i915_gem.c 41.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/dma-resv.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39
#include <linux/mman.h>
40

41 42 43
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"

44 45
#include "gem/i915_gem_clflush.h"
#include "gem/i915_gem_context.h"
46
#include "gem/i915_gem_ioctls.h"
47 48
#include "gem/i915_gem_pm.h"
#include "gem/i915_gemfs.h"
49
#include "gt/intel_engine_user.h"
50
#include "gt/intel_gt.h"
51
#include "gt/intel_gt_pm.h"
52 53
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
54
#include "gt/intel_renderstate.h"
55 56
#include "gt/intel_workarounds.h"

57
#include "i915_drv.h"
58
#include "i915_scatterlist.h"
59 60 61
#include "i915_trace.h"
#include "i915_vgpu.h"

62
#include "intel_pm.h"
63

64
static int
65
insert_mappable_node(struct i915_ggtt *ggtt,
66 67 68
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
69
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 71 72
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
73 74 75 76 77 78 79 80
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

81 82
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83
			    struct drm_file *file)
84
{
85
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86
	struct drm_i915_gem_get_aperture *args = data;
87
	struct i915_vma *vma;
88
	u64 pinned;
89

90 91
	mutex_lock(&ggtt->vm.mutex);

92
	pinned = ggtt->vm.reserved;
93
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94
		if (i915_vma_is_pinned(vma))
95
			pinned += vma->node.size;
96 97

	mutex_unlock(&ggtt->vm.mutex);
98

99
	args->aper_size = ggtt->vm.total;
100
	args->aper_available_size = args->aper_size - pinned;
101

102 103 104
	return 0;
}

105 106
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
			   unsigned long flags)
107 108 109
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
110
	int ret = 0;
111 112

	lockdep_assert_held(&obj->base.dev->struct_mutex);
113

114 115 116 117
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
118
		list_move_tail(&vma->obj_link, &still_in_list);
119 120
		spin_unlock(&obj->vma.lock);

121 122 123 124
		ret = -EBUSY;
		if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
		    !i915_vma_is_active(vma))
			ret = i915_vma_unbind(vma);
125 126

		spin_lock(&obj->vma.lock);
127
	}
128 129
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
130 131 132 133

	return ret;
}

134 135 136
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
137
		     struct drm_file *file)
138 139
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
140
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
141

142 143
	/*
	 * We manually control the domain here and pretend that it
144 145
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
146 147
	intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);

148 149
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
150

151
	drm_clflush_virt_range(vaddr, args->size);
152
	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
153

154
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
155
	return 0;
156 157
}

158 159
static int
i915_gem_create(struct drm_file *file,
160
		struct drm_i915_private *dev_priv,
161
		u64 *size_p,
162
		u32 *handle_p)
163
{
164
	struct drm_i915_gem_object *obj;
165
	u32 handle;
166 167
	u64 size;
	int ret;
168

169
	size = round_up(*size_p, PAGE_SIZE);
170 171
	if (size == 0)
		return -EINVAL;
172 173

	/* Allocate the new object */
174
	obj = i915_gem_object_create_shmem(dev_priv, size);
175 176
	if (IS_ERR(obj))
		return PTR_ERR(obj);
177

178
	ret = drm_gem_handle_create(file, &obj->base, &handle);
179
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
180
	i915_gem_object_put(obj);
181 182
	if (ret)
		return ret;
183

184
	*handle_p = handle;
185
	*size_p = size;
186 187 188
	return 0;
}

189 190 191 192 193
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

211
	/* have to work out size/pitch and return them */
212 213 214 215 216 217 218
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

219
	args->size = args->pitch * args->height;
220
	return i915_gem_create(file, to_i915(dev),
221
			       &args->size, &args->handle);
222 223 224 225
}

/**
 * Creates a new mm object and returns a handle to it.
226 227 228
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
229 230 231 232 233
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
234
	struct drm_i915_private *dev_priv = to_i915(dev);
235
	struct drm_i915_gem_create *args = data;
236

237
	i915_gem_flush_free_objects(dev_priv);
238

239
	return i915_gem_create(file, dev_priv,
240
			       &args->size, &args->handle);
241 242
}

243
static int
244 245
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
246 247 248 249 250 251
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

252 253
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
254

255
	ret = __copy_to_user(user_data, vaddr + offset, len);
256

257
	kunmap(page);
258

259
	return ret ? -EFAULT : 0;
260 261 262 263 264 265 266 267
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	unsigned int needs_clflush;
	unsigned int idx, offset;
268 269 270
	struct dma_fence *fence;
	char __user *user_data;
	u64 remain;
271 272
	int ret;

273
	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
274 275 276
	if (ret)
		return ret;

277 278 279 280 281
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

282 283 284 285 286
	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
287
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
288 289 290 291 292 293 294 295 296 297 298

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

299
	i915_gem_object_unlock_fence(obj, fence);
300 301 302 303 304 305 306
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
307
{
308
	void __iomem *vaddr;
309
	unsigned long unwritten;
310 311

	/* We can use the cpu mem copy function because this is X86. */
312 313 314 315
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
316 317
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
318 319 320 321
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
322 323
		io_mapping_unmap(vaddr);
	}
324 325 326 327
	return unwritten;
}

static int
328 329
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
330
{
331 332
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
333
	intel_wakeref_t wakeref;
334
	struct drm_mm_node node;
335
	struct dma_fence *fence;
336
	void __user *user_data;
337
	struct i915_vma *vma;
338
	u64 remain, offset;
339 340
	int ret;

341 342 343 344
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

345
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346 347 348 349 350 351
	vma = ERR_PTR(-ENODEV);
	if (!i915_gem_object_is_tiled(obj))
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
352 353 354
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
355
	} else {
356
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
357
		if (ret)
358 359
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
360 361
	}

362 363 364
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
365 366 367
	if (ret)
		goto out_unpin;

368 369 370 371 372 373 374 375 376 377 378 379
	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
380

381 382 383
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
384 385 386 387 388 389 390 391 392 393 394 395 396

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
397 398 399
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
400 401 402
		} else {
			page_base += offset & PAGE_MASK;
		}
403

404
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
405
				  user_data, page_length)) {
406 407 408 409 410 411 412 413 414
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

415
	i915_gem_object_unlock_fence(obj, fence);
416
out_unpin:
417
	mutex_lock(&i915->drm.struct_mutex);
418
	if (node.allocated) {
419
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 421
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
422
		i915_vma_unpin(vma);
423
	}
424
out_unlock:
425
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426
	mutex_unlock(&i915->drm.struct_mutex);
427

428 429 430
	return ret;
}

431 432
/**
 * Reads data from the object referenced by handle.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441
		     struct drm_file *file)
442 443
{
	struct drm_i915_gem_pread *args = data;
444
	struct drm_i915_gem_object *obj;
445
	int ret;
446

447 448 449
	if (args->size == 0)
		return 0;

450
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
451 452 453
		       args->size))
		return -EFAULT;

454
	obj = i915_gem_object_lookup(file, args->handle);
455 456
	if (!obj)
		return -ENOENT;
457

458
	/* Bounds check source.  */
459
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
460
		ret = -EINVAL;
461
		goto out;
C
Chris Wilson 已提交
462 463
	}

C
Chris Wilson 已提交
464 465
	trace_i915_gem_object_pread(obj, args->offset, args->size);

466 467
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
468
				   MAX_SCHEDULE_TIMEOUT);
469
	if (ret)
470
		goto out;
471

472
	ret = i915_gem_object_pin_pages(obj);
473
	if (ret)
474
		goto out;
475

476
	ret = i915_gem_shmem_pread(obj, args);
477
	if (ret == -EFAULT || ret == -ENODEV)
478
		ret = i915_gem_gtt_pread(obj, args);
479

480 481
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
482
	i915_gem_object_put(obj);
483
	return ret;
484 485
}

486 487
/* This is the fast write path which cannot handle
 * page faults in the source data
488
 */
489

490 491 492 493
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
494
{
495
	void __iomem *vaddr;
496
	unsigned long unwritten;
497

498
	/* We can use the cpu mem copy function because this is X86. */
499 500
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
501
						      user_data, length);
502 503
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
504 505 506
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
507 508
		io_mapping_unmap(vaddr);
	}
509 510 511 512

	return unwritten;
}

513 514 515
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
516
 * @obj: i915 GEM object
517
 * @args: pwrite arguments structure
518
 */
519
static int
520 521
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
522
{
523
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
524
	struct i915_ggtt *ggtt = &i915->ggtt;
525
	struct intel_runtime_pm *rpm = &i915->runtime_pm;
526
	intel_wakeref_t wakeref;
527
	struct drm_mm_node node;
528
	struct dma_fence *fence;
529 530 531
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
532
	int ret;
533

534 535 536
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
537

538 539 540 541 542 543 544 545
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
546
		wakeref = intel_runtime_pm_get_if_in_use(rpm);
547
		if (!wakeref) {
548 549 550 551 552
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
553
		wakeref = intel_runtime_pm_get(rpm);
554 555
	}

556 557 558 559 560 561
	vma = ERR_PTR(-ENODEV);
	if (!i915_gem_object_is_tiled(obj))
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
562 563 564
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
565
	} else {
566
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
567
		if (ret)
568
			goto out_rpm;
569
		GEM_BUG_ON(!node.allocated);
570
	}
D
Daniel Vetter 已提交
571

572 573 574
	mutex_unlock(&i915->drm.struct_mutex);

	ret = i915_gem_object_lock_interruptible(obj);
D
Daniel Vetter 已提交
575 576 577
	if (ret)
		goto out_unpin;

578 579 580 581 582 583 584 585 586 587 588 589
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret) {
		i915_gem_object_unlock(obj);
		goto out_unpin;
	}

	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_unlock(obj);
	if (!fence) {
		ret = -ENOMEM;
		goto out_unpin;
	}
590

591
	intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
592

593 594 595 596
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
597 598
		/* Operation in this page
		 *
599 600 601
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
602
		 */
603
		u32 page_base = node.start;
604 605
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
606 607
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
608 609
			/* flush the write before we modify the GGTT */
			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
610 611 612
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
613 614 615 616
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
617
		/* If we get a fault while copying data, then (presumably) our
618 619
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
620 621
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
622
		 */
623
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
624 625 626
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
627
		}
628

629 630 631
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
632
	}
633
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
634

635
	i915_gem_object_unlock_fence(obj, fence);
D
Daniel Vetter 已提交
636
out_unpin:
637
	mutex_lock(&i915->drm.struct_mutex);
638
	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639
	if (node.allocated) {
640
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 642
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
643
		i915_vma_unpin(vma);
644
	}
645
out_rpm:
646
	intel_runtime_pm_put(rpm, wakeref);
647
out_unlock:
648
	mutex_unlock(&i915->drm.struct_mutex);
649
	return ret;
650 651
}

652 653 654 655 656
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
657
static int
658 659 660
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
661
{
662
	char *vaddr;
663 664
	int ret;

665
	vaddr = kmap(page);
666

667 668
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
669

670 671 672
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
673

674 675 676
	kunmap(page);

	return ret ? -EFAULT : 0;
677 678 679 680 681 682 683
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	unsigned int partial_cacheline_write;
684
	unsigned int needs_clflush;
685
	unsigned int offset, idx;
686 687 688
	struct dma_fence *fence;
	void __user *user_data;
	u64 remain;
689
	int ret;
690

691
	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
692 693
	if (ret)
		return ret;
694

695 696 697 698 699
	fence = i915_gem_object_lock_fence(obj);
	i915_gem_object_finish_access(obj);
	if (!fence)
		return -ENOMEM;

700 701 702 703 704 705 706
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
707

708 709 710 711 712
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
713
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
714

715 716 717
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
718
		if (ret)
719
			break;
720

721 722 723
		remain -= length;
		user_data += length;
		offset = 0;
724
	}
725

726
	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
727 728
	i915_gem_object_unlock_fence(obj, fence);

729
	return ret;
730 731 732 733
}

/**
 * Writes data to the object referenced by handle.
734 735 736
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
737 738 739 740 741
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
742
		      struct drm_file *file)
743 744
{
	struct drm_i915_gem_pwrite *args = data;
745
	struct drm_i915_gem_object *obj;
746 747 748 749 750
	int ret;

	if (args->size == 0)
		return 0;

751
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
752 753
		return -EFAULT;

754
	obj = i915_gem_object_lookup(file, args->handle);
755 756
	if (!obj)
		return -ENOENT;
757

758
	/* Bounds check destination. */
759
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
760
		ret = -EINVAL;
761
		goto err;
C
Chris Wilson 已提交
762 763
	}

764 765 766 767 768 769
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
770 771
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

772 773 774 775 776 777
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

778 779 780
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
781
				   MAX_SCHEDULE_TIMEOUT);
782 783 784
	if (ret)
		goto err;

785
	ret = i915_gem_object_pin_pages(obj);
786
	if (ret)
787
		goto err;
788

D
Daniel Vetter 已提交
789
	ret = -EFAULT;
790 791 792 793 794 795
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
796
	if (!i915_gem_object_has_struct_page(obj) ||
797
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
798 799
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
800 801
		 * textures). Fallback to the shmem path in that case.
		 */
802
		ret = i915_gem_gtt_pwrite_fast(obj, args);
803

804
	if (ret == -EFAULT || ret == -ENOSPC) {
805 806
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
807
		else
808
			ret = i915_gem_shmem_pwrite(obj, args);
809
	}
810

811
	i915_gem_object_unpin_pages(obj);
812
err:
C
Chris Wilson 已提交
813
	i915_gem_object_put(obj);
814
	return ret;
815 816 817 818
}

/**
 * Called when user space has done writes to this buffer
819 820 821
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
822 823 824
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
825
			 struct drm_file *file)
826 827
{
	struct drm_i915_gem_sw_finish *args = data;
828
	struct drm_i915_gem_object *obj;
829

830
	obj = i915_gem_object_lookup(file, args->handle);
831 832
	if (!obj)
		return -ENOENT;
833

T
Tina Zhang 已提交
834 835 836 837 838
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

839
	/* Pinned buffers may be scanout, so flush the cache */
840
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
841
	i915_gem_object_put(obj);
842 843

	return 0;
844 845
}

846
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
847
{
848
	struct drm_i915_gem_object *obj, *on;
849
	int i;
850

851 852 853 854 855 856
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
857

858
	list_for_each_entry_safe(obj, on,
859
				 &i915->ggtt.userfault_list, userfault_link)
860
		__i915_gem_object_release_mmap(obj);
861

862 863
	/*
	 * The fence will be lost when the device powers down. If any were
864 865 866
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
867 868
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
869

870 871
		/*
		 * Ideally we want to assert that the fence register is not
872 873 874 875 876 877 878 879 880
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
881 882 883 884

		if (!reg->vma)
			continue;

885
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 887
		reg->dirty = true;
	}
888 889
}

890
static long
891
wait_for_timelines(struct intel_gt *gt, unsigned int wait, long timeout)
892
{
893
	struct intel_gt_timelines *timelines = &gt->timelines;
894
	struct intel_timeline *tl;
895
	unsigned long flags;
896

897
	spin_lock_irqsave(&timelines->lock, flags);
898
	list_for_each_entry(tl, &timelines->active_list, link) {
899 900
		struct i915_request *rq;

901
		rq = i915_active_request_get_unlocked(&tl->last_request);
902 903 904
		if (!rq)
			continue;

905
		spin_unlock_irqrestore(&timelines->lock, flags);
906 907 908 909 910 911 912 913 914 915

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
916
		if (wait & I915_WAIT_FOR_IDLE_BOOST)
917
			gen6_rps_boost(rq);
918

919
		timeout = i915_request_wait(rq, wait, timeout);
920 921 922 923 924
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
925
		spin_lock_irqsave(&timelines->lock, flags);
926
		tl = list_entry(&timelines->active_list, typeof(*tl), link);
927
	}
928
	spin_unlock_irqrestore(&timelines->lock, flags);
929 930 931 932

	return timeout;
}

933 934
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
935
{
936 937
	struct intel_gt *gt = &i915->gt;

938
	/* If the device is asleep, we have no requests outstanding */
939
	if (!intel_gt_pm_is_awake(gt))
940 941
		return 0;

942
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
943
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
944
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
945

946
	timeout = wait_for_timelines(gt, flags, timeout);
947 948 949
	if (timeout < 0)
		return timeout;

950 951 952
	if (flags & I915_WAIT_LOCKED) {
		lockdep_assert_held(&i915->drm.struct_mutex);

953
		i915_retire_requests(i915);
954
	}
955 956

	return 0;
957 958
}

C
Chris Wilson 已提交
959
struct i915_vma *
960 961
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
962
			 u64 size,
963 964
			 u64 alignment,
			 u64 flags)
965
{
966
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
967
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
968 969
	struct i915_vma *vma;
	int ret;
970

971 972
	lockdep_assert_held(&obj->base.dev->struct_mutex);

973 974
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

1005
	vma = i915_vma_instance(obj, vm, view);
1006
	if (IS_ERR(vma))
C
Chris Wilson 已提交
1007
		return vma;
1008 1009

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1010 1011 1012
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
1013

1014
			if (flags & PIN_MAPPABLE &&
1015
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1016 1017 1018
				return ERR_PTR(-ENOSPC);
		}

1019 1020
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
1021 1022 1023
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
1024
		     !!(flags & PIN_MAPPABLE),
1025
		     i915_vma_is_map_and_fenceable(vma));
1026 1027
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
1028
			return ERR_PTR(ret);
1029 1030
	}

1031 1032 1033 1034 1035 1036 1037 1038
	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
		mutex_lock(&vma->vm->mutex);
		ret = i915_vma_revoke_fence(vma);
		mutex_unlock(&vma->vm->mutex);
		if (ret)
			return ERR_PTR(ret);
	}

C
Chris Wilson 已提交
1039 1040 1041
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
1042

C
Chris Wilson 已提交
1043
	return vma;
1044 1045
}

1046 1047 1048 1049
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
1050
	struct drm_i915_private *i915 = to_i915(dev);
1051
	struct drm_i915_gem_madvise *args = data;
1052
	struct drm_i915_gem_object *obj;
1053
	int err;
1054 1055 1056 1057 1058 1059 1060 1061 1062

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

1063
	obj = i915_gem_object_lookup(file_priv, args->handle);
1064 1065 1066 1067 1068 1069
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
1070

1071
	if (i915_gem_object_has_pages(obj) &&
1072
	    i915_gem_object_is_tiled(obj) &&
1073
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1074 1075
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
1076
			__i915_gem_object_unpin_pages(obj);
1077 1078 1079
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
1080
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
1081
			__i915_gem_object_pin_pages(obj);
1082 1083
			obj->mm.quirked = true;
		}
1084 1085
	}

C
Chris Wilson 已提交
1086 1087
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
1088

1089 1090 1091
	if (i915_gem_object_has_pages(obj)) {
		struct list_head *list;

1092
		if (i915_gem_object_is_shrinkable(obj)) {
1093 1094 1095 1096
			unsigned long flags;

			spin_lock_irqsave(&i915->mm.obj_lock, flags);

1097 1098 1099
			if (obj->mm.madv != I915_MADV_WILLNEED)
				list = &i915->mm.purge_list;
			else
1100
				list = &i915->mm.shrink_list;
1101
			list_move_tail(&obj->mm.link, list);
1102 1103

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1104
		}
1105 1106
	}

C
Chris Wilson 已提交
1107
	/* if the object is no longer attached, discard its backing storage */
1108 1109
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
1110
		i915_gem_object_truncate(obj);
1111

C
Chris Wilson 已提交
1112
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1113
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
1114

1115
out:
1116
	i915_gem_object_put(obj);
1117
	return err;
1118 1119
}

1120 1121
void i915_gem_sanitize(struct drm_i915_private *i915)
{
1122 1123
	intel_wakeref_t wakeref;

1124 1125
	GEM_TRACE("\n");

1126
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1127
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1128 1129 1130 1131 1132 1133 1134

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
1135 1136
	if (intel_gt_is_wedged(&i915->gt))
		intel_gt_unset_wedged(&i915->gt);
1137

1138 1139 1140 1141 1142 1143
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
1144
	 * of the reset, so this could be applied to even earlier gen.
1145
	 */
1146
	intel_gt_sanitize(&i915->gt, false);
1147

1148
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1149
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1150 1151
}

1152 1153
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
1154
	struct i915_request *requests[I915_NUM_ENGINES] = {};
1155 1156
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1157
	int err = 0;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, i915, id) {
1169
		struct intel_context *ce;
1170
		struct i915_request *rq;
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);
		engine->serial++; /* force the kernel context switch */

		ce = intel_context_create(i915->kernel_context, engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

1182
		rq = intel_context_create_request(ce);
1183 1184
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1185 1186
			intel_context_put(ce);
			goto out;
1187 1188
		}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		/*
		 * Failing to program the MOCS is non-fatal.The system will not
		 * run at peak performance. So warn the user and carry on.
		 */
		err = intel_mocs_emit(rq);
		if (err)
			dev_notice(i915->drm.dev,
				   "Failed to program MOCS registers; expect performance issues.\n");

		err = intel_renderstate_emit(rq);
		if (err)
			goto err_rq;
1205

1206
err_rq:
1207
		requests[id] = i915_request_get(rq);
1208
		i915_request_add(rq);
1209
		if (err)
1210
			goto out;
1211 1212
	}

1213
	/* Flush the default context image to memory, and enable powersaving. */
1214
	if (!i915_gem_load_power_context(i915)) {
1215
		err = -EIO;
1216
		goto out;
1217
	}
1218

1219 1220 1221
	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
		struct i915_vma *state;
1222
		void *vaddr;
1223

1224 1225
		rq = requests[id];
		if (!rq)
1226 1227
			continue;

1228 1229 1230 1231 1232 1233
		/* We want to be able to unbind the state from the GGTT */
		GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));

		state = rq->hw_context->state;
		if (!state)
			continue;
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
1245
			goto out;
1246

1247
		i915_gem_object_lock(state->obj);
1248
		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1249
		i915_gem_object_unlock(state->obj);
1250
		if (err)
1251
			goto out;
1252

1253
		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1254 1255

		/* Check we can acquire the image of the context state */
1256
		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1257 1258
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
1259
			goto out;
1260 1261
		}

1262 1263
		rq->engine->default_state = i915_gem_object_get(state->obj);
		i915_gem_object_unpin_map(state->obj);
1264 1265
	}

1266
out:
1267 1268
	/*
	 * If we have to abandon now, we expect the engines to be idle
1269 1270
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
1271
	 */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	if (err)
		intel_gt_set_wedged(&i915->gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->hw_context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

1307
int i915_gem_init(struct drm_i915_private *dev_priv)
1308 1309 1310
{
	int ret;

1311 1312
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1313 1314 1315
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

1316
	intel_timelines_init(dev_priv);
1317

1318 1319 1320 1321
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

1322
	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1323
	intel_wopcm_init(&dev_priv->wopcm);
1324

1325 1326 1327 1328 1329 1330
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
1331
	mutex_lock(&dev_priv->drm.struct_mutex);
1332
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1333

1334
	ret = i915_init_ggtt(dev_priv);
1335 1336 1337 1338
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
1339

1340
	intel_gt_init(&dev_priv->gt);
1341

1342 1343 1344 1345 1346 1347
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

1348 1349 1350 1351 1352 1353
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

1354
	ret = intel_engines_init(dev_priv);
1355 1356 1357 1358
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
1359

1360 1361
	intel_init_gt_powersave(dev_priv);

1362
	intel_uc_init(&dev_priv->gt.uc);
1363

1364
	ret = intel_gt_init_hw(&dev_priv->gt);
1365 1366 1367
	if (ret)
		goto err_uc_init;

1368 1369 1370 1371 1372
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = intel_gt_resume(&dev_priv->gt);
	if (ret)
		goto err_init_hw;

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

1384 1385
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
1386
		goto err_gt;
1387

1388
	ret = __intel_engines_record_defaults(dev_priv);
1389
	if (ret)
1390
		goto err_gt;
1391

1392 1393
	ret = i915_inject_load_error(dev_priv, -ENODEV);
	if (ret)
1394
		goto err_gt;
1395

1396 1397
	ret = i915_inject_load_error(dev_priv, -EIO);
	if (ret)
1398
		goto err_gt;
1399

1400
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
1411
err_gt:
1412 1413
	mutex_unlock(&dev_priv->drm.struct_mutex);

1414
	intel_gt_set_wedged_on_init(&dev_priv->gt);
1415
	i915_gem_suspend(dev_priv);
1416 1417
	i915_gem_suspend_late(dev_priv);

1418 1419
	i915_gem_drain_workqueue(dev_priv);

1420
	mutex_lock(&dev_priv->drm.struct_mutex);
1421
err_init_hw:
1422
	intel_uc_fini_hw(&dev_priv->gt.uc);
1423
err_uc_init:
1424
	if (ret != -EIO) {
1425
		intel_uc_fini(&dev_priv->gt.uc);
1426
		intel_engines_cleanup(dev_priv);
1427 1428 1429 1430
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
1431
err_scratch:
1432
	intel_gt_driver_release(&dev_priv->gt);
1433
err_unlock:
1434
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1435 1436
	mutex_unlock(&dev_priv->drm.struct_mutex);

1437
	if (ret != -EIO) {
1438
		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1439
		i915_gem_cleanup_userptr(dev_priv);
1440
		intel_timelines_fini(dev_priv);
1441
	}
1442

1443
	if (ret == -EIO) {
1444 1445
		mutex_lock(&dev_priv->drm.struct_mutex);

1446
		/*
1447 1448
		 * Allow engines or uC initialisation to fail by marking the GPU
		 * as wedged. But we only want to do this when the GPU is angry,
1449 1450
		 * for all other failure, such as an allocation failure, bail.
		 */
1451
		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1452 1453
			i915_probe_error(dev_priv,
					 "Failed to initialize GPU, declaring it wedged!\n");
1454
			intel_gt_set_wedged(&dev_priv->gt);
1455
		}
1456 1457 1458 1459 1460 1461 1462 1463

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
1464 1465
	}

1466
	i915_gem_drain_freed_objects(dev_priv);
1467
	return ret;
1468 1469
}

1470 1471 1472
void i915_gem_driver_register(struct drm_i915_private *i915)
{
	i915_gem_driver_register__shrinker(i915);
1473 1474

	intel_engines_driver_register(i915);
1475 1476 1477 1478 1479 1480 1481
}

void i915_gem_driver_unregister(struct drm_i915_private *i915)
{
	i915_gem_driver_unregister__shrinker(i915);
}

1482
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1483
{
1484
	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1485

1486
	i915_gem_suspend_late(dev_priv);
1487
	intel_gt_driver_remove(&dev_priv->gt);
1488 1489 1490 1491 1492

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
1493 1494
	intel_uc_fini_hw(&dev_priv->gt.uc);
	intel_uc_fini(&dev_priv->gt.uc);
1495 1496 1497 1498 1499
	mutex_unlock(&dev_priv->drm.struct_mutex);

	i915_gem_drain_freed_objects(dev_priv);
}

1500
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1501 1502
{
	mutex_lock(&dev_priv->drm.struct_mutex);
1503
	intel_engines_cleanup(dev_priv);
1504
	i915_gem_contexts_fini(dev_priv);
1505
	intel_gt_driver_release(&dev_priv->gt);
1506 1507
	mutex_unlock(&dev_priv->drm.struct_mutex);

1508 1509
	intel_wa_list_free(&dev_priv->gt_wa_list);

1510
	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1511
	i915_gem_cleanup_userptr(dev_priv);
1512
	intel_timelines_fini(dev_priv);
1513 1514 1515 1516 1517 1518

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

1519 1520 1521 1522 1523
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

1524 1525 1526 1527 1528 1529
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.obj_lock);

	init_llist_head(&i915->mm.free_list);

1530
	INIT_LIST_HEAD(&i915->mm.purge_list);
1531
	INIT_LIST_HEAD(&i915->mm.shrink_list);
1532

1533
	i915_gem_init__objects(i915);
1534 1535
}

1536
int i915_gem_init_early(struct drm_i915_private *dev_priv)
1537
{
1538
	int err;
1539

1540
	i915_gem_init__mm(dev_priv);
1541
	i915_gem_init__pm(dev_priv);
1542

1543
	spin_lock_init(&dev_priv->fb_tracking.lock);
1544

M
Matthew Auld 已提交
1545 1546 1547 1548
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

1549
	return 0;
1550
}
1551

1552
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1553
{
1554
	i915_gem_drain_freed_objects(dev_priv);
1555 1556
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1557
	WARN_ON(dev_priv->mm.shrink_count);
1558

M
Matthew Auld 已提交
1559
	i915_gemfs_fini(dev_priv);
1560 1561
}

1562 1563
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
1564 1565 1566
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
1567 1568 1569 1570 1571
	i915_gem_shrink_all(dev_priv);

	return 0;
}

1572
int i915_gem_freeze_late(struct drm_i915_private *i915)
1573 1574
{
	struct drm_i915_gem_object *obj;
1575
	intel_wakeref_t wakeref;
1576

1577 1578
	/*
	 * Called just before we write the hibernation image.
1579 1580 1581 1582 1583 1584 1585 1586
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
1587 1588
	 *
	 * To try and reduce the hibernation image, we manually shrink
1589
	 * the objects as well, see i915_gem_freeze()
1590 1591
	 */

1592
	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1593 1594

	i915_gem_shrink(i915, -1UL, NULL, ~0);
1595
	i915_gem_drain_freed_objects(i915);
1596

1597 1598 1599 1600
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		i915_gem_object_lock(obj);
		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
		i915_gem_object_unlock(obj);
1601
	}
1602

1603
	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1604 1605 1606 1607

	return 0;
}

1608
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1609
{
1610
	struct drm_i915_file_private *file_priv = file->driver_priv;
1611
	struct i915_request *request;
1612 1613 1614 1615 1616

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
1617
	spin_lock(&file_priv->mm.lock);
1618
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1619
		request->file_priv = NULL;
1620
	spin_unlock(&file_priv->mm.lock);
1621 1622
}

1623
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1624 1625
{
	struct drm_i915_file_private *file_priv;
1626
	int ret;
1627

1628
	DRM_DEBUG("\n");
1629 1630 1631 1632 1633 1634

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
1635
	file_priv->dev_priv = i915;
1636
	file_priv->file = file;
1637 1638 1639 1640

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

1641
	file_priv->bsd_engine = -1;
1642
	file_priv->hang_timestamp = jiffies;
1643

1644
	ret = i915_gem_context_open(i915, file);
1645 1646
	if (ret)
		kfree(file_priv);
1647

1648
	return ret;
1649 1650
}

1651
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1652
#include "selftests/mock_gem_device.c"
1653
#include "selftests/i915_gem.c"
1654
#endif