intel_lrc.c 77.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
233

234 235 236 237 238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
240
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 242 243
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
244 245
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
246 247
	WARN_ON(i915.enable_ppgtt == -1);

248 249 250 251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

254 255 256
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

257 258 259
	if (enable_execlists == 0)
		return 0;

260 261
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
262 263 264 265
		return 1;

	return 0;
}
266

267
static void
268
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
269
{
270
	struct drm_device *dev = engine->dev;
271

272
	if (IS_GEN8(dev) || IS_GEN9(dev))
273
		engine->idle_lite_restore_wa = ~0;
274

275
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
276
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
277
					(engine->id == VCS || engine->id == VCS2);
278

279 280
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
281 282
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
299
 *
300 301
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
302
 *
303 304 305 306 307 308
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
309
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
310
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
311
 *    bits 32-52:    ctx ID, a globally unique tag
312 313
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
314
 */
315 316
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	u64 desc;
320

321
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
322

323 324 325 326
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
327

328
	ctx->engine[engine->id].lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
339
{
340

341
	struct intel_engine_cs *engine = rq0->engine;
342
	struct drm_device *dev = engine->dev;
343
	struct drm_i915_private *dev_priv = dev->dev_private;
344
	uint64_t desc[2];
345

346
	if (rq1) {
347
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
348 349 350 351
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
352

353
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
354
	rq0->elsp_submitted++;
355

356
	/* You must always write both descriptors in the order below. */
357 358
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
359

360
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
361
	/* The context is automatically loaded after the following */
362
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
363

364
	/* ELSP is a wo register, use another nearby reg for posting */
365
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
366 367
}

368 369 370 371 372 373 374 375 376 377
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
378
{
379
	struct intel_engine_cs *engine = rq->engine;
380
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
381
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
382

383
	reg_state[CTX_RING_TAIL+1] = rq->tail;
384

385 386 387 388 389 390 391
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
392 393
}

394 395
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
396
{
397
	struct drm_i915_private *dev_priv = rq0->i915;
398
	unsigned int fw_domains = rq0->engine->fw_domains;
399

400
	execlists_update_context(rq0);
401

402
	if (rq1)
403
		execlists_update_context(rq1);
404

405
	spin_lock_irq(&dev_priv->uncore.lock);
406
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
407

408
	execlists_elsp_write(rq0, rq1);
409

410
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
411
	spin_unlock_irq(&dev_priv->uncore.lock);
412 413
}

414
static void execlists_context_unqueue(struct intel_engine_cs *engine)
415
{
416
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
417
	struct drm_i915_gem_request *cursor, *tmp;
418

419
	assert_spin_locked(&engine->execlist_lock);
420

421 422 423 424
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
425
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
426

427
	/* Try to read in pairs */
428
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
429 430 431
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
432
		} else if (req0->ctx == cursor->ctx) {
433 434
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
435
			cursor->elsp_submitted = req0->elsp_submitted;
436
			list_move_tail(&req0->execlist_link,
437
				       &engine->execlist_retired_req_list);
438 439 440
			req0 = cursor;
		} else {
			req1 = cursor;
441
			WARN_ON(req1->elsp_submitted);
442 443 444 445
			break;
		}
	}

446 447 448
	if (unlikely(!req0))
		return;

449
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
450
		/*
451 452 453 454 455 456
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
457
		 */
458
		struct intel_ringbuffer *ringbuf;
459

460
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
461 462
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
463 464
	}

465
	execlists_submit_requests(req0, req1);
466 467
}

468
static unsigned int
469
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
470
{
471
	struct drm_i915_gem_request *head_req;
472

473
	assert_spin_locked(&engine->execlist_lock);
474

475
	head_req = list_first_entry_or_null(&engine->execlist_queue,
476
					    struct drm_i915_gem_request,
477 478
					    execlist_link);

479 480
	if (!head_req)
		return 0;
481

482
	if (unlikely(head_req->ctx->hw_id != request_id))
483 484 485 486 487 488 489 490
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
491
		       &engine->execlist_retired_req_list);
492

493
	return 1;
494 495
}

496
static u32
497
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
498
		   u32 *context_id)
B
Ben Widawsky 已提交
499
{
500
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
501
	u32 status;
B
Ben Widawsky 已提交
502

503 504
	read_pointer %= GEN8_CSB_ENTRIES;

505
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
506 507 508

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
509

510
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
511 512 513
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
514 515
}

516
/**
517
 * intel_lrc_irq_handler() - handle Context Switch interrupts
518
 * @engine: Engine Command Streamer to handle.
519 520 521 522
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
523
static void intel_lrc_irq_handler(unsigned long data)
524
{
525
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
526
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
527
	u32 status_pointer;
528
	unsigned int read_pointer, write_pointer;
529 530
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
531 532
	unsigned int submit_contexts = 0;

533
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
534

535
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
536

537
	read_pointer = engine->next_context_status_buffer;
538
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
539
	if (read_pointer > write_pointer)
540
		write_pointer += GEN8_CSB_ENTRIES;
541 542

	while (read_pointer < write_pointer) {
543 544 545 546 547 548
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
549

550 551 552 553 554 555 556 557
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

558
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
559 560 561 562 563 564 565

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
566 567 568 569 570
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

571
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
572 573
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
574
				execlists_check_remove_request(engine, csb[i][1]);
575 576
	}

577
	if (submit_contexts) {
578
		if (!engine->disable_lite_restore_wa ||
579 580
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
581
	}
582

583
	spin_unlock(&engine->execlist_lock);
584 585 586

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
587 588
}

589
static void execlists_context_queue(struct drm_i915_gem_request *request)
590
{
591
	struct intel_engine_cs *engine = request->engine;
592
	struct drm_i915_gem_request *cursor;
593
	int num_elements = 0;
594

595
	intel_lr_context_pin(request->ctx, request->engine);
596 597
	i915_gem_request_reference(request);

598
	spin_lock_bh(&engine->execlist_lock);
599

600
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
601 602 603 604
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
605
		struct drm_i915_gem_request *tail_req;
606

607
		tail_req = list_last_entry(&engine->execlist_queue,
608
					   struct drm_i915_gem_request,
609 610
					   execlist_link);

611
		if (request->ctx == tail_req->ctx) {
612
			WARN(tail_req->elsp_submitted != 0,
613
				"More than 2 already-submitted reqs queued\n");
614
			list_move_tail(&tail_req->execlist_link,
615
				       &engine->execlist_retired_req_list);
616 617 618
		}
	}

619
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
620
	if (num_elements == 0)
621
		execlists_context_unqueue(engine);
622

623
	spin_unlock_bh(&engine->execlist_lock);
624 625
}

626
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627
{
628
	struct intel_engine_cs *engine = req->engine;
629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
633
	if (engine->gpu_caches_dirty)
634 635
		flush_domains = I915_GEM_GPU_DOMAINS;

636
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 638 639
	if (ret)
		return ret;

640
	engine->gpu_caches_dirty = false;
641 642 643
	return 0;
}

644
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 646
				 struct list_head *vmas)
{
647
	const unsigned other_rings = ~intel_engine_flag(req->engine);
648 649 650 651 652 653 654 655
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

656
		if (obj->active & other_rings) {
657
			ret = i915_gem_object_sync(obj, req->engine, &req);
658 659 660
			if (ret)
				return ret;
		}
661 662 663 664 665 666 667 668 669 670 671 672 673

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
674
	return logical_ring_invalidate_all_caches(req);
675 676
}

677
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678
{
679
	struct intel_engine_cs *engine = request->engine;
680
	int ret;
681

682 683 684 685 686 687
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;

688
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
689

690 691 692 693 694 695 696 697 698 699 700 701 702
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

703 704 705
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
706

707 708 709 710
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

726
	request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
727 728 729
	return 0;

err_unpin:
730
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
731
	return ret;
732 733 734 735
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
736
 * @request: Request to advance the logical ringbuffer of.
737 738 739 740 741 742
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
743
static int
744
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
745
{
746
	struct intel_ringbuffer *ringbuf = request->ringbuf;
747
	struct drm_i915_private *dev_priv = request->i915;
748
	struct intel_engine_cs *engine = request->engine;
749

750 751
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
752

753 754 755 756 757 758 759 760 761
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
762

763
	if (intel_engine_stopped(engine))
764
		return 0;
765

766 767 768
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
769 770
		intel_lr_context_pin(request->ctx, engine);
		engine->last_context = request->ctx;
771 772
	}

773 774 775 776
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
777 778

	return 0;
779 780
}

781 782 783 784 785 786 787 788 789 790
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
791
 * @dispatch_flags: translated execbuffer call flags.
792 793 794 795 796 797
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
798
int intel_execlists_submission(struct i915_execbuffer_params *params,
799
			       struct drm_i915_gem_execbuffer2 *args,
800
			       struct list_head *vmas)
801
{
802
	struct drm_device       *dev = params->dev;
803
	struct intel_engine_cs *engine = params->engine;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806
	u64 exec_start;
807 808 809 810 811 812 813 814 815 816
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
817
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

842
	ret = execlists_move_to_gpu(params->request, vmas);
843 844 845
	if (ret)
		return ret;

846
	if (engine == &dev_priv->engine[RCS] &&
847
	    instp_mode != dev_priv->relative_constants_mode) {
848
		ret = intel_ring_begin(params->request, 4);
849 850 851 852 853
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
855 856 857 858 859 860
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

861 862 863
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

864
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865 866 867
	if (ret)
		return ret;

868
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869

870
	i915_gem_execbuffer_move_to_active(vmas, params->request);
871

872 873 874
	return 0;
}

875
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
876
{
877
	struct drm_i915_gem_request *req, *tmp;
878 879
	struct list_head retired_list;

880 881
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
882 883 884
		return;

	INIT_LIST_HEAD(&retired_list);
885
	spin_lock_bh(&engine->execlist_lock);
886
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
887
	spin_unlock_bh(&engine->execlist_lock);
888 889

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
890
		intel_lr_context_unpin(req->ctx, engine);
891

892
		list_del(&req->execlist_link);
893
		i915_gem_request_unreference(req);
894 895 896
	}
}

897
void intel_logical_ring_stop(struct intel_engine_cs *engine)
898
{
899
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
900 901
	int ret;

902
	if (!intel_engine_initialized(engine))
903 904
		return;

905
	ret = intel_engine_idle(engine);
906
	if (ret)
907
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
908
			  engine->name, ret);
909 910

	/* TODO: Is this correct with Execlists enabled? */
911 912 913
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
914 915
		return;
	}
916
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
917 918
}

919
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
920
{
921
	struct intel_engine_cs *engine = req->engine;
922 923
	int ret;

924
	if (!engine->gpu_caches_dirty)
925 926
		return 0;

927
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
928 929 930
	if (ret)
		return ret;

931
	engine->gpu_caches_dirty = false;
932 933 934
	return 0;
}

935 936
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
937
{
938 939 940
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
941 942
	void *vaddr;
	u32 *lrc_reg_state;
943
	int ret;
944

945
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
946

947 948 949 950
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
951 952 953
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
954
		goto err;
955

956 957 958
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
959 960 961
		goto unpin_ctx_obj;
	}

962 963
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

964
	ringbuf = ctx->engine[engine->id].ringbuf;
965
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
966
	if (ret)
967
		goto unpin_map;
968

969
	i915_gem_context_reference(ctx);
970 971
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
972
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
973
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
974
	ctx_obj->dirty = true;
975

976 977 978
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
979

980
	return 0;
981

982 983
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
984 985
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
986 987
err:
	ctx->engine[engine->id].pin_count = 0;
988 989 990
	return ret;
}

991 992
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
993
{
994
	struct drm_i915_gem_object *ctx_obj;
995

996 997
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
998

999 1000
	if (--ctx->engine[engine->id].pin_count)
		return;
1001

1002
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1003

1004 1005 1006
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1007

1008 1009 1010
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1011

1012
	i915_gem_context_unreference(ctx);
1013 1014
}

1015
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1016 1017
{
	int ret, i;
1018
	struct intel_engine_cs *engine = req->engine;
1019
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1020
	struct drm_device *dev = engine->dev;
1021 1022 1023
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1024
	if (w->count == 0)
1025 1026
		return 0;

1027
	engine->gpu_caches_dirty = true;
1028
	ret = logical_ring_flush_all_caches(req);
1029 1030 1031
	if (ret)
		return ret;

1032
	ret = intel_ring_begin(req, w->count * 2 + 2);
1033 1034 1035 1036 1037
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1038
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1039 1040 1041 1042 1043 1044
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1045
	engine->gpu_caches_dirty = true;
1046
	ret = logical_ring_flush_all_caches(req);
1047 1048 1049 1050 1051 1052
	if (ret)
		return ret;

	return 0;
}

1053
#define wa_ctx_emit(batch, index, cmd)					\
1054
	do {								\
1055 1056
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1057 1058
			return -ENOSPC;					\
		}							\
1059
		batch[__index] = (cmd);					\
1060 1061
	} while (0)

V
Ville Syrjälä 已提交
1062
#define wa_ctx_emit_reg(batch, index, reg) \
1063
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1081
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1082 1083 1084 1085 1086
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1087 1088 1089 1090 1091 1092
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1093
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1094 1095
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1096
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1097
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1098
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1099
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1100 1101 1102
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1103
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1114
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1115
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1116
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1117
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1118
	wa_ctx_emit(batch, index, 0);
1119 1120 1121 1122

	return index;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1161
 *
1162 1163 1164 1165 1166 1167 1168 1169
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1170
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1171 1172 1173 1174
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1175
	uint32_t scratch_addr;
1176 1177
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1178
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1179
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1180

1181
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1182 1183
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1184 1185 1186
		if (rc < 0)
			return rc;
		index = rc;
1187 1188
	}

1189 1190
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1191
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1202

1203 1204
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1205
		wa_ctx_emit(batch, index, MI_NOOP);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1223
 * @batch: page in which WA are loaded
1224 1225 1226 1227 1228 1229 1230 1231 1232
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1233
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1234 1235 1236 1237 1238 1239
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1240
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1241
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1242

1243
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1244 1245 1246 1247

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1248
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1249 1250 1251 1252
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1253
	int ret;
1254
	struct drm_device *dev = engine->dev;
1255 1256
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1257
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1258
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1259
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1260
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1261

1262
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1263
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1264 1265 1266 1267
	if (ret < 0)
		return ret;
	index = ret;

1268 1269 1270 1271 1272 1273 1274
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1275
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1276 1277 1278 1279
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1280
	struct drm_device *dev = engine->dev;
1281 1282
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1283
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1284
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1285
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1286
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1287
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1288 1289 1290 1291 1292
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1312
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1313
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1314
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1315 1316
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1317 1318 1319 1320 1321
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1322
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1323 1324 1325
{
	int ret;

1326
	engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1327
						   PAGE_ALIGN(size));
1328
	if (IS_ERR(engine->wa_ctx.obj)) {
1329
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1330 1331 1332
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1333 1334
	}

1335
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1336 1337 1338
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1339
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1340 1341 1342 1343 1344 1345
		return ret;
	}

	return 0;
}

1346
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1347
{
1348 1349 1350 1351
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1352 1353 1354
	}
}

1355
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1356 1357 1358 1359 1360
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1361
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1362

1363
	WARN_ON(engine->id != RCS);
1364

1365
	/* update this when WA for higher Gen are added */
1366
	if (INTEL_INFO(engine->dev)->gen > 9) {
1367
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1368
			  INTEL_INFO(engine->dev)->gen);
1369
		return 0;
1370
	}
1371

1372
	/* some WA perform writes to scratch page, ensure it is valid */
1373 1374
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1375 1376 1377
		return -EINVAL;
	}

1378
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1379 1380 1381 1382 1383
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1384
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1385 1386 1387
	batch = kmap_atomic(page);
	offset = 0;

1388 1389
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1390 1391 1392 1393 1394 1395
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1396
		ret = gen8_init_perctx_bb(engine,
1397 1398 1399 1400 1401
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1402 1403
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1404 1405 1406 1407 1408 1409
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1410
		ret = gen9_init_perctx_bb(engine,
1411 1412 1413 1414 1415
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1416 1417 1418 1419 1420
	}

out:
	kunmap_atomic(batch);
	if (ret)
1421
		lrc_destroy_wa_ctx_obj(engine);
1422 1423 1424 1425

	return ret;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1435
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1436
{
1437
	struct drm_device *dev = engine->dev;
1438
	struct drm_i915_private *dev_priv = dev->dev_private;
1439
	unsigned int next_context_status_buffer_hw;
1440

1441
	lrc_init_hws(engine);
1442

1443 1444 1445
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1446

1447
	I915_WRITE(RING_MODE_GEN7(engine),
1448 1449
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1450
	POSTING_READ(RING_MODE_GEN7(engine));
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1461 1462
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1463
	 */
1464
	next_context_status_buffer_hw =
1465
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1466 1467 1468 1469 1470 1471 1472 1473 1474

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1475 1476
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1477

1478
	intel_engine_init_hangcheck(engine);
1479

1480
	return intel_mocs_init_engine(engine);
1481 1482
}

1483
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1484
{
1485
	struct drm_device *dev = engine->dev;
1486 1487 1488
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1489
	ret = gen8_init_common_ring(engine);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1503
	return init_workarounds_ring(engine);
1504 1505
}

1506
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1507 1508 1509
{
	int ret;

1510
	ret = gen8_init_common_ring(engine);
1511 1512 1513
	if (ret)
		return ret;

1514
	return init_workarounds_ring(engine);
1515 1516
}

1517 1518 1519
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1520
	struct intel_engine_cs *engine = req->engine;
1521 1522 1523 1524
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1525
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1526 1527 1528 1529 1530 1531 1532
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1533 1534
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1535
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1536 1537
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1538 1539 1540 1541 1542 1543 1544 1545 1546
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1547
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1548
			      u64 offset, unsigned dispatch_flags)
1549
{
1550
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1551
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1552 1553
	int ret;

1554 1555 1556 1557
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1558 1559
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1560
	if (req->ctx->ppgtt &&
1561
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1562 1563
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1564 1565 1566 1567
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1568

1569
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1570 1571
	}

1572
	ret = intel_ring_begin(req, 4);
1573 1574 1575 1576
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1577 1578 1579 1580
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1581 1582 1583 1584 1585 1586 1587 1588
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1589
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1590
{
1591
	struct drm_device *dev = engine->dev;
1592 1593 1594
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1595
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1596 1597 1598
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1599 1600 1601 1602
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1603 1604 1605 1606 1607 1608
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1609
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1610
{
1611
	struct drm_device *dev = engine->dev;
1612 1613 1614 1615
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616 1617 1618
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1619 1620 1621 1622
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1623
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1624 1625 1626
			   u32 invalidate_domains,
			   u32 unused)
{
1627
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1628
	struct intel_engine_cs *engine = ringbuf->engine;
1629
	struct drm_device *dev = engine->dev;
1630 1631 1632 1633
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1634
	ret = intel_ring_begin(request, 4);
1635 1636 1637 1638 1639
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1640 1641 1642 1643 1644 1645 1646 1647 1648
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1649
		if (engine == &dev_priv->engine[VCS])
1650
			cmd |= MI_INVALIDATE_BSD;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1664
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1665 1666 1667
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1668
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1669
	struct intel_engine_cs *engine = ringbuf->engine;
1670
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1671
	bool vf_flush_wa = false;
1672 1673 1674 1675 1676 1677 1678 1679
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1680
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1681
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1694 1695 1696 1697
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1698
		if (IS_GEN9(engine->dev))
1699 1700
			vf_flush_wa = true;
	}
1701

1702
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1703 1704 1705
	if (ret)
		return ret;

1706 1707 1708 1709 1710 1711 1712 1713 1714
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1726
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1727
{
1728
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1729 1730
}

1731
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1732
{
1733
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1734 1735
}

1736
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1748
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1749 1750
}

1751
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1752
{
1753
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1754 1755

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1756
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1771
static int gen8_emit_request(struct drm_i915_gem_request *request)
1772
{
1773
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1774 1775
	int ret;

1776
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1777 1778 1779
	if (ret)
		return ret;

1780 1781
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1782 1783

	intel_logical_ring_emit(ringbuf,
1784 1785
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1786
				hws_seqno_address(request->engine) |
1787
				MI_FLUSH_DW_USE_GTT);
1788
	intel_logical_ring_emit(ringbuf, 0);
1789
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1790 1791
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1792 1793
	return intel_logical_ring_advance_and_submit(request);
}
1794

1795 1796 1797 1798
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1799

1800
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1801 1802 1803
	if (ret)
		return ret;

1804 1805 1806
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1807 1808 1809 1810
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1811
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1812 1813 1814 1815
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1816
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1817 1818
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819 1820
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1821
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1822
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1823
	return intel_logical_ring_advance_and_submit(request);
1824 1825
}

1826
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1827 1828 1829 1830
{
	struct render_state so;
	int ret;

1831
	ret = i915_gem_render_state_prepare(req->engine, &so);
1832 1833 1834 1835 1836 1837
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1838
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1839
				       I915_DISPATCH_SECURE);
1840 1841 1842
	if (ret)
		goto out;

1843
	ret = req->engine->emit_bb_start(req,
1844 1845 1846 1847 1848
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1849
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1850 1851 1852 1853 1854 1855

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1856
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1857 1858 1859
{
	int ret;

1860
	ret = intel_logical_ring_workarounds_emit(req);
1861 1862 1863
	if (ret)
		return ret;

1864 1865 1866 1867 1868 1869 1870 1871
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1872
	return intel_lr_context_render_state_init(req);
1873 1874
}

1875 1876 1877 1878 1879 1880
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1881
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1882
{
1883
	struct drm_i915_private *dev_priv;
1884

1885
	if (!intel_engine_initialized(engine))
1886 1887
		return;

1888 1889 1890 1891 1892 1893 1894
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1895
	dev_priv = engine->dev->dev_private;
1896

1897 1898 1899
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1900
	}
1901

1902 1903
	if (engine->cleanup)
		engine->cleanup(engine);
1904

1905 1906
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1907

1908
	if (engine->status_page.obj) {
1909
		i915_gem_object_unpin_map(engine->status_page.obj);
1910
		engine->status_page.obj = NULL;
1911
	}
1912
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1913

1914 1915 1916
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1917

1918 1919
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1920 1921
}

1922 1923
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1924
			    struct intel_engine_cs *engine)
1925 1926
{
	/* Default vfuncs which can be overriden by each engine. */
1927 1928 1929 1930 1931 1932
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1933 1934
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1935
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1936
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1937
		engine->set_seqno = bxt_a_set_seqno;
1938 1939 1940
	}
}

1941
static inline void
1942
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1943
{
1944 1945
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1946 1947
}

1948
static int
1949 1950 1951
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1952
	void *hws;
1953 1954 1955 1956

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1957 1958 1959 1960
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1961
	engine->status_page.obj = dctx_obj;
1962 1963

	return 0;
1964 1965
}

1966
static int
1967
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1968
{
1969 1970 1971
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1972 1973 1974
	int ret;

	/* Intentionally left blank. */
1975
	engine->buffer = NULL;
1976

1977 1978 1979 1980 1981
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
1982

1983 1984 1985 1986
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
1987

1988 1989 1990
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

1991
	logical_ring_init_platform_invariants(engine);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2007
	ret = i915_cmd_parser_init_ring(engine);
2008
	if (ret)
2009
		goto error;
2010

2011
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2012
	if (ret)
2013
		goto error;
2014 2015

	/* As this is the default context, always pin it */
2016
	ret = intel_lr_context_pin(dctx, engine);
2017
	if (ret) {
2018 2019
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2020
		goto error;
2021
	}
2022

2023
	/* And setup the hardware status page. */
2024 2025 2026 2027 2028
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2029

2030 2031 2032
	return 0;

error:
2033
	intel_logical_ring_cleanup(engine);
2034
	return ret;
2035 2036 2037 2038 2039
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2040
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2041
	int ret;
2042

2043 2044 2045 2046 2047
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2048

2049
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2050
	if (HAS_L3_DPF(dev))
2051
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2052

2053
	logical_ring_default_vfuncs(dev, engine);
2054 2055

	/* Override some for render ring. */
2056
	if (INTEL_INFO(dev)->gen >= 9)
2057
		engine->init_hw = gen9_init_render_ring;
2058
	else
2059 2060 2061 2062 2063
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2064

2065
	engine->dev = dev;
2066

2067
	ret = intel_init_pipe_control(engine);
2068 2069 2070
	if (ret)
		return ret;

2071
	ret = intel_init_workaround_bb(engine);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2082
	ret = logical_ring_init(dev, engine);
2083
	if (ret) {
2084
		lrc_destroy_wa_ctx_obj(engine);
2085
	}
2086 2087

	return ret;
2088 2089 2090 2091 2092
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2093
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2094

2095 2096 2097 2098 2099
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2100

2101 2102
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2103

2104
	return logical_ring_init(dev, engine);
2105 2106 2107 2108 2109
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2110
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2111

2112 2113 2114 2115 2116
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2117

2118 2119
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2120

2121
	return logical_ring_init(dev, engine);
2122 2123 2124 2125 2126
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2127
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2128

2129 2130 2131 2132 2133
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2134

2135 2136
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2137

2138
	return logical_ring_init(dev, engine);
2139 2140 2141 2142 2143
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2144
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2145

2146 2147 2148 2149 2150
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2151

2152 2153
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2154

2155
	return logical_ring_init(dev, engine);
2156 2157
}

2158 2159 2160 2161 2162
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2163
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2164 2165 2166 2167
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2204
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2205
cleanup_blt_ring:
2206
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2207
cleanup_bsd_ring:
2208
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2209
cleanup_render_ring:
2210
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2211 2212 2213 2214

	return ret;
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2258
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2259 2260 2261
{
	u32 indirect_ctx_offset;

2262
	switch (INTEL_INFO(engine->dev)->gen) {
2263
	default:
2264
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2279
static int
2280 2281
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2282 2283
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2284
{
2285
	struct drm_device *dev = engine->dev;
2286
	struct drm_i915_private *dev_priv = dev->dev_private;
2287
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2288 2289
	void *vaddr;
	u32 *reg_state;
2290 2291
	int ret;

2292 2293 2294
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2295 2296 2297 2298 2299 2300
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2301 2302 2303 2304
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2305 2306
		return ret;
	}
2307
	ctx_obj->dirty = true;
2308 2309 2310

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2311
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2312 2313 2314 2315 2316 2317

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2318
	reg_state[CTX_LRI_HEADER_0] =
2319 2320 2321
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2322 2323
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2324 2325
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2326 2327 2328 2329
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2330 2331 2332
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2333 2334 2335 2336
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2337
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2338 2339 2340 2341 2342 2343
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2344
		       RING_BB_PPGTT);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2360 2361 2362 2363 2364 2365 2366
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2367
				intel_lr_indirect_ctx_offset(engine) << 6;
2368 2369 2370 2371 2372

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2373
	}
2374
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2375 2376
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2377
	/* PDP values well be assigned later if needed */
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2407
		execlists_update_context_pdps(ppgtt, reg_state);
2408 2409
	}

2410
	if (engine->id == RCS) {
2411
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2412 2413
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2414 2415
	}

2416
	i915_gem_object_unpin_map(ctx_obj);
2417 2418 2419 2420

	return 0;
}

2421 2422 2423 2424 2425 2426 2427 2428
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2429 2430
void intel_lr_context_free(struct intel_context *ctx)
{
2431 2432
	int i;

2433
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2434
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2435
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2436

D
Dave Gordon 已提交
2437 2438
		if (!ctx_obj)
			continue;
2439

D
Dave Gordon 已提交
2440 2441 2442
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2443 2444 2445
	}
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2460
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2461 2462 2463
{
	int ret = 0;

2464
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2465

2466
	switch (engine->id) {
2467
	case RCS:
2468
		if (INTEL_INFO(engine->dev)->gen >= 9)
2469 2470 2471
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2482 2483
}

2484
/**
2485
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2486 2487 2488 2489 2490 2491 2492 2493 2494
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2495
 * Return: non-zero on error.
2496
 */
2497 2498

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2499
				    struct intel_engine_cs *engine)
2500
{
2501
	struct drm_device *dev = engine->dev;
2502 2503
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2504
	struct intel_ringbuffer *ringbuf;
2505 2506
	int ret;

2507
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2508
	WARN_ON(ctx->engine[engine->id].state);
2509

2510
	context_size = round_up(intel_lr_context_size(engine), 4096);
2511

2512 2513 2514
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2515
	ctx_obj = i915_gem_object_create(dev, context_size);
2516
	if (IS_ERR(ctx_obj)) {
2517
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2518
		return PTR_ERR(ctx_obj);
2519 2520
	}

2521
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2522 2523
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2524
		goto error_deref_obj;
2525 2526
	}

2527
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2528 2529
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2530
		goto error_ringbuf;
2531 2532
	}

2533 2534
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2535
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2536 2537

	return 0;
2538

2539 2540
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2541
error_deref_obj:
2542
	drm_gem_object_unreference(&ctx_obj->base);
2543 2544
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2545
	return ret;
2546
}
2547

2548 2549
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2550
{
2551
	struct intel_engine_cs *engine;
2552

2553
	for_each_engine(engine, dev_priv) {
2554
		struct drm_i915_gem_object *ctx_obj =
2555
				ctx->engine[engine->id].state;
2556
		struct intel_ringbuffer *ringbuf =
2557
				ctx->engine[engine->id].ringbuf;
2558
		void *vaddr;
2559 2560 2561 2562 2563
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2564 2565
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2566
			continue;
2567 2568 2569

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2570 2571 2572 2573

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2574
		i915_gem_object_unpin_map(ctx_obj);
2575 2576 2577 2578 2579

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}