scrub.c 112.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167 168

	int			is_dev_replace;
169
	u64			write_pointer;
170 171 172 173 174

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
175
	bool                    flush_all_writes;
176

A
Arne Jansen 已提交
177 178 179 180 181
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
182 183 184 185 186 187 188 189

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
190
	refcount_t              refs;
A
Arne Jansen 已提交
191 192
};

193 194 195 196
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
197
	u64			physical;
198 199 200 201
	u64			logical;
	struct btrfs_device	*dev;
};

202 203 204 205 206 207 208
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

209 210
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213
				     struct scrub_block *sblocks_for_recheck);
214
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 216
				struct scrub_block *sblock,
				int retry_failed_mirror);
217
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219
					     struct scrub_block *sblock_good);
220 221 222
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
223 224 225
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
226 227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235 236
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
237
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
238
		       u64 physical, struct btrfs_device *dev, u64 flags,
239
		       u64 gen, int mirror_num, u8 *csum,
240
		       u64 physical_for_dev_replace);
241
static void scrub_bio_end_io(struct bio *bio);
242 243
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
244
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245
			       u64 extent_logical, u32 extent_len,
246 247 248 249 250 251
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
252
static void scrub_wr_bio_end_io(struct bio *bio);
253
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
257

258
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
259
{
260 261
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262
}
S
Stefan Behrens 已提交
263

264 265
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
266
	refcount_inc(&sctx->refs);
267 268 269 270 271 272 273
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
274
	scrub_put_ctx(sctx);
275 276
}

277
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 279 280 281 282 283 284 285 286
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

287
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 289 290
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
291
}
292

293 294
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
295 296 297 298 299 300 301 302
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

303 304 305 306 307 308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

328
	lockdep_assert_held(&locks_root->lock);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

344 345 346
	/*
	 * Insert new lock.
	 */
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

372
	lockdep_assert_held(&locks_root->lock);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
392
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
393 394 395 396 397 398 399 400 401 402 403 404 405
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
406 407
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
425
	struct btrfs_block_group *bg_cache;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
472
	struct btrfs_block_group *bg_cache;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

526
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
527
{
528
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
529
		struct btrfs_ordered_sum *sum;
530
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
531 532 533 534 535 536
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

537
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
538 539 540
{
	int i;

541
	if (!sctx)
A
Arne Jansen 已提交
542 543
		return;

544
	/* this can happen when scrub is cancelled */
545 546
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 548

		for (i = 0; i < sbio->page_count; i++) {
549
			WARN_ON(!sbio->pagev[i]->page);
550 551 552 553 554
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

555
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
556
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
557 558 559 560 561 562

		if (!sbio)
			break;
		kfree(sbio);
	}

563
	kfree(sctx->wr_curr_bio);
564 565
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
566 567
}

568 569
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
570
	if (refcount_dec_and_test(&sctx->refs))
571 572 573
		scrub_free_ctx(sctx);
}

574 575
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
576
{
577
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
578 579
	int		i;

580
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
581
	if (!sctx)
A
Arne Jansen 已提交
582
		goto nomem;
583
	refcount_set(&sctx->refs, 1);
584
	sctx->is_dev_replace = is_dev_replace;
585
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586
	sctx->curr = -1;
587
	sctx->fs_info = fs_info;
588
	INIT_LIST_HEAD(&sctx->csum_list);
589
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
590 591
		struct scrub_bio *sbio;

592
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
593 594
		if (!sbio)
			goto nomem;
595
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
596 597

		sbio->index = i;
598
		sbio->sctx = sctx;
599
		sbio->page_count = 0;
600 601
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
602

603
		if (i != SCRUB_BIOS_PER_SCTX - 1)
604
			sctx->bios[i]->next_free = i + 1;
605
		else
606 607 608
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
609 610
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
611 612 613 614 615
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
616

617 618 619
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
620
	if (is_dev_replace) {
621
		WARN_ON(!fs_info->dev_replace.tgtdev);
622
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624
		sctx->flush_all_writes = false;
625
	}
626

627
	return sctx;
A
Arne Jansen 已提交
628 629

nomem:
630
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
631 632 633
	return ERR_PTR(-ENOMEM);
}

634 635
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
636 637 638 639 640
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
641
	unsigned nofs_flag;
642 643
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
644
	struct scrub_warning *swarn = warn_ctx;
645
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 647
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
648
	struct btrfs_key key;
649

D
David Sterba 已提交
650
	local_root = btrfs_get_fs_root(fs_info, root, true);
651 652 653 654 655
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

656 657 658
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
659 660 661 662 663
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
664
	if (ret) {
665
		btrfs_put_root(local_root);
666 667 668 669 670 671 672 673 674 675 676
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

677 678 679 680 681 682
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
683
	ipath = init_ipath(4096, local_root, swarn->path);
684
	memalloc_nofs_restore(nofs_flag);
685
	if (IS_ERR(ipath)) {
686
		btrfs_put_root(local_root);
687 688 689 690
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
691 692 693 694 695 696 697 698 699 700
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
701
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
702
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
703 704
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
705
				  swarn->physical,
J
Jeff Mahoney 已提交
706 707 708
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
709

710
	btrfs_put_root(local_root);
711 712 713 714
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
715
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
716
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
717 718
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
719
			  swarn->physical,
J
Jeff Mahoney 已提交
720
			  root, inum, offset, ret);
721 722 723 724 725

	free_ipath(ipath);
	return 0;
}

726
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727
{
728 729
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
730 731 732 733 734
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
735 736 737
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
738
	u64 ref_root;
739
	u32 item_size;
740
	u8 ref_level = 0;
741
	int ret;
742

743
	WARN_ON(sblock->page_count < 1);
744
	dev = sblock->pagev[0]->dev;
745
	fs_info = sblock->sctx->fs_info;
746

747
	path = btrfs_alloc_path();
748 749
	if (!path)
		return;
750

D
David Sterba 已提交
751
	swarn.physical = sblock->pagev[0]->physical;
752
	swarn.logical = sblock->pagev[0]->logical;
753
	swarn.errstr = errstr;
754
	swarn.dev = NULL;
755

756 757
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
758 759 760
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
761
	extent_item_pos = swarn.logical - found_key.objectid;
762 763 764 765 766 767
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

768
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769
		do {
770 771 772
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
773
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
774
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
775
				errstr, swarn.logical,
776
				rcu_str_deref(dev->name),
D
David Sterba 已提交
777
				swarn.physical,
778 779 780 781
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
782
		btrfs_release_path(path);
783
	} else {
784
		btrfs_release_path(path);
785
		swarn.path = path;
786
		swarn.dev = dev;
787 788
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
789
					scrub_print_warning_inode, &swarn, false);
790 791 792 793 794 795
	}

out:
	btrfs_free_path(path);
}

796 797
static inline void scrub_get_recover(struct scrub_recover *recover)
{
798
	refcount_inc(&recover->refs);
799 800
}

801 802
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
803
{
804
	if (refcount_dec_and_test(&recover->refs)) {
805
		btrfs_bio_counter_dec(fs_info);
806
		btrfs_put_bbio(recover->bbio);
807 808 809 810
		kfree(recover);
	}
}

A
Arne Jansen 已提交
811
/*
812 813 814 815 816 817
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
818
 */
819
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
820
{
821
	struct scrub_ctx *sctx = sblock_to_check->sctx;
822
	struct btrfs_device *dev;
823 824 825 826 827 828 829 830 831 832 833
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
834
	bool full_stripe_locked;
835
	unsigned int nofs_flag;
836
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
837 838 839
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
840
	fs_info = sctx->fs_info;
841 842 843 844 845 846 847 848 849 850 851
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
852 853 854 855
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
856
			BTRFS_EXTENT_FLAG_DATA);
857 858
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
859

860 861 862
	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
		return btrfs_repair_one_zone(fs_info, logical);

863 864 865 866 867 868 869 870 871 872
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
873 874 875 876 877 878 879 880 881
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
882
		memalloc_nofs_restore(nofs_flag);
883 884 885 886 887 888 889 890 891
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

921
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
922
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
923
	if (!sblocks_for_recheck) {
924 925 926 927 928
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
929
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
930
		goto out;
A
Arne Jansen 已提交
931 932
	}

933
	/* setup the context, map the logical blocks and alloc the pages */
934
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
935
	if (ret) {
936 937 938 939
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
940
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 942 943 944
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
945

946
	/* build and submit the bios for the failed mirror, check checksums */
947
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
948

949 950 951 952 953 954 955 956 957 958
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
961
		sblock_to_check->data_corrected = 1;
962
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
963

964 965
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
966
		goto out;
A
Arne Jansen 已提交
967 968
	}

969
	if (!sblock_bad->no_io_error_seen) {
970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
973
		if (__ratelimit(&rs))
974
			scrub_print_warning("i/o error", sblock_to_check);
975
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976
	} else if (sblock_bad->checksum_error) {
977 978 979
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
980
		if (__ratelimit(&rs))
981
			scrub_print_warning("checksum error", sblock_to_check);
982
		btrfs_dev_stat_inc_and_print(dev,
983
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
984
	} else if (sblock_bad->header_error) {
985 986 987
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
988
		if (__ratelimit(&rs))
989 990
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
991
		if (sblock_bad->generation_error)
992
			btrfs_dev_stat_inc_and_print(dev,
993 994
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
995
			btrfs_dev_stat_inc_and_print(dev,
996
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
997
	}
A
Arne Jansen 已提交
998

999 1000 1001 1002
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1003

1004 1005
	/*
	 * now build and submit the bios for the other mirrors, check
1006 1007
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1019
	for (mirror_index = 0; ;mirror_index++) {
1020
		struct scrub_block *sblock_other;
1021

1022 1023
		if (mirror_index == failed_mirror_index)
			continue;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1047 1048

		/* build and submit the bios, check checksums */
1049
		scrub_recheck_block(fs_info, sblock_other, 0);
1050 1051

		if (!sblock_other->header_error &&
1052 1053
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1054 1055
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1056
				goto corrected_error;
1057 1058
			} else {
				ret = scrub_repair_block_from_good_copy(
1059 1060 1061
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1062
			}
1063 1064
		}
	}
A
Arne Jansen 已提交
1065

1066 1067
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1068 1069 1070

	/*
	 * In case of I/O errors in the area that is supposed to be
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1083
	 * the final checksum succeeds. But this would be a rare
1084 1085 1086 1087 1088 1089 1090 1091
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1092
	 */
1093
	success = 1;
1094 1095
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1096
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1097
		struct scrub_block *sblock_other = NULL;
1098

1099
		/* skip no-io-error page in scrub */
1100
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1101
			continue;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1112
		} else if (spage_bad->io_error) {
1113
			/* try to find no-io-error page in mirrors */
1114 1115 1116 1117 1118 1119 1120 1121 1122
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1123 1124
				}
			}
1125 1126
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1127
		}
A
Arne Jansen 已提交
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1142
				atomic64_inc(
1143
					&fs_info->dev_replace.num_write_errors);
1144 1145 1146 1147 1148 1149 1150
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1151
				spage_bad->io_error = 0;
1152 1153
			else
				success = 0;
1154
		}
A
Arne Jansen 已提交
1155 1156
	}

1157
	if (success && !sctx->is_dev_replace) {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1168
			scrub_recheck_block(fs_info, sblock_bad, 1);
1169
			if (!sblock_bad->header_error &&
1170 1171 1172 1173 1174 1175 1176
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1177 1178
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1179
			sblock_to_check->data_corrected = 1;
1180
			spin_unlock(&sctx->stat_lock);
1181 1182
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1183
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1184
		}
1185 1186
	} else {
did_not_correct_error:
1187 1188 1189
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1190 1191
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1192
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1193
	}
A
Arne Jansen 已提交
1194

1195 1196 1197 1198 1199 1200
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1201
			struct scrub_recover *recover;
1202 1203
			int page_index;

1204 1205 1206
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1207 1208
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1209
					scrub_put_recover(fs_info, recover);
1210 1211 1212
					sblock->pagev[page_index]->recover =
									NULL;
				}
1213 1214
				scrub_page_put(sblock->pagev[page_index]);
			}
1215 1216 1217
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1218

1219
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220
	memalloc_nofs_restore(nofs_flag);
1221 1222
	if (ret < 0)
		return ret;
1223 1224
	return 0;
}
A
Arne Jansen 已提交
1225

1226
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227
{
Z
Zhao Lei 已提交
1228 1229 1230 1231 1232
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1233 1234 1235
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1236 1237
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1238 1239 1240 1241 1242 1243 1244
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1245
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1266
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267 1268
				     struct scrub_block *sblocks_for_recheck)
{
1269
	struct scrub_ctx *sctx = original_sblock->sctx;
1270
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271 1272
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1273 1274 1275
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276 1277 1278 1279 1280 1281
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1282
	int page_index = 0;
1283
	int mirror_index;
1284
	int nmirrors;
1285 1286 1287
	int ret;

	/*
1288
	 * note: the two members refs and outstanding_pages
1289 1290 1291 1292 1293
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1294 1295 1296
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1297

1298 1299 1300 1301
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1302
		btrfs_bio_counter_inc_blocked(fs_info);
1303
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304
				logical, &mapped_length, &bbio);
1305
		if (ret || !bbio || mapped_length < sublen) {
1306
			btrfs_put_bbio(bbio);
1307
			btrfs_bio_counter_dec(fs_info);
1308 1309
			return -EIO;
		}
A
Arne Jansen 已提交
1310

1311 1312
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1313
			btrfs_put_bbio(bbio);
1314
			btrfs_bio_counter_dec(fs_info);
1315 1316 1317
			return -ENOMEM;
		}

1318
		refcount_set(&recover->refs, 1);
1319 1320 1321
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1322
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323

1324
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1325

1326
		for (mirror_index = 0; mirror_index < nmirrors;
1327 1328
		     mirror_index++) {
			struct scrub_block *sblock;
1329
			struct scrub_page *spage;
1330 1331

			sblock = sblocks_for_recheck + mirror_index;
1332
			sblock->sctx = sctx;
1333

1334 1335
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1336
leave_nomem:
1337 1338 1339
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1340
				scrub_put_recover(fs_info, recover);
1341 1342
				return -ENOMEM;
			}
1343 1344 1345 1346 1347 1348 1349
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1350
			if (have_csum)
1351
				memcpy(spage->csum,
1352
				       original_sblock->pagev[0]->csum,
1353
				       sctx->fs_info->csum_size);
1354

Z
Zhao Lei 已提交
1355 1356 1357
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1358
						      mapped_length,
1359 1360
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1361 1362 1363
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1364
			spage->physical = bbio->stripes[stripe_index].physical +
1365
					 stripe_offset;
1366
			spage->dev = bbio->stripes[stripe_index].dev;
1367

1368
			BUG_ON(page_index >= original_sblock->page_count);
1369
			spage->physical_for_dev_replace =
1370 1371
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1372
			/* for missing devices, dev->bdev is NULL */
1373
			spage->mirror_num = mirror_index + 1;
1374
			sblock->page_count++;
1375 1376
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1377
				goto leave_nomem;
1378 1379

			scrub_get_recover(recover);
1380
			spage->recover = recover;
1381
		}
1382
		scrub_put_recover(fs_info, recover);
1383 1384 1385 1386 1387 1388
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1389 1390
}

1391
static void scrub_bio_wait_endio(struct bio *bio)
1392
{
1393
	complete(bio->bi_private);
1394 1395 1396 1397
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1398
					struct scrub_page *spage)
1399
{
1400
	DECLARE_COMPLETION_ONSTACK(done);
1401
	int ret;
1402
	int mirror_num;
1403

1404
	bio->bi_iter.bi_sector = spage->logical >> 9;
1405 1406 1407
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1408 1409 1410
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1411
				    mirror_num, 0);
1412 1413 1414
	if (ret)
		return ret;

1415 1416
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1417 1418
}

L
Liu Bo 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1436

1437 1438
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1458 1459 1460 1461 1462 1463 1464
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1465
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466 1467
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1468
{
1469
	int page_num;
I
Ilya Dryomov 已提交
1470

1471
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1472

L
Liu Bo 已提交
1473 1474 1475 1476
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1477 1478
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1479
		struct scrub_page *spage = sblock->pagev[page_num];
1480

1481 1482
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1483 1484 1485 1486
			sblock->no_io_error_seen = 0;
			continue;
		}

1487
		WARN_ON(!spage->page);
1488
		bio = btrfs_io_bio_alloc(1);
1489
		bio_set_dev(bio, spage->dev->bdev);
1490

1491 1492
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1493
		bio->bi_opf = REQ_OP_READ;
1494

L
Liu Bo 已提交
1495
		if (btrfsic_submit_bio_wait(bio)) {
1496
			spage->io_error = 1;
L
Liu Bo 已提交
1497
			sblock->no_io_error_seen = 0;
1498
		}
1499

1500 1501
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1502

1503
	if (sblock->no_io_error_seen)
1504
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1505 1506
}

M
Miao Xie 已提交
1507 1508 1509 1510 1511 1512
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1513
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1514 1515 1516
	return !ret;
}

1517
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1518
{
1519 1520 1521
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1522

1523 1524 1525 1526
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1527 1528
}

1529
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530
					     struct scrub_block *sblock_good)
1531 1532 1533
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1534

1535 1536
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1537

1538 1539
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1540
							   page_num, 1);
1541 1542
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1543
	}
1544 1545 1546 1547 1548 1549 1550 1551

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1552 1553
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1554
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555

1556 1557
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1558
	if (force_write || sblock_bad->header_error ||
1559
	    sblock_bad->checksum_error || spage_bad->io_error) {
1560 1561 1562
		struct bio *bio;
		int ret;

1563
		if (!spage_bad->dev->bdev) {
1564
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1565
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566 1567 1568
			return -EIO;
		}

1569
		bio = btrfs_io_bio_alloc(1);
1570 1571
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1572
		bio->bi_opf = REQ_OP_WRITE;
1573

1574
		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1575 1576 1577
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1578
		}
1579

1580
		if (btrfsic_submit_bio_wait(bio)) {
1581
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1582
				BTRFS_DEV_STAT_WRITE_ERRS);
1583
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584 1585 1586
			bio_put(bio);
			return -EIO;
		}
1587
		bio_put(bio);
A
Arne Jansen 已提交
1588 1589
	}

1590 1591 1592
	return 0;
}

1593 1594
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1595
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596 1597
	int page_num;

1598 1599 1600 1601 1602 1603 1604
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1605 1606 1607 1608 1609
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1610
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611 1612 1613 1614 1615 1616 1617 1618 1619
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1620 1621
	if (spage->io_error)
		clear_page(page_address(spage->page));
1622 1623 1624 1625

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1626 1627 1628 1629 1630 1631 1632 1633
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1634 1635 1636
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1648 1649 1650 1651 1652 1653
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1654
	mutex_lock(&sctx->wr_lock);
1655
again:
1656 1657
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1658
					      GFP_KERNEL);
1659 1660
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1661 1662
			return -ENOMEM;
		}
1663 1664
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1665
	}
1666
	sbio = sctx->wr_curr_bio;
1667 1668 1669
	if (sbio->page_count == 0) {
		struct bio *bio;

1670 1671 1672 1673 1674 1675 1676
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1677 1678
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1679
		sbio->dev = sctx->wr_tgtdev;
1680 1681
		bio = sbio->bio;
		if (!bio) {
1682
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1683 1684 1685 1686 1687
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1688
		bio_set_dev(bio, sbio->dev->bdev);
1689
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1690
		bio->bi_opf = REQ_OP_WRITE;
1691
		sbio->status = 0;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1705
			mutex_unlock(&sctx->wr_lock);
1706 1707 1708 1709 1710 1711 1712 1713 1714
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1715
	if (sbio->page_count == sctx->pages_per_wr_bio)
1716
		scrub_wr_submit(sctx);
1717
	mutex_unlock(&sctx->wr_lock);
1718 1719 1720 1721 1722 1723 1724 1725

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1726
	if (!sctx->wr_curr_bio)
1727 1728
		return;

1729 1730
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1731
	WARN_ON(!sbio->bio->bi_bdev);
1732 1733 1734 1735 1736
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1737
	btrfsic_submit_bio(sbio->bio);
1738 1739 1740

	if (btrfs_is_zoned(sctx->fs_info))
		sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE;
1741 1742
}

1743
static void scrub_wr_bio_end_io(struct bio *bio)
1744 1745
{
	struct scrub_bio *sbio = bio->bi_private;
1746
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1747

1748
	sbio->status = bio->bi_status;
1749 1750
	sbio->bio = bio;

1751
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1752
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1753 1754 1755 1756 1757 1758 1759 1760 1761
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1762
	if (sbio->status) {
1763
		struct btrfs_dev_replace *dev_replace =
1764
			&sbio->sctx->fs_info->dev_replace;
1765 1766 1767 1768 1769

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1770
			atomic64_inc(&dev_replace->num_write_errors);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1783 1784 1785 1786
{
	u64 flags;
	int ret;

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1799 1800
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1812 1813

	return ret;
A
Arne Jansen 已提交
1814 1815
}

1816
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1817
{
1818
	struct scrub_ctx *sctx = sblock->sctx;
1819 1820
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1821
	u8 csum[BTRFS_CSUM_SIZE];
1822
	struct scrub_page *spage;
1823
	char *kaddr;
A
Arne Jansen 已提交
1824

1825
	BUG_ON(sblock->page_count < 1);
1826 1827
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1828 1829
		return 0;

1830
	kaddr = page_address(spage->page);
1831

1832 1833
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1834

1835 1836 1837 1838 1839
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1840

1841 1842
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1843
	return sblock->checksum_error;
A
Arne Jansen 已提交
1844 1845
}

1846
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1847
{
1848
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1849
	struct btrfs_header *h;
1850
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1851
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1852 1853
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1854 1855 1856 1857 1858 1859 1860
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1861
	int i;
1862
	struct scrub_page *spage;
1863
	char *kaddr;
1864

1865
	BUG_ON(sblock->page_count < 1);
1866 1867 1868 1869

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1870 1871
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1872
	h = (struct btrfs_header *)kaddr;
1873
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1874 1875 1876 1877 1878 1879

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1880
	if (spage->logical != btrfs_stack_header_bytenr(h))
1881
		sblock->header_error = 1;
A
Arne Jansen 已提交
1882

1883
	if (spage->generation != btrfs_stack_header_generation(h)) {
1884 1885 1886
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1887

1888
	if (!scrub_check_fsid(h->fsid, spage))
1889
		sblock->header_error = 1;
A
Arne Jansen 已提交
1890 1891 1892

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1893
		sblock->header_error = 1;
A
Arne Jansen 已提交
1894

1895 1896 1897
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1898
			    sectorsize - BTRFS_CSUM_SIZE);
1899

1900
	for (i = 1; i < num_sectors; i++) {
1901
		kaddr = page_address(sblock->pagev[i]->page);
1902
		crypto_shash_update(shash, kaddr, sectorsize);
1903 1904
	}

1905
	crypto_shash_final(shash, calculated_csum);
1906
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1907
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1908

1909
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1910 1911
}

1912
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1913 1914
{
	struct btrfs_super_block *s;
1915
	struct scrub_ctx *sctx = sblock->sctx;
1916 1917
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1918
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1919
	struct scrub_page *spage;
1920
	char *kaddr;
1921 1922
	int fail_gen = 0;
	int fail_cor = 0;
1923

1924
	BUG_ON(sblock->page_count < 1);
1925 1926
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1927
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1928

1929
	if (spage->logical != btrfs_super_bytenr(s))
1930
		++fail_cor;
A
Arne Jansen 已提交
1931

1932
	if (spage->generation != btrfs_super_generation(s))
1933
		++fail_gen;
A
Arne Jansen 已提交
1934

1935
	if (!scrub_check_fsid(s->fsid, spage))
1936
		++fail_cor;
A
Arne Jansen 已提交
1937

1938 1939 1940 1941
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1942

1943
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1944
		++fail_cor;
A
Arne Jansen 已提交
1945

1946
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1947 1948 1949 1950 1951
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1952 1953 1954
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1955
		if (fail_cor)
1956
			btrfs_dev_stat_inc_and_print(spage->dev,
1957 1958
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1959
			btrfs_dev_stat_inc_and_print(spage->dev,
1960
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1961 1962
	}

1963
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1964 1965
}

1966 1967
static void scrub_block_get(struct scrub_block *sblock)
{
1968
	refcount_inc(&sblock->refs);
1969 1970 1971 1972
}

static void scrub_block_put(struct scrub_block *sblock)
{
1973
	if (refcount_dec_and_test(&sblock->refs)) {
1974 1975
		int i;

1976 1977 1978
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1979
		for (i = 0; i < sblock->page_count; i++)
1980
			scrub_page_put(sblock->pagev[i]);
1981 1982 1983 1984
		kfree(sblock);
	}
}

1985 1986
static void scrub_page_get(struct scrub_page *spage)
{
1987
	atomic_inc(&spage->refs);
1988 1989 1990 1991
}

static void scrub_page_put(struct scrub_page *spage)
{
1992
	if (atomic_dec_and_test(&spage->refs)) {
1993 1994 1995 1996 1997 1998
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1999
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2000 2001 2002
{
	struct scrub_bio *sbio;

2003
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2004
		return;
A
Arne Jansen 已提交
2005

2006 2007
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2008
	scrub_pending_bio_inc(sctx);
2009
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2010 2011
}

2012 2013
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2014
{
2015
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2016
	struct scrub_bio *sbio;
2017
	int ret;
A
Arne Jansen 已提交
2018 2019 2020 2021 2022

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2023 2024 2025 2026 2027 2028 2029 2030
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2031
		} else {
2032 2033
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2034 2035
		}
	}
2036
	sbio = sctx->bios[sctx->curr];
2037
	if (sbio->page_count == 0) {
2038 2039
		struct bio *bio;

2040 2041
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2042
		sbio->dev = spage->dev;
2043 2044
		bio = sbio->bio;
		if (!bio) {
2045
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2046 2047
			sbio->bio = bio;
		}
2048 2049 2050

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2051
		bio_set_dev(bio, sbio->dev->bdev);
2052
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2053
		bio->bi_opf = REQ_OP_READ;
2054
		sbio->status = 0;
2055 2056 2057
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2058 2059
		   spage->logical ||
		   sbio->dev != spage->dev) {
2060
		scrub_submit(sctx);
A
Arne Jansen 已提交
2061 2062
		goto again;
	}
2063

2064 2065 2066 2067 2068 2069 2070 2071
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2072
		scrub_submit(sctx);
2073 2074 2075
		goto again;
	}

2076
	scrub_block_get(sblock); /* one for the page added to the bio */
2077 2078
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2079
	if (sbio->page_count == sctx->pages_per_rd_bio)
2080
		scrub_submit(sctx);
2081 2082 2083 2084

	return 0;
}

2085
static void scrub_missing_raid56_end_io(struct bio *bio)
2086 2087
{
	struct scrub_block *sblock = bio->bi_private;
2088
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2089

2090
	if (bio->bi_status)
2091 2092
		sblock->no_io_error_seen = 0;

2093 2094
	bio_put(bio);

2095 2096 2097 2098 2099 2100 2101
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2102
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2103 2104 2105 2106 2107 2108
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2109
	if (sblock->no_io_error_seen)
2110
		scrub_recheck_block_checksum(sblock);
2111 2112 2113 2114 2115

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2116
		btrfs_err_rl_in_rcu(fs_info,
2117
			"IO error rebuilding logical %llu for dev %s",
2118 2119 2120 2121 2122
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2123
		btrfs_err_rl_in_rcu(fs_info,
2124
			"failed to rebuild valid logical %llu for dev %s",
2125 2126 2127 2128 2129
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2130
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2131
		mutex_lock(&sctx->wr_lock);
2132
		scrub_wr_submit(sctx);
2133
		mutex_unlock(&sctx->wr_lock);
2134 2135
	}

2136
	scrub_block_put(sblock);
2137 2138 2139 2140 2141 2142
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2143
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2144 2145
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2146
	struct btrfs_bio *bbio = NULL;
2147 2148 2149 2150 2151
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2152
	btrfs_bio_counter_inc_blocked(fs_info);
2153
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2154
			&length, &bbio);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2169
	bio = btrfs_io_bio_alloc(0);
2170 2171 2172 2173
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2174
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2175 2176 2177 2178 2179 2180 2181 2182 2183
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2184
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2185 2186 2187 2188 2189 2190 2191 2192
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2193
	btrfs_bio_counter_dec(fs_info);
2194 2195 2196 2197 2198 2199
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2200
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2201
		       u64 physical, struct btrfs_device *dev, u64 flags,
2202
		       u64 gen, int mirror_num, u8 *csum,
2203
		       u64 physical_for_dev_replace)
2204 2205
{
	struct scrub_block *sblock;
2206
	const u32 sectorsize = sctx->fs_info->sectorsize;
2207 2208
	int index;

2209
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2210
	if (!sblock) {
2211 2212 2213
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2214
		return -ENOMEM;
A
Arne Jansen 已提交
2215
	}
2216

2217 2218
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2219
	refcount_set(&sblock->refs, 1);
2220
	sblock->sctx = sctx;
2221 2222 2223
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2224
		struct scrub_page *spage;
2225 2226 2227 2228 2229 2230
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2231

2232
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2233 2234
		if (!spage) {
leave_nomem:
2235 2236 2237
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2238
			scrub_block_put(sblock);
2239 2240
			return -ENOMEM;
		}
2241 2242 2243
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2244
		spage->sblock = sblock;
2245
		spage->dev = dev;
2246 2247 2248 2249
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2250
		spage->physical_for_dev_replace = physical_for_dev_replace;
2251 2252 2253
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2254
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2255 2256 2257 2258
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2259
		spage->page = alloc_page(GFP_KERNEL);
2260 2261
		if (!spage->page)
			goto leave_nomem;
2262 2263 2264
		len -= l;
		logical += l;
		physical += l;
2265
		physical_for_dev_replace += l;
2266 2267
	}

2268
	WARN_ON(sblock->page_count == 0);
2269
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2270 2271 2272 2273 2274 2275 2276 2277 2278
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2279

2280 2281 2282 2283 2284
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2285
		}
A
Arne Jansen 已提交
2286

2287
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2288 2289
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2290

2291 2292
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2293 2294 2295
	return 0;
}

2296
static void scrub_bio_end_io(struct bio *bio)
2297 2298
{
	struct scrub_bio *sbio = bio->bi_private;
2299
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2300

2301
	sbio->status = bio->bi_status;
2302 2303
	sbio->bio = bio;

2304
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2305 2306 2307 2308 2309
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2310
	struct scrub_ctx *sctx = sbio->sctx;
2311 2312
	int i;

2313
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2314
	if (sbio->status) {
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2335 2336 2337 2338
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2339

2340
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2341
		mutex_lock(&sctx->wr_lock);
2342
		scrub_wr_submit(sctx);
2343
		mutex_unlock(&sctx->wr_lock);
2344 2345
	}

2346
	scrub_pending_bio_dec(sctx);
2347 2348
}

2349 2350
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2351
				       u64 start, u32 len)
2352
{
2353
	u64 offset;
2354
	u32 nsectors;
2355
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2356 2357 2358 2359 2360 2361 2362

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2363
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2364
	offset = offset >> sectorsize_bits;
2365
	nsectors = len >> sectorsize_bits;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2377
						   u64 start, u32 len)
2378 2379 2380 2381 2382
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2383
						  u64 start, u32 len)
2384 2385 2386 2387
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2388 2389
static void scrub_block_complete(struct scrub_block *sblock)
{
2390 2391
	int corrupted = 0;

2392
	if (!sblock->no_io_error_seen) {
2393
		corrupted = 1;
2394
		scrub_handle_errored_block(sblock);
2395 2396 2397 2398 2399 2400
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2401 2402
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2403 2404
			scrub_write_block_to_dev_replace(sblock);
	}
2405 2406 2407 2408 2409 2410

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

2411
		ASSERT(end - start <= U32_MAX);
2412 2413 2414
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2435
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2436
{
2437
	bool found = false;
A
Arne Jansen 已提交
2438

2439
	while (!list_empty(&sctx->csum_list)) {
2440 2441 2442 2443
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2444
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2445
				       struct btrfs_ordered_sum, list);
2446
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2447 2448 2449
		if (sum->bytenr > logical)
			break;

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2460

2461 2462 2463 2464
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2465

2466 2467 2468 2469 2470 2471 2472
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2473
	}
2474 2475
	if (!found)
		return 0;
2476
	return 1;
A
Arne Jansen 已提交
2477 2478 2479
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2480
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2481
			u64 logical, u32 len,
2482
			u64 physical, struct btrfs_device *dev, u64 flags,
2483
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2484 2485 2486
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2487 2488 2489
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2490 2491 2492 2493
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2494 2495 2496 2497
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2498
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2499 2500 2501 2502
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2503 2504 2505 2506
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2507
	} else {
2508
		blocksize = sctx->fs_info->sectorsize;
2509
		WARN_ON(1);
2510
	}
A
Arne Jansen 已提交
2511 2512

	while (len) {
2513
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2514 2515 2516 2517
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2518
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2519
			if (have_csum == 0)
2520
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2521
		}
2522
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2523
				  mirror_num, have_csum ? csum : NULL,
2524
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2525 2526 2527 2528 2529
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2530
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2531 2532 2533 2534
	}
	return 0;
}

2535
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2536
				  u64 logical, u32 len,
2537 2538 2539 2540 2541
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2542
	const u32 sectorsize = sctx->fs_info->sectorsize;
2543 2544
	int index;

2545 2546
	ASSERT(IS_ALIGNED(len, sectorsize));

2547
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2548 2549 2550 2551 2552 2553 2554 2555 2556
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2557
	refcount_set(&sblock->refs, 1);
2558 2559 2560 2561 2562 2563 2564 2565
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2566
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2591
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2592 2593 2594 2595
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2596
		spage->page = alloc_page(GFP_KERNEL);
2597 2598
		if (!spage->page)
			goto leave_nomem;
2599 2600 2601 2602 2603 2604


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2625
				   u64 logical, u32 len,
2626 2627 2628 2629 2630 2631 2632 2633
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2634
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2635 2636 2637 2638
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2639
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2640
		blocksize = sparity->stripe_len;
2641
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2642
		blocksize = sparity->stripe_len;
2643
	} else {
2644
		blocksize = sctx->fs_info->sectorsize;
2645 2646 2647 2648
		WARN_ON(1);
	}

	while (len) {
2649
		u32 l = min(len, blocksize);
2650 2651 2652 2653
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2654
			have_csum = scrub_find_csum(sctx, logical, csum);
2655 2656 2657 2658 2659 2660 2661 2662
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2663
skip:
2664 2665 2666 2667 2668 2669 2670
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2671 2672 2673 2674 2675 2676 2677 2678
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2679 2680
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2681 2682 2683 2684 2685
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2686 2687
	u32 stripe_index;
	u32 rot;
2688
	const int data_stripes = nr_data_stripes(map);
2689

2690
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2691 2692 2693
	if (stripe_start)
		*stripe_start = last_offset;

2694
	*offset = last_offset;
2695
	for (i = 0; i < data_stripes; i++) {
2696 2697
		*offset = last_offset + i * map->stripe_len;

2698
		stripe_nr = div64_u64(*offset, map->stripe_len);
2699
		stripe_nr = div_u64(stripe_nr, data_stripes);
2700 2701

		/* Work out the disk rotation on this stripe-set */
2702
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2703 2704
		/* calculate which stripe this data locates */
		rot += i;
2705
		stripe_index = rot % map->num_stripes;
2706 2707 2708 2709 2710 2711 2712 2713 2714
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2747
static void scrub_parity_bio_endio(struct bio *bio)
2748 2749
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2750
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2751

2752
	if (bio->bi_status)
2753 2754 2755 2756
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2757

2758 2759
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2760
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2761 2762 2763 2764 2765
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2766
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2777
	length = sparity->logic_end - sparity->logic_start;
2778 2779

	btrfs_bio_counter_inc_blocked(fs_info);
2780
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781
			       &length, &bbio);
2782
	if (ret || !bbio || !bbio->raid_map)
2783 2784
		goto bbio_out;

2785
	bio = btrfs_io_bio_alloc(0);
2786 2787 2788 2789
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2790
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2791
					      length, sparity->scrub_dev,
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2804
	btrfs_bio_counter_dec(fs_info);
2805
	btrfs_put_bbio(bbio);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2817
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2818 2819 2820 2821
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2822
	refcount_inc(&sparity->refs);
2823 2824 2825 2826
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2827
	if (!refcount_dec_and_test(&sparity->refs))
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2840
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2841 2842 2843
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2844
	struct btrfs_bio *bbio = NULL;
2845 2846 2847 2848 2849 2850 2851 2852
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2853 2854
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2855
	u64 mapped_length;
2856 2857 2858 2859 2860 2861 2862
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2863
	ASSERT(map->stripe_len <= U32_MAX);
2864
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2875
	ASSERT(map->stripe_len <= U32_MAX);
2876 2877 2878 2879 2880 2881
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2882
	refcount_set(&sparity->refs, 1);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2931 2932 2933 2934
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2935
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2936
				bytes = fs_info->nodesize;
2937 2938 2939 2940 2941 2942
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2943
			if (key.objectid >= logic_end) {
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2956 2957 2958 2959
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2960 2961
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2962
					  key.objectid, logic_start);
2963 2964 2965
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2966 2967 2968 2969
				goto next;
			}
again:
			extent_logical = key.objectid;
2970
			ASSERT(bytes <= U32_MAX);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2986
			mapped_length = extent_len;
2987
			bbio = NULL;
2988 2989 2990
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3017 3018 3019

			scrub_free_csums(sctx);

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3049 3050
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3051
		scrub_parity_mark_sectors_error(sparity, logic_start,
3052
						logic_end - logic_start);
3053
	}
3054 3055
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3056
	mutex_lock(&sctx->wr_lock);
3057
	scrub_wr_submit(sctx);
3058
	mutex_unlock(&sctx->wr_lock);
3059 3060 3061 3062 3063

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3104
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3105 3106
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3107 3108
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3109
{
3110
	struct btrfs_path *path, *ppath;
3111
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3112 3113 3114
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3115
	struct blk_plug plug;
A
Arne Jansen 已提交
3116 3117 3118 3119 3120 3121 3122
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3123
	u64 logic_end;
3124
	u64 physical_end;
A
Arne Jansen 已提交
3125
	u64 generation;
3126
	int mirror_num;
A
Arne Jansen 已提交
3127 3128
	struct reada_control *reada1;
	struct reada_control *reada2;
3129
	struct btrfs_key key;
A
Arne Jansen 已提交
3130
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3131 3132
	u64 increment = map->stripe_len;
	u64 offset;
3133 3134
	u64 extent_logical;
	u64 extent_physical;
3135 3136 3137 3138 3139
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3140 3141
	u64 stripe_logical;
	u64 stripe_end;
3142 3143
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3144
	int stop_loop = 0;
D
David Woodhouse 已提交
3145

3146
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3147
	offset = 0;
3148
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3149 3150 3151
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3152
		mirror_num = 1;
A
Arne Jansen 已提交
3153 3154 3155 3156
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3157
		mirror_num = num % map->sub_stripes + 1;
3158
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3159
		increment = map->stripe_len;
3160
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3161 3162
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3163
		mirror_num = num % map->num_stripes + 1;
3164
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3165
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3166 3167
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3168 3169
	} else {
		increment = map->stripe_len;
3170
		mirror_num = 1;
A
Arne Jansen 已提交
3171 3172 3173 3174 3175 3176
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3177 3178
	ppath = btrfs_alloc_path();
	if (!ppath) {
3179
		btrfs_free_path(path);
3180 3181 3182
		return -ENOMEM;
	}

3183 3184 3185 3186 3187
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3188 3189 3190
	path->search_commit_root = 1;
	path->skip_locking = 1;

3191 3192
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3193
	/*
A
Arne Jansen 已提交
3194 3195 3196
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3197 3198
	 */
	logical = base + offset;
3199
	physical_end = physical + nstripes * map->stripe_len;
3200
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3201
		get_raid56_logic_offset(physical_end, num,
3202
					map, &logic_end, NULL);
3203 3204 3205 3206
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3207
	wait_event(sctx->list_wait,
3208
		   atomic_read(&sctx->bios_in_flight) == 0);
3209
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3210 3211

	/* FIXME it might be better to start readahead at commit root */
3212 3213 3214
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3215
	key_end.objectid = logic_end;
3216 3217
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3218
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3219

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3231 3232 3233

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3234
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3235 3236
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3237 3238 3239 3240 3241

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3242
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3243

3244 3245 3246 3247 3248 3249 3250 3251
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3252 3253 3254 3255
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3256
	while (physical < physical_end) {
A
Arne Jansen 已提交
3257 3258 3259 3260
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3261
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3262 3263 3264 3265 3266 3267 3268 3269
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3270
			sctx->flush_all_writes = true;
3271
			scrub_submit(sctx);
3272
			mutex_lock(&sctx->wr_lock);
3273
			scrub_wr_submit(sctx);
3274
			mutex_unlock(&sctx->wr_lock);
3275
			wait_event(sctx->list_wait,
3276
				   atomic_read(&sctx->bios_in_flight) == 0);
3277
			sctx->flush_all_writes = false;
3278
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3279 3280
		}

3281 3282 3283 3284 3285 3286
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3287
				/* it is parity strip */
3288
				stripe_logical += base;
3289
				stripe_end = stripe_logical + increment;
3290 3291 3292 3293 3294 3295 3296 3297 3298
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3299 3300 3301 3302
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3303
		key.objectid = logical;
L
Liu Bo 已提交
3304
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3305 3306 3307 3308

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3309

3310
		if (ret > 0) {
3311
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3312 3313
			if (ret < 0)
				goto out;
3314 3315 3316 3317 3318 3319 3320 3321 3322
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3323 3324
		}

L
Liu Bo 已提交
3325
		stop_loop = 0;
A
Arne Jansen 已提交
3326
		while (1) {
3327 3328
			u64 bytes;

A
Arne Jansen 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3338
				stop_loop = 1;
A
Arne Jansen 已提交
3339 3340 3341 3342
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3343 3344 3345 3346
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3347
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3348
				bytes = fs_info->nodesize;
3349 3350 3351 3352
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3353 3354
				goto next;

L
Liu Bo 已提交
3355 3356 3357 3358 3359 3360
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3376 3377 3378 3379 3380
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3381 3382 3383 3384
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3385
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3386
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3387
				       key.objectid, logical);
3388 3389 3390
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3391 3392 3393
				goto next;
			}

L
Liu Bo 已提交
3394 3395
again:
			extent_logical = key.objectid;
3396
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3397 3398
			extent_len = bytes;

A
Arne Jansen 已提交
3399 3400 3401
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3402 3403 3404
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3405
			}
L
Liu Bo 已提交
3406
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3407
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3408 3409
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3410 3411
			}

L
Liu Bo 已提交
3412
			extent_physical = extent_logical - logical + physical;
3413 3414
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3415
			if (sctx->is_dev_replace)
3416 3417 3418 3419
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3420

3421 3422 3423 3424 3425 3426 3427 3428
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3429

L
Liu Bo 已提交
3430
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3431 3432
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3433
					   extent_logical - logical + physical);
3434 3435 3436

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3437 3438 3439
			if (ret)
				goto out;

3440 3441 3442
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3443 3444
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3445
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3446 3447 3448 3449
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3460
								increment;
3461 3462 3463 3464 3465 3466 3467 3468
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3469 3470 3471 3472
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3473 3474 3475 3476 3477
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3478
				if (physical >= physical_end) {
L
Liu Bo 已提交
3479 3480 3481 3482
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3483 3484 3485
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3486
		btrfs_release_path(path);
3487
skip:
A
Arne Jansen 已提交
3488 3489
		logical += increment;
		physical += map->stripe_len;
3490
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3491 3492 3493 3494 3495
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3496
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3497 3498
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3499
	}
3500
out:
A
Arne Jansen 已提交
3501
	/* push queued extents */
3502
	scrub_submit(sctx);
3503
	mutex_lock(&sctx->wr_lock);
3504
	scrub_wr_submit(sctx);
3505
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3506

3507
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3508
	btrfs_free_path(path);
3509
	btrfs_free_path(ppath);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3521 3522 3523
	return ret < 0 ? ret : 0;
}

3524
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3525 3526
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3527
					  u64 dev_offset,
3528
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3529
{
3530
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3531
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3532 3533 3534
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3535
	int ret = 0;
A
Arne Jansen 已提交
3536

3537 3538 3539
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3553

3554
	map = em->map_lookup;
A
Arne Jansen 已提交
3555 3556 3557 3558 3559 3560 3561
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3562
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3563
		    map->stripes[i].physical == dev_offset) {
3564
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3565
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3595
static noinline_for_stack
3596
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3597
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3598 3599 3600
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3601 3602
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3603 3604
	u64 length;
	u64 chunk_offset;
3605
	int ret = 0;
3606
	int ro_set;
A
Arne Jansen 已提交
3607 3608 3609 3610
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3611
	struct btrfs_block_group *cache;
3612
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3613 3614 3615 3616 3617

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3618
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3619 3620 3621
	path->search_commit_root = 1;
	path->skip_locking = 1;

3622
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3623 3624 3625 3626 3627 3628
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3629 3630 3631 3632 3633
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3634 3635 3636 3637
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3638
					break;
3639 3640 3641
				}
			} else {
				ret = 0;
3642 3643
			}
		}
A
Arne Jansen 已提交
3644 3645 3646 3647 3648 3649

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3650
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3651 3652
			break;

3653
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3665 3666
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3667 3668 3669 3670 3671 3672 3673 3674

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3675 3676 3677 3678 3679 3680

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
				ro_set = 0;
				goto done;
			}
			spin_unlock(&cache->lock);
		}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3705
		btrfs_freeze_block_group(cache);
3706 3707
		spin_unlock(&cache->lock);

3708 3709 3710 3711 3712 3713 3714 3715 3716
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3747
		 */
3748
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3759 3760
		if (ret == 0) {
			ro_set = 1;
3761
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3762 3763 3764
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3765
			 * It is not a problem for scrub, because
3766 3767 3768 3769 3770
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3771
			btrfs_warn(fs_info,
3772
				   "failed setting block group ro: %d", ret);
3773
			btrfs_unfreeze_block_group(cache);
3774
			btrfs_put_block_group(cache);
3775
			scrub_pause_off(fs_info);
3776 3777 3778
			break;
		}

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3791
		down_write(&dev_replace->rwsem);
3792 3793 3794
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3795 3796
		up_write(&dev_replace->rwsem);

3797
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3798
				  found_key.offset, cache);
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3810
		sctx->flush_all_writes = true;
3811
		scrub_submit(sctx);
3812
		mutex_lock(&sctx->wr_lock);
3813
		scrub_wr_submit(sctx);
3814
		mutex_unlock(&sctx->wr_lock);
3815 3816 3817

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3818 3819

		scrub_pause_on(fs_info);
3820 3821 3822 3823 3824 3825

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3826 3827
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3828
		sctx->flush_all_writes = false;
3829

3830
		scrub_pause_off(fs_info);
3831

3832 3833 3834 3835 3836 3837
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

done:
3838
		down_write(&dev_replace->rwsem);
3839 3840
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3841
		up_write(&dev_replace->rwsem);
3842

3843
		if (ro_set)
3844
			btrfs_dec_block_group_ro(cache);
3845

3846 3847 3848 3849 3850 3851 3852 3853 3854
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3855
		    cache->used == 0) {
3856
			spin_unlock(&cache->lock);
3857 3858 3859 3860 3861
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3862 3863 3864 3865
		} else {
			spin_unlock(&cache->lock);
		}

3866
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3867 3868 3869
		btrfs_put_block_group(cache);
		if (ret)
			break;
3870
		if (sctx->is_dev_replace &&
3871
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3872 3873 3874 3875 3876 3877 3878
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3879
skip:
A
Arne Jansen 已提交
3880
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3881
		btrfs_release_path(path);
A
Arne Jansen 已提交
3882 3883 3884
	}

	btrfs_free_path(path);
3885

3886
	return ret;
A
Arne Jansen 已提交
3887 3888
}

3889 3890
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3891 3892 3893 3894 3895
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3896
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3897

3898
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3899
		return -EROFS;
3900

3901
	/* Seed devices of a new filesystem has their own generation. */
3902
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3903 3904
		gen = scrub_dev->generation;
	else
3905
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3906 3907 3908

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3909 3910
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3911
			break;
3912 3913
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3914

3915
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3916
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3917
				  NULL, bytenr);
A
Arne Jansen 已提交
3918 3919 3920
		if (ret)
			return ret;
	}
3921
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3922 3923 3924 3925

	return 0;
}

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3949 3950 3951
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3952 3953
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3954
{
3955 3956 3957
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
3958
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3959
	int max_active = fs_info->thread_pool_size;
3960
	int ret = -ENOMEM;
A
Arne Jansen 已提交
3961

3962 3963
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
3964

3965 3966 3967 3968
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
3969

3970
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3971
					      max_active, 2);
3972 3973
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
3974

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
3988
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3989 3990
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
3991
	}
3992 3993 3994
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
3995

3996 3997
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
3998
fail_scrub_parity_workers:
3999
	btrfs_destroy_workqueue(scrub_wr_comp);
4000
fail_scrub_wr_completion_workers:
4001
	btrfs_destroy_workqueue(scrub_workers);
4002
fail_scrub_workers:
4003
	return ret;
A
Arne Jansen 已提交
4004 4005
}

4006 4007
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4008
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4009
{
4010
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4011 4012
	int ret;
	struct btrfs_device *dev;
4013
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4014

4015
	if (btrfs_fs_closing(fs_info))
4016
		return -EAGAIN;
A
Arne Jansen 已提交
4017

4018
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4019 4020 4021 4022 4023
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4024 4025
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4026 4027
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4028 4029 4030
		return -EINVAL;
	}

4031
	if (fs_info->nodesize >
4032
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4033
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4034 4035 4036 4037
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4038 4039
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4040
		       fs_info->nodesize,
4041
		       SCRUB_MAX_PAGES_PER_BLOCK,
4042
		       fs_info->sectorsize,
4043 4044 4045 4046
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4047 4048 4049 4050
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4051

4052 4053 4054 4055
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4056
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4057
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4058 4059
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4060
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4061
		ret = -ENODEV;
4062
		goto out;
A
Arne Jansen 已提交
4063 4064
	}

4065 4066
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4067
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4068 4069 4070
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4071
		ret = -EROFS;
4072
		goto out;
4073 4074
	}

4075
	mutex_lock(&fs_info->scrub_lock);
4076
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4077
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4078
		mutex_unlock(&fs_info->scrub_lock);
4079
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4080
		ret = -EIO;
4081
		goto out;
A
Arne Jansen 已提交
4082 4083
	}

4084
	down_read(&fs_info->dev_replace.rwsem);
4085
	if (dev->scrub_ctx ||
4086 4087
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4088
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4089
		mutex_unlock(&fs_info->scrub_lock);
4090
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091
		ret = -EINPROGRESS;
4092
		goto out;
A
Arne Jansen 已提交
4093
	}
4094
	up_read(&fs_info->dev_replace.rwsem);
4095

4096
	sctx->readonly = readonly;
4097
	dev->scrub_ctx = sctx;
4098
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4099

4100 4101 4102 4103
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4104
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4105 4106 4107
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4118
	if (!is_dev_replace) {
4119
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4120 4121 4122 4123
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4124
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4125
		ret = scrub_supers(sctx, dev);
4126
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4127
	}
A
Arne Jansen 已提交
4128 4129

	if (!ret)
4130
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4131
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4132

4133
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4134 4135 4136
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4137
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4138

A
Arne Jansen 已提交
4139
	if (progress)
4140
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4141

4142 4143 4144 4145
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4146
	mutex_lock(&fs_info->scrub_lock);
4147
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4148 4149
	mutex_unlock(&fs_info->scrub_lock);

4150
	scrub_workers_put(fs_info);
4151
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4152

4153
	return ret;
4154 4155
out:
	scrub_workers_put(fs_info);
4156 4157 4158
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4159 4160 4161
	return ret;
}

4162
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4177
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4178 4179 4180 4181 4182
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4183
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4204
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4205
{
4206
	struct btrfs_fs_info *fs_info = dev->fs_info;
4207
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4208 4209

	mutex_lock(&fs_info->scrub_lock);
4210
	sctx = dev->scrub_ctx;
4211
	if (!sctx) {
A
Arne Jansen 已提交
4212 4213 4214
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4215
	atomic_inc(&sctx->cancel_req);
4216
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4217 4218
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4219
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4220 4221 4222 4223 4224 4225
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4226

4227
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4228 4229 4230
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4231
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4232

4233
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4234
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4235
	if (dev)
4236
		sctx = dev->scrub_ctx;
4237 4238
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4239
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4240

4241
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4242
}
4243 4244

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4245
			       u64 extent_logical, u32 extent_len,
4246 4247 4248 4249 4250 4251 4252 4253 4254
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4255
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4256 4257 4258
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4259
		btrfs_put_bbio(bbio);
4260 4261 4262 4263 4264 4265
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4266
	btrfs_put_bbio(bbio);
4267
}