4408
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4409
{
I
Ingo Molnar 已提交
4410 4411 4412 4413
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4414

4415
	__set_current_state(state);
L
Linus Torvalds 已提交
4416

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4431 4432 4433
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4434
long __sched
I
Ingo Molnar 已提交
4435
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4436
{
4437
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4438 4439 4440
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4441
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4442
{
4443
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4444 4445 4446
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4447
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4448
{
4449
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4450 4451 4452
}
EXPORT_SYMBOL(sleep_on_timeout);

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4465
void rt_mutex_setprio(struct task_struct *p, int prio)
4466 4467
{
	unsigned long flags;
4468
	int oldprio, on_rq, running;
4469
	struct rq *rq;
4470
	const struct sched_class *prev_class = p->sched_class;
4471 4472 4473 4474

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4475
	update_rq_clock(rq);
4476

4477
	oldprio = p->prio;
I
Ingo Molnar 已提交
4478
	on_rq = p->se.on_rq;
4479
	running = task_current(rq, p);
4480
	if (on_rq)
4481
		dequeue_task(rq, p, 0);
4482 4483
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4484 4485 4486 4487 4488 4489

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4490 4491
	p->prio = prio;

4492 4493
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4494
	if (on_rq) {
4495
		enqueue_task(rq, p, 0);
4496 4497

		check_class_changed(rq, p, prev_class, oldprio, running);
4498 4499 4500 4501 4502 4503
	}
	task_rq_unlock(rq, &flags);
}

#endif

4504
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4505
{
I
Ingo Molnar 已提交
4506
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4507
	unsigned long flags;
4508
	struct rq *rq;
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514 4515 4516

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4517
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4518 4519 4520 4521
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4522
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4523
	 */
4524
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4525 4526 4527
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4528
	on_rq = p->se.on_rq;
4529
	if (on_rq) {
4530
		dequeue_task(rq, p, 0);
4531 4532
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4533 4534

	p->static_prio = NICE_TO_PRIO(nice);
4535
	set_load_weight(p);
4536 4537 4538
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4539

I
Ingo Molnar 已提交
4540
	if (on_rq) {
4541
		enqueue_task(rq, p, 0);
4542
		inc_load(rq, p);
L
Linus Torvalds 已提交
4543
		/*
4544 4545
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4546
		 */
4547
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4555 4556 4557 4558 4559
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4560
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4561
{
4562 4563
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4564

M
Matt Mackall 已提交
4565 4566 4567 4568
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4580
	long nice, retval;
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4587 4588
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4598 4599 4600
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4619
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625 4626 4627
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4628
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4629 4630 4631
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4632
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4647
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4656
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4657
{
4658
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4659 4660 4661
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4662 4663
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4664
{
I
Ingo Molnar 已提交
4665
	BUG_ON(p->se.on_rq);
4666

L
Linus Torvalds 已提交
4667
	p->policy = policy;
I
Ingo Molnar 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4680
	p->rt_priority = prio;
4681 4682 4683
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4684
	set_load_weight(p);
L
Linus Torvalds 已提交
4685 4686 4687
}

/**
4688
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4689 4690 4691
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4692
 *
4693
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4694
 */
I
Ingo Molnar 已提交
4695 4696
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4697
{
4698
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4699
	unsigned long flags;
4700
	const struct sched_class *prev_class = p->sched_class;
4701
	struct rq *rq;
L
Linus Torvalds 已提交
4702

4703 4704
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4710 4711
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4712
		return -EINVAL;
L
Linus Torvalds 已提交
4713 4714
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4715 4716
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4717 4718
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4719
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4720
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4721
		return -EINVAL;
4722
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4723 4724
		return -EINVAL;

4725 4726 4727 4728
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4729
		if (rt_policy(policy)) {
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4746 4747 4748 4749 4750 4751
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4752

4753 4754 4755 4756 4757
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4758

4759 4760 4761 4762 4763
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4764
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4765 4766 4767
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4768 4769 4770
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4771 4772 4773 4774 4775
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4776 4777 4778 4779
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4780
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4781 4782 4783
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4784 4785
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4786 4787
		goto recheck;
	}
I
Ingo Molnar 已提交
4788
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4789
	on_rq = p->se.on_rq;
4790
	running = task_current(rq, p);
4791
	if (on_rq)
4792
		deactivate_task(rq, p, 0);
4793 4794
	if (running)
		p->sched_class->put_prev_task(rq, p);
4795

L
Linus Torvalds 已提交
4796
	oldprio = p->prio;
I
Ingo Molnar 已提交
4797
	__setscheduler(rq, p, policy, param->sched_priority);
4798

4799 4800
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4801 4802
	if (on_rq) {
		activate_task(rq, p, 0);
4803 4804

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4805
	}
4806 4807 4808
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4809 4810
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4811 4812 4813 4814
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4815 4816
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4817 4818 4819
{
	struct sched_param lparam;
	struct task_struct *p;
4820
	int retval;
L
Linus Torvalds 已提交
4821 4822 4823 4824 4825

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4826 4827 4828

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4829
	p = find_process_by_pid(pid);
4830 4831 4832
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4833

L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4843 4844
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4845
{
4846 4847 4848 4849
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4869
	struct task_struct *p;
4870
	int retval;
L
Linus Torvalds 已提交
4871 4872

	if (pid < 0)
4873
		return -EINVAL;
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4895
	struct task_struct *p;
4896
	int retval;
L
Linus Torvalds 已提交
4897 4898

	if (!param || pid < 0)
4899
		return -EINVAL;
L
Linus Torvalds 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4929 4930
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4931

4932
	get_online_cpus();
L
Linus Torvalds 已提交
4933 4934 4935 4936 4937
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4938
		put_online_cpus();
L
Linus Torvalds 已提交
4939 4940 4941 4942 4943
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4944
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4955 4956 4957 4958
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4959 4960
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4961
 again:
L
Linus Torvalds 已提交
4962 4963
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4976 4977
out_unlock:
	put_task_struct(p);
4978
	put_online_cpus();
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5019
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5020 5021 5022
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5023
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5024 5025
EXPORT_SYMBOL(cpu_online_map);

5026
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5027
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5028 5029 5030 5031
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5032
	struct task_struct *p;
L
Linus Torvalds 已提交
5033 5034
	int retval;

5035
	get_online_cpus();
L
Linus Torvalds 已提交
5036 5037 5038 5039 5040 5041 5042
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5043 5044 5045 5046
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5047
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5048 5049 5050

out_unlock:
	read_unlock(&tasklist_lock);
5051
	put_online_cpus();
L
Linus Torvalds 已提交
5052

5053
	return retval;
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5084 5085
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5086 5087 5088
 */
asmlinkage long sys_sched_yield(void)
{
5089
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5090

5091
	schedstat_inc(rq, yld_count);
5092
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5093 5094 5095 5096 5097 5098

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5099
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5108
static void __cond_resched(void)
L
Linus Torvalds 已提交
5109
{
5110 5111 5112
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5113 5114 5115 5116 5117
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5118 5119 5120 5121 5122 5123 5124
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5125 5126
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5127
{
5128 5129
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5130 5131 5132 5133 5134
		__cond_resched();
		return 1;
	}
	return 0;
}
5135 5136
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5142
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5143 5144 5145
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5146
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5147
{
N
Nick Piggin 已提交
5148
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5149 5150
	int ret = 0;

N
Nick Piggin 已提交
5151
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5152
		spin_unlock(lock);
N
Nick Piggin 已提交
5153 5154 5155 5156
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5157
		ret = 1;
L
Linus Torvalds 已提交
5158 5159
		spin_lock(lock);
	}
J
Jan Kara 已提交
5160
	return ret;
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5168
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5169
		local_bh_enable();
L
Linus Torvalds 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5181
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5192
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197 5198 5199
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5200
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5201

5202
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5203 5204 5205
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5206
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5212
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5213 5214
	long ret;

5215
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5216 5217 5218
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5219
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5240
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5241
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5265
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5266
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5283
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5284
	unsigned int time_slice;
5285
	int retval;
L
Linus Torvalds 已提交
5286 5287 5288
	struct timespec t;

	if (pid < 0)
5289
		return -EINVAL;
L
Linus Torvalds 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5301 5302 5303 5304 5305 5306
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5307
		time_slice = DEF_TIMESLICE;
5308
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5309 5310 5311 5312 5313
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5314 5315
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5316 5317
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5318
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5319
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5320 5321
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5322

L
Linus Torvalds 已提交
5323 5324 5325 5326 5327
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5328
static const char stat_nam[] = "RSDTtZX";
5329

5330
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5331 5332
{
	unsigned long free = 0;
5333
	unsigned state;
L
Linus Torvalds 已提交
5334 5335

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5336
	printk(KERN_INFO "%-13.13s %c", p->comm,
5337
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5338
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5339
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5340
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5341
	else
I
Ingo Molnar 已提交
5342
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5343 5344
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5345
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5346
	else
I
Ingo Molnar 已提交
5347
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5348 5349 5350
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5351
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5352 5353
		while (!*n)
			n++;
5354
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5355 5356
	}
#endif
5357
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5358
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5359

5360
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5361 5362
}

I
Ingo Molnar 已提交
5363
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5364
{
5365
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5366

5367 5368 5369
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5370
#else
5371 5372
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5381
		if (!state_filter || (p->state & state_filter))
5382
			sched_show_task(p);
L
Linus Torvalds 已提交
5383 5384
	} while_each_thread(g, p);

5385 5386
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5387 5388 5389
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5390
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5391 5392 5393 5394 5395
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5396 5397
}

I
Ingo Molnar 已提交
5398 5399
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5400
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5401 5402
}

5403 5404 5405 5406 5407 5408 5409 5410
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5411
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5412
{
5413
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5414 5415
	unsigned long flags;

I
Ingo Molnar 已提交
5416 5417 5418
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5419
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5420
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5421
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5422 5423 5424

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5425 5426 5427
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5428 5429 5430
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5431
	task_thread_info(idle)->preempt_count = 0;
5432

I
Ingo Molnar 已提交
5433 5434 5435 5436
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5473 5474 5475 5476
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5477
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5496
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5497 5498
 * call is not atomic; no spinlocks may be held.
 */
5499
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5500
{
5501
	struct migration_req req;
L
Linus Torvalds 已提交
5502
	unsigned long flags;
5503
	struct rq *rq;
5504
	int ret = 0;
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510 5511

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5512 5513 5514
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5515
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5516
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5517 5518
	}

L
Linus Torvalds 已提交
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5533

L
Linus Torvalds 已提交
5534 5535 5536 5537 5538
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5539
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5540 5541 5542 5543 5544 5545
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5546 5547
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5548
 */
5549
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5550
{
5551
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5552
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5553 5554

	if (unlikely(cpu_is_offline(dest_cpu)))
5555
		return ret;
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5568
	on_rq = p->se.on_rq;
5569
	if (on_rq)
5570
		deactivate_task(rq_src, p, 0);
5571

L
Linus Torvalds 已提交
5572
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5573 5574 5575
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5576
	}
5577
	ret = 1;
L
Linus Torvalds 已提交
5578 5579
out:
	double_rq_unlock(rq_src, rq_dest);
5580
	return ret;
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585 5586 5587
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5588
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5589 5590
{
	int cpu = (long)data;
5591
	struct rq *rq;
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5598
		struct migration_req *req;
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5621
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5622 5623
		list_del_init(head->next);

N
Nick Piggin 已提交
5624 5625 5626
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5656
/*
5657
 * Figure out where task on dead CPU should go, use force if necessary.
5658 5659
 * NOTE: interrupts should be disabled by the caller
 */
5660
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5661
{
5662
	unsigned long flags;
L
Linus Torvalds 已提交
5663
	cpumask_t mask;
5664 5665
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5666

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5679 5680 5681 5682 5683
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5684
			 * cpuset_cpus_allowed() will not block. It must be
5685 5686
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5687
			rq = task_rq_lock(p, &flags);
5688
			p->cpus_allowed = cpus_allowed;
5689 5690
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5691

5692 5693 5694 5695 5696
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5697
			if (p->mm && printk_ratelimit()) {
5698 5699
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5700 5701
					task_pid_nr(p), p->comm, dead_cpu);
			}
5702
		}
5703
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5713
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5714
{
5715
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5729
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5730

5731
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5732

5733 5734
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5735 5736
			continue;

5737 5738 5739
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5740

5741
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5742 5743
}

I
Ingo Molnar 已提交
5744 5745
/*
 * Schedules idle task to be the next runnable task on current CPU.
5746 5747
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5748 5749 5750
 */
void sched_idle_next(void)
{
5751
	int this_cpu = smp_processor_id();
5752
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5753 5754 5755 5756
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5757
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5758

5759 5760 5761
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5762 5763 5764
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5765
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5766

5767 5768
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5769 5770 5771 5772

	spin_unlock_irqrestore(&rq->lock, flags);
}

5773 5774
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5788
/* called under rq->lock with disabled interrupts */
5789
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5790
{
5791
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5792 5793

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5794
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5795 5796

	/* Cannot have done final schedule yet: would have vanished. */
5797
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5798

5799
	get_task_struct(p);
L
Linus Torvalds 已提交
5800 5801 5802

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5803
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5804 5805
	 * fine.
	 */
5806
	spin_unlock_irq(&rq->lock);
5807
	move_task_off_dead_cpu(dead_cpu, p);
5808
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5809

5810
	put_task_struct(p);
L
Linus Torvalds 已提交
5811 5812 5813 5814 5815
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5816
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5817
	struct task_struct *next;
5818

I
Ingo Molnar 已提交
5819 5820 5821
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5822
		update_rq_clock(rq);
5823
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5824 5825 5826
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5827

L
Linus Torvalds 已提交
5828 5829 5830 5831
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5832 5833 5834
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5835 5836
	{
		.procname	= "sched_domain",
5837
		.mode		= 0555,
5838
	},
I
Ingo Molnar 已提交
5839
	{0, },
5840 5841 5842
};

static struct ctl_table sd_ctl_root[] = {
5843
	{
5844
		.ctl_name	= CTL_KERN,
5845
		.procname	= "kernel",
5846
		.mode		= 0555,
5847 5848
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5849
	{0, },
5850 5851 5852 5853 5854
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5855
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5856 5857 5858 5859

	return entry;
}

5860 5861
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5862
	struct ctl_table *entry;
5863

5864 5865 5866
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5867
	 * will always be set. In the lowest directory the names are
5868 5869 5870
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5871 5872
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5873 5874 5875
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5876 5877 5878 5879 5880

	kfree(*tablep);
	*tablep = NULL;
}

5881
static void
5882
set_table_entry(struct ctl_table *entry,
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5896
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5897

5898 5899 5900
	if (table == NULL)
		return NULL;

5901
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5902
		sizeof(long), 0644, proc_doulongvec_minmax);
5903
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5904
		sizeof(long), 0644, proc_doulongvec_minmax);
5905
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5906
		sizeof(int), 0644, proc_dointvec_minmax);
5907
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5908
		sizeof(int), 0644, proc_dointvec_minmax);
5909
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5910
		sizeof(int), 0644, proc_dointvec_minmax);
5911
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5912
		sizeof(int), 0644, proc_dointvec_minmax);
5913
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5914
		sizeof(int), 0644, proc_dointvec_minmax);
5915
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5916
		sizeof(int), 0644, proc_dointvec_minmax);
5917
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5918
		sizeof(int), 0644, proc_dointvec_minmax);
5919
	set_table_entry(&table[9], "cache_nice_tries",
5920 5921
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5922
	set_table_entry(&table[10], "flags", &sd->flags,
5923
		sizeof(int), 0644, proc_dointvec_minmax);
5924
	/* &table[11] is terminator */
5925 5926 5927 5928

	return table;
}

5929
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5930 5931 5932 5933 5934 5935 5936 5937 5938
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5939 5940
	if (table == NULL)
		return NULL;
5941 5942 5943 5944 5945

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5946
		entry->mode = 0555;
5947 5948 5949 5950 5951 5952 5953 5954
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5955
static void register_sched_domain_sysctl(void)
5956 5957 5958 5959 5960
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5961 5962 5963
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5964 5965 5966
	if (entry == NULL)
		return;

5967
	for_each_online_cpu(i) {
5968 5969
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5970
		entry->mode = 0555;
5971
		entry->child = sd_alloc_ctl_cpu_table(i);
5972
		entry++;
5973
	}
5974 5975

	WARN_ON(sd_sysctl_header);
5976 5977
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5978

5979
/* may be called multiple times per register */
5980 5981
static void unregister_sched_domain_sysctl(void)
{
5982 5983
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5984
	sd_sysctl_header = NULL;
5985 5986
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5987
}
5988
#else
5989 5990 5991 5992
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5993 5994 5995 5996
{
}
#endif

L
Linus Torvalds 已提交
5997 5998 5999 6000
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6001 6002
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6003 6004
{
	struct task_struct *p;
6005
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6006
	unsigned long flags;
6007
	struct rq *rq;
L
Linus Torvalds 已提交
6008 6009

	switch (action) {
6010

L
Linus Torvalds 已提交
6011
	case CPU_UP_PREPARE:
6012
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6013
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6014 6015 6016 6017 6018
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6019
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6020 6021 6022
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6023

L
Linus Torvalds 已提交
6024
	case CPU_ONLINE:
6025
	case CPU_ONLINE_FROZEN:
6026
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6027
		wake_up_process(cpu_rq(cpu)->migration_thread);
6028 6029 6030 6031 6032 6033 6034 6035 6036

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6037
		break;
6038

L
Linus Torvalds 已提交
6039 6040
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6041
	case CPU_UP_CANCELED_FROZEN:
6042 6043
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6044
		/* Unbind it from offline cpu so it can run. Fall thru. */
6045 6046
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6047 6048 6049
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6050

L
Linus Torvalds 已提交
6051
	case CPU_DEAD:
6052
	case CPU_DEAD_FROZEN:
6053
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6059
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6060
		update_rq_clock(rq);
6061
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6062
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6063 6064
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6065
		migrate_dead_tasks(cpu);
6066
		spin_unlock_irq(&rq->lock);
6067
		cpuset_unlock();
L
Linus Torvalds 已提交
6068 6069 6070
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6071 6072 6073 6074 6075
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6076 6077
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6078 6079
			struct migration_req *req;

L
Linus Torvalds 已提交
6080
			req = list_entry(rq->migration_queue.next,
6081
					 struct migration_req, list);
L
Linus Torvalds 已提交
6082 6083 6084 6085 6086
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6087

6088 6089
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6090 6091 6092 6093 6094 6095 6096 6097 6098
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6099 6100 6101 6102 6103 6104 6105 6106
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6107
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6108 6109 6110 6111
	.notifier_call = migration_call,
	.priority = 10
};

6112
void __init migration_init(void)
L
Linus Torvalds 已提交
6113 6114
{
	void *cpu = (void *)(long)smp_processor_id();
6115
	int err;
6116 6117

	/* Start one for the boot CPU: */
6118 6119
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124 6125
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6126 6127 6128 6129 6130

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

6131
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6132 6133

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
6134
{
I
Ingo Molnar 已提交
6135 6136 6137
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
6138

I
Ingo Molnar 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6150 6151
	}

I
Ingo Molnar 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6162

I
Ingo Molnar 已提交
6163
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6164
	do {
I
Ingo Molnar 已提交
6165 6166 6167
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6168 6169 6170
			break;
		}

I
Ingo Molnar 已提交
6171 6172 6173 6174 6175 6176
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6177

I
Ingo Molnar 已提交
6178 6179 6180 6181 6182
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6183

I
Ingo Molnar 已提交
6184 6185 6186 6187 6188
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6189

I
Ingo Molnar 已提交
6190
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6191

I
Ingo Molnar 已提交
6192 6193
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6194

I
Ingo Molnar 已提交
6195 6196 6197
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6198

I
Ingo Molnar 已提交
6199 6200
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6201

I
Ingo Molnar 已提交
6202 6203 6204 6205 6206
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6207

I
Ingo Molnar 已提交
6208 6209 6210
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6211

I
Ingo Molnar 已提交
6212 6213 6214 6215
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6216

I
Ingo Molnar 已提交
6217 6218 6219 6220 6221
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6222 6223
		level++;
		sd = sd->parent;
6224
		if (!sd)
I
Ingo Molnar 已提交
6225 6226
			break;
	}
L
Linus Torvalds 已提交
6227 6228
}
#else
6229
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6230 6231
#endif

6232
static int sd_degenerate(struct sched_domain *sd)
6233 6234 6235 6236 6237 6238 6239 6240
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6241 6242 6243
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6257 6258
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6277 6278 6279
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6280 6281 6282 6283 6284 6285 6286
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6297
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6298 6299
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6300
		}
G
Gregory Haskins 已提交
6301

6302 6303 6304
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6305 6306 6307 6308 6309 6310 6311
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6312
	cpu_set(rq->cpu, rd->span);
6313 6314
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6315

I
Ingo Molnar 已提交
6316
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6317 6318
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6319
	}
G
Gregory Haskins 已提交
6320 6321 6322 6323

	spin_unlock_irqrestore(&rq->lock, flags);
}

6324
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6325 6326 6327
{
	memset(rd, 0, sizeof(*rd));

6328 6329
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6330 6331 6332 6333
}

static void init_defrootdomain(void)
{
6334
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6335 6336 6337
	atomic_set(&def_root_domain.refcount, 1);
}

6338
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6339 6340 6341 6342 6343 6344 6345
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6346
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6347 6348 6349 6350

	return rd;
}

L
Linus Torvalds 已提交
6351
/*
I
Ingo Molnar 已提交
6352
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6353 6354
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6355 6356
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6357
{
6358
	struct rq *rq = cpu_rq(cpu);
6359 6360 6361 6362 6363 6364 6365
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6366
		if (sd_parent_degenerate(tmp, parent)) {
6367
			tmp->parent = parent->parent;
6368 6369 6370
			if (parent->parent)
				parent->parent->child = tmp;
		}
6371 6372
	}

6373
	if (sd && sd_degenerate(sd)) {
6374
		sd = sd->parent;
6375 6376 6377
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6378 6379 6380

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6381
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6382
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6383 6384 6385
}

/* cpus with isolated domains */
6386
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6401
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6402 6403

/*
6404 6405 6406 6407
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6408 6409 6410 6411 6412
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6413
static void
6414 6415 6416
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6417 6418 6419 6420 6421 6422
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6423 6424
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6425 6426 6427 6428 6429 6430
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6431
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6432 6433

		for_each_cpu_mask(j, span) {
6434
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6449
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6450

6451
#ifdef CONFIG_NUMA
6452

6453 6454 6455 6456 6457
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6458
 * Find the next node to include in a given scheduling domain. Simply
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6498
 * Given a node, construct a good cpumask for its sched_domain to span. It
6499 6500 6501 6502 6503 6504
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6505 6506
	cpumask_t span, nodemask;
	int i;
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6517

6518 6519 6520 6521 6522 6523 6524 6525
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6526
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6527

6528
/*
6529
 * SMT sched-domains:
6530
 */
L
Linus Torvalds 已提交
6531 6532
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6533
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6534

I
Ingo Molnar 已提交
6535 6536
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6537
{
6538 6539
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6540 6541 6542 6543
	return cpu;
}
#endif

6544 6545 6546
/*
 * multi-core sched-domains:
 */
6547 6548
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6549
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6550 6551 6552
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6553 6554
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6555
{
6556
	int group;
6557
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6558
	cpus_and(mask, mask, *cpu_map);
6559 6560 6561 6562
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6563 6564
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6565 6566
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6567
{
6568 6569
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6570 6571 6572 6573
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6574
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6575
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6576

I
Ingo Molnar 已提交
6577 6578
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6579
{
6580
	int group;
6581
#ifdef CONFIG_SCHED_MC
6582
	cpumask_t mask = cpu_coregroup_map(cpu);
6583
	cpus_and(mask, mask, *cpu_map);
6584
	group = first_cpu(mask);
6585
#elif defined(CONFIG_SCHED_SMT)
6586
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6587
	cpus_and(mask, mask, *cpu_map);
6588
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6589
#else
6590
	group = cpu;
L
Linus Torvalds 已提交
6591
#endif
6592 6593 6594
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6595 6596 6597 6598
}

#ifdef CONFIG_NUMA
/*
6599 6600 6601
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6602
 */
6603
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6604
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6605

6606
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6607
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6608

6609 6610
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6611
{
6612 6613 6614 6615 6616 6617 6618 6619 6620
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6621
}
6622

6623 6624 6625 6626 6627 6628 6629
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6630 6631 6632
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6633

6634 6635 6636 6637 6638 6639 6640 6641
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6642

6643 6644 6645 6646
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6647
}
L
Linus Torvalds 已提交
6648 6649
#endif

6650
#ifdef CONFIG_NUMA
6651 6652 6653
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6654
	int cpu, i;
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6685 6686 6687 6688 6689
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6690

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6717 6718
	sd->groups->__cpu_power = 0;

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6729
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6730 6731 6732 6733 6734 6735 6736 6737
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6738
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6739 6740 6741 6742
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6743
/*
6744 6745
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6746
 */
6747
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6748 6749
{
	int i;
G
Gregory Haskins 已提交
6750
	struct root_domain *rd;
6751 6752
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6753
	int sd_allnodes = 0;
6754 6755 6756 6757

	/*
	 * Allocate the per-node list of sched groups
	 */
6758
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6759
				    GFP_KERNEL);
6760 6761
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6762
		return -ENOMEM;
6763 6764 6765
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6766

6767
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6768 6769 6770 6771 6772
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6773
	/*
6774
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6775
	 */
6776
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6777 6778 6779
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6780
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6781 6782

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6783 6784
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6785 6786 6787
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6788
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6789
			p = sd;
6790
			sd_allnodes = 1;
6791 6792 6793
		} else
			p = NULL;

L
Linus Torvalds 已提交
6794 6795
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6796 6797
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6798 6799
		if (p)
			p->child = sd;
6800
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6801 6802 6803 6804 6805 6806 6807
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6808 6809
		if (p)
			p->child = sd;
6810
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6811

6812 6813 6814 6815 6816 6817 6818
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6819
		p->child = sd;
6820
		cpu_to_core_group(i, cpu_map, &sd->groups);
6821 6822
#endif

L
Linus Torvalds 已提交
6823 6824 6825 6826
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6827
		sd->span = per_cpu(cpu_sibling_map, i);
6828
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6829
		sd->parent = p;
6830
		p->child = sd;
6831
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6832 6833 6834 6835 6836
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6837
	for_each_cpu_mask(i, *cpu_map) {
6838
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6839
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6840 6841 6842
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6843 6844
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6845 6846 6847
	}
#endif

6848 6849 6850 6851 6852 6853 6854
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6855 6856
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6857 6858 6859
	}
#endif

L
Linus Torvalds 已提交
6860 6861 6862 6863
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6864
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6865 6866 6867
		if (cpus_empty(nodemask))
			continue;

6868
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6869 6870 6871 6872
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6873
	if (sd_allnodes)
I
Ingo Molnar 已提交
6874 6875
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6886 6887
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6888
			continue;
6889
		}
6890 6891 6892 6893

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6894
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6895 6896 6897 6898 6899
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6900 6901 6902
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6903

6904 6905 6906
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6907
		sg->__cpu_power = 0;
6908
		sg->cpumask = nodemask;
6909
		sg->next = sg;
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6928 6929
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6930 6931 6932
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6933
				goto error;
6934
			}
6935
			sg->__cpu_power = 0;
6936
			sg->cpumask = tmp;
6937
			sg->next = prev->next;
6938 6939 6940 6941 6942
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6943 6944 6945
#endif

	/* Calculate CPU power for physical packages and nodes */
6946
#ifdef CONFIG_SCHED_SMT
6947
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6948 6949
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6950
		init_sched_groups_power(i, sd);
6951
	}
L
Linus Torvalds 已提交
6952
#endif
6953
#ifdef CONFIG_SCHED_MC
6954
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6955 6956
		struct sched_domain *sd = &per_cpu(core_domains, i);

6957
		init_sched_groups_power(i, sd);
6958 6959
	}
#endif
6960

6961
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6962 6963
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6964
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6965 6966
	}

6967
#ifdef CONFIG_NUMA
6968 6969
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6970

6971 6972
	if (sd_allnodes) {
		struct sched_group *sg;
6973

6974
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6975 6976
		init_numa_sched_groups_power(sg);
	}
6977 6978
#endif

L
Linus Torvalds 已提交
6979
	/* Attach the domains */
6980
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6981 6982 6983
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6984 6985
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6986 6987 6988
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6989
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6990
	}
6991 6992 6993

	return 0;

6994
#ifdef CONFIG_NUMA
6995 6996 6997
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6998
#endif
L
Linus Torvalds 已提交
6999
}
P
Paul Jackson 已提交
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7011 7012 7013 7014
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7015
/*
I
Ingo Molnar 已提交
7016
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7017 7018
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7019
 */
7020
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7021
{
7022 7023
	int err;

7024
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7025 7026 7027 7028 7029
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7030
	err = build_sched_domains(doms_cur);
7031
	register_sched_domain_sysctl();
7032 7033

	return err;
7034 7035 7036
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
7037
{
7038
	free_sched_groups(cpu_map);
7039
}
L
Linus Torvalds 已提交
7040

7041 7042 7043 7044
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7045
static void detach_destroy_domains(const cpumask_t *cpu_map)
7046 7047 7048
{
	int i;

7049 7050
	unregister_sched_domain_sysctl();

7051
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7052
		cpu_attach_domain(NULL, &def_root_domain, i);
7053 7054 7055 7056
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
7057 7058
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7059
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7060 7061 7062 7063
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7064 7065 7066
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7067 7068 7069
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7070 7071
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

7082 7083
	lock_doms_cur();

7084 7085 7086
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
7122 7123

	register_sched_domain_sysctl();
7124 7125

	unlock_doms_cur();
P
Paul Jackson 已提交
7126 7127
}

7128
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7129
int arch_reinit_sched_domains(void)
7130 7131 7132
{
	int err;

7133
	get_online_cpus();
7134 7135
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7136
	put_online_cpus();
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7163 7164
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7165 7166 7167
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7168 7169
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7170 7171 7172 7173 7174 7175 7176
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7177 7178
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7179 7180 7181
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7202 7203
#endif

L
Linus Torvalds 已提交
7204
/*
I
Ingo Molnar 已提交
7205
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7206
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7207
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7208 7209 7210 7211 7212 7213 7214
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7215
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7216
	case CPU_DOWN_PREPARE:
7217
	case CPU_DOWN_PREPARE_FROZEN:
7218
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7219 7220 7221
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7222
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7223
	case CPU_DOWN_FAILED:
7224
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7225
	case CPU_ONLINE:
7226
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7227
	case CPU_DEAD:
7228
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7229 7230 7231 7232 7233 7234 7235 7236 7237
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7238
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7239 7240 7241 7242 7243 7244

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7245 7246
	cpumask_t non_isolated_cpus;

7247
	get_online_cpus();
7248
	arch_init_sched_domains(&cpu_online_map);
7249
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7250 7251
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7252
	put_online_cpus();
L
Linus Torvalds 已提交
7253 7254
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7255 7256 7257 7258

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7259
	sched_init_granularity();
L
Linus Torvalds 已提交
7260 7261 7262 7263
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7264
	sched_init_granularity();
L
Linus Torvalds 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7275
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7276 7277 7278 7279 7280
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7281
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7282 7283
}

P
Peter Zijlstra 已提交
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7297
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7298 7299
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7300 7301 7302 7303 7304 7305 7306
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7307 7308
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7309

7310
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7311
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7312 7313
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7314 7315
}

P
Peter Zijlstra 已提交
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7334
#endif
P
Peter Zijlstra 已提交
7335

7336
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7337 7338 7339 7340 7341 7342 7343 7344
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7345
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7357 7358
void __init sched_init(void)
{
7359
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7360 7361
	int i, j;

G
Gregory Haskins 已提交
7362 7363 7364 7365
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7366 7367 7368 7369 7370 7371 7372 7373
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
#endif

7374
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7375 7376 7377
	list_add(&init_task_group.list, &task_groups);
#endif

7378
	for_each_possible_cpu(i) {
7379
		struct rq *rq;
L
Linus Torvalds 已提交
7380 7381 7382

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7383
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7384
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7385
		rq->clock = 1;
7386
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
7387
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7388
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7389
#ifdef CONFIG_FAIR_GROUP_SCHED
7390
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7391 7392 7393 7394 7395
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7396 7397
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7398 7399 7400 7401
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
P
Peter Zijlstra 已提交
7402 7403
#else
		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
I
Ingo Molnar 已提交
7404
#endif
L
Linus Torvalds 已提交
7405

I
Ingo Molnar 已提交
7406 7407
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7408
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7409
		rq->sd = NULL;
G
Gregory Haskins 已提交
7410
		rq->rd = NULL;
L
Linus Torvalds 已提交
7411
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7412
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7413
		rq->push_cpu = 0;
7414
		rq->cpu = i;
L
Linus Torvalds 已提交
7415 7416
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7417
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7418
#endif
P
Peter Zijlstra 已提交
7419
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7420
		atomic_set(&rq->nr_iowait, 0);
7421
		highest_cpu = i;
L
Linus Torvalds 已提交
7422 7423
	}

7424
	set_load_weight(&init_task);
7425

7426 7427 7428 7429
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7430
#ifdef CONFIG_SMP
7431
	nr_cpu_ids = highest_cpu + 1;
7432 7433 7434
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7435 7436 7437 7438
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7452 7453 7454 7455
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7456 7457

	scheduler_running = 1;
L
Linus Torvalds 已提交
7458 7459 7460 7461 7462
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7463
#ifdef in_atomic
L
Linus Torvalds 已提交
7464 7465 7466 7467 7468 7469 7470
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7471
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7472 7473 7474
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7475
		debug_show_held_locks(current);
7476 7477
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7478 7479 7480 7481 7482 7483 7484 7485
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7500 7501
void normalize_rt_tasks(void)
{
7502
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7503
	unsigned long flags;
7504
	struct rq *rq;
L
Linus Torvalds 已提交
7505

7506
	read_lock_irqsave(&tasklist_lock, flags);
7507
	do_each_thread(g, p) {
7508 7509 7510 7511 7512 7513
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7514 7515
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7516 7517 7518
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7519
#endif
I
Ingo Molnar 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7529
			continue;
I
Ingo Molnar 已提交
7530
		}
L
Linus Torvalds 已提交
7531

7532
		spin_lock(&p->pi_lock);
7533
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7534

7535
		normalize_task(rq, p);
7536

7537
		__task_rq_unlock(rq);
7538
		spin_unlock(&p->pi_lock);
7539 7540
	} while_each_thread(g, p);

7541
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7542 7543 7544
}

#endif /* CONFIG_MAGIC_SYSRQ */
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7563
struct task_struct *curr_task(int cpu)
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7574 7575
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7576 7577 7578 7579 7580 7581 7582
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7583
void set_curr_task(int cpu, struct task_struct *p)
7584 7585 7586 7587 7588
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7589

7590 7591
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7606
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7607 7608 7609
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7610
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7611 7612
	int i;

7613
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7614 7615
	if (!tg->cfs_rq)
		goto err;
7616
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7617 7618
	if (!tg->se)
		goto err;
7619 7620

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7621 7622

	for_each_possible_cpu(i) {
7623
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7624

P
Peter Zijlstra 已提交
7625 7626
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7627 7628 7629
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7630 7631
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7632 7633 7634
		if (!se)
			goto err;

7635
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7671 7672 7673
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7674 7675 7676 7677
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7678 7679
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

7705 7706
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7707 7708 7709 7710

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7711 7712 7713 7714
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7715

P
Peter Zijlstra 已提交
7716 7717 7718 7719
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7720

P
Peter Zijlstra 已提交
7721
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7722 7723
	}

7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

7759
#ifdef CONFIG_GROUP_SCHED
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7784
	spin_lock_irqsave(&task_group_lock, flags);
7785
	for_each_possible_cpu(i) {
7786 7787
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7788
	}
P
Peter Zijlstra 已提交
7789
	list_add_rcu(&tg->list, &task_groups);
7790
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7791

7792
	return tg;
S
Srivatsa Vaddagiri 已提交
7793 7794

err:
P
Peter Zijlstra 已提交
7795
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7796 7797 7798
	return ERR_PTR(-ENOMEM);
}

7799
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7800
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7801 7802
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7803
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7804 7805
}

7806
/* Destroy runqueue etc associated with a task group */
7807
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7808
{
7809
	unsigned long flags;
7810
	int i;
S
Srivatsa Vaddagiri 已提交
7811

7812
	spin_lock_irqsave(&task_group_lock, flags);
7813
	for_each_possible_cpu(i) {
7814 7815
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7816
	}
P
Peter Zijlstra 已提交
7817
	list_del_rcu(&tg->list);
7818
	spin_unlock_irqrestore(&task_group_lock, flags);
7819 7820

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7821
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7822 7823
}

7824
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7825 7826 7827
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7828 7829
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7830 7831 7832 7833 7834 7835 7836 7837 7838
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7839
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7840 7841
	on_rq = tsk->se.on_rq;

7842
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7843
		dequeue_task(rq, tsk, 0);
7844 7845
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7846

P
Peter Zijlstra 已提交
7847
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7848

P
Peter Zijlstra 已提交
7849 7850 7851 7852 7853
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7854 7855 7856
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7857
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7858 7859 7860

	task_rq_unlock(rq, &flags);
}
7861
#endif
S
Srivatsa Vaddagiri 已提交
7862

7863
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7864 7865 7866 7867 7868 7869
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7870
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7871 7872

	on_rq = se->on_rq;
7873
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7874 7875 7876 7877 7878
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7879
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7880
		enqueue_entity(cfs_rq, se, 0);
7881 7882

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7883 7884
}

7885 7886
static DEFINE_MUTEX(shares_mutex);

7887
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7888 7889
{
	int i;
7890
	unsigned long flags;
7891

7892 7893 7894 7895 7896 7897 7898 7899
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7900
	mutex_lock(&shares_mutex);
7901
	if (tg->shares == shares)
7902
		goto done;
S
Srivatsa Vaddagiri 已提交
7903

7904
	spin_lock_irqsave(&task_group_lock, flags);
7905 7906
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7907
	spin_unlock_irqrestore(&task_group_lock, flags);
7908 7909 7910 7911 7912 7913 7914 7915

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7916
	tg->shares = shares;
7917
	for_each_possible_cpu(i)
7918
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7919

7920 7921 7922 7923
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7924
	spin_lock_irqsave(&task_group_lock, flags);
7925 7926
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7927
	spin_unlock_irqrestore(&task_group_lock, flags);
7928
done:
7929
	mutex_unlock(&shares_mutex);
7930
	return 0;
S
Srivatsa Vaddagiri 已提交
7931 7932
}

7933 7934 7935 7936
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7937
#endif
7938

7939
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7940
/*
P
Peter Zijlstra 已提交
7941
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7942
 */
P
Peter Zijlstra 已提交
7943 7944 7945 7946 7947 7948 7949
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7950
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7951 7952 7953
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7954 7955 7956
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7957
	unsigned long global_ratio =
7958
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
7959 7960

	rcu_read_lock();
P
Peter Zijlstra 已提交
7961 7962 7963
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7964

7965 7966
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
7967 7968
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7969

P
Peter Zijlstra 已提交
7970
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7971 7972
}

7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

7984 7985
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7986
{
P
Peter Zijlstra 已提交
7987
	int i, err = 0;
P
Peter Zijlstra 已提交
7988 7989

	mutex_lock(&rt_constraints_mutex);
7990
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7991
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
7992 7993 7994
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7995 7996 7997 7998
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7999 8000

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8001 8002
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8012
 unlock:
8013
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8014 8015 8016
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8017 8018
}

8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8031 8032 8033 8034
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8035
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8036 8037
		return -1;

8038
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8039 8040 8041
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8089 8090
	return 0;
}
8091
#endif
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8122

8123
#ifdef CONFIG_CGROUP_SCHED
8124 8125

/* return corresponding task_group object of a cgroup */
8126
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8127
{
8128 8129
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8130 8131 8132
}

static struct cgroup_subsys_state *
8133
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8134 8135 8136
{
	struct task_group *tg;

8137
	if (!cgrp->parent) {
8138
		/* This is early initialization for the top cgroup */
8139
		init_task_group.css.cgroup = cgrp;
8140 8141 8142 8143
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
8144
	if (cgrp->parent->parent)
8145 8146 8147 8148 8149 8150 8151
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8152
	tg->css.cgroup = cgrp;
8153 8154 8155 8156

	return &tg->css;
}

I
Ingo Molnar 已提交
8157 8158
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8159
{
8160
	struct task_group *tg = cgroup_tg(cgrp);
8161 8162 8163 8164

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8165 8166 8167
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8168
{
8169 8170
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8171
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8172 8173
		return -EINVAL;
#else
8174 8175 8176
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8177
#endif
8178 8179 8180 8181 8182

	return 0;
}

static void
8183
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8184 8185 8186 8187 8188
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8189
#ifdef CONFIG_FAIR_GROUP_SCHED
8190 8191
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8192
{
8193
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8194 8195
}

8196
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8197
{
8198
	struct task_group *tg = cgroup_tg(cgrp);
8199 8200 8201

	return (u64) tg->shares;
}
8202
#endif
8203

8204
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8205
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
P
Peter Zijlstra 已提交
8206 8207 8208
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8209
{
P
Peter Zijlstra 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8236 8237
}

P
Peter Zijlstra 已提交
8238 8239 8240 8241
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8242
{
P
Peter Zijlstra 已提交
8243 8244 8245
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8246

P
Peter Zijlstra 已提交
8247
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8248
}
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8260
#endif
P
Peter Zijlstra 已提交
8261

8262
static struct cftype cpu_files[] = {
8263
#ifdef CONFIG_FAIR_GROUP_SCHED
8264 8265 8266 8267 8268
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8269 8270
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8271
	{
P
Peter Zijlstra 已提交
8272 8273 8274
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8275
	},
8276 8277 8278 8279 8280
	{
		.name = "rt_period_us",
		.read_uint = cpu_rt_period_read_uint,
		.write_uint = cpu_rt_period_write_uint,
	},
8281
#endif
8282 8283 8284 8285
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8286
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8287 8288 8289
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8290 8291 8292 8293 8294 8295 8296
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8297 8298 8299
	.early_init	= 1,
};

8300
#endif	/* CONFIG_CGROUP_SCHED */
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8321
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8322
{
8323
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8336
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8353
static void
8354
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8355
{
8356
	struct cpuacct *ca = cgroup_ca(cgrp);
8357 8358 8359 8360 8361 8362

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8363
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8364
{
8365
	struct cpuacct *ca = cgroup_ca(cgrp);
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8407 8408 8409 8410
static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
8411
		.write_uint = cpuusage_write,
8412 8413 8414
	},
};

8415
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8416
{
8417
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */