random.c 51.7 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <linux/sched/isolation.h>
57
#include <crypto/chacha.h>
58
#include <crypto/blake2s.h>
59
#include <asm/archrandom.h>
L
Linus Torvalds 已提交
60 61
#include <asm/processor.h>
#include <asm/irq.h>
62
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
63 64
#include <asm/io.h>

65 66 67 68 69 70 71 72 73
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
74

75
/*
76
 * crng_init is protected by base_crng->lock, and only increases
77
 * its value (from empty->early->ready).
78
 */
79 80 81 82
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
83 84 85
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
86
/* Various types of waiters for crng_init->CRNG_READY transition. */
87 88
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
89
static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
90

91
/* Control how we warn userspace. */
92
static struct ratelimit_state urandom_warning =
93
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
94 95
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
96 97 98
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

99 100
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
101
 * to supply cryptographically secure random numbers. This applies to: the
102
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
103
 * u16,u32,u64,long} family of functions.
104 105 106 107 108 109 110 111 112 113
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

114
static void __cold crng_set_ready(struct work_struct *work)
115 116 117 118
{
	static_branch_enable(&crng_is_ready);
}

119 120 121 122 123
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
124
 * cryptographically secure random numbers. This applies to: the /dev/urandom
125
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
126
 * long} family of functions. Using any of these functions without first
127
 * calling this function forfeits the guarantee of security.
128 129 130 131 132 133
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
134
	while (!crng_ready()) {
135
		int ret;
136 137

		try_to_generate_entropy();
138 139 140
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
141
	}
142 143 144 145
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * Add a callback function that will be invoked when the crng is initialised,
 * or immediately if it already has been. Only use this is you are absolutely
 * sure it is required. Most users should instead be able to test
 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 */
int __cold execute_with_initialized_rng(struct notifier_block *nb)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&random_ready_notifier.lock, flags);
	if (crng_ready())
		nb->notifier_call(nb, 0, NULL);
	else
		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
	return ret;
}

166
#define warn_unseeded_randomness() \
167 168 169
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
170 171


172
/*********************************************************************
L
Linus Torvalds 已提交
173
 *
174
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
175
 *
176 177 178
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
179
 *
180 181
 * There are a few exported interfaces for use by other drivers:
 *
182
 *	void get_random_bytes(void *buf, size_t len)
183 184
 *	u8 get_random_u8()
 *	u16 get_random_u16()
185
 *	u32 get_random_u32()
186
 *	u32 get_random_u32_below(u32 ceil)
187 188
 *	u32 get_random_u32_above(u32 floor)
 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
189 190 191 192
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
193
 * into the given buffer or as a return value. This is equivalent to
194 195 196 197
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
198 199 200
 *
 *********************************************************************/

201 202 203 204
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 * proportional to the uptime.
 */
static unsigned int crng_reseed_interval(void)
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
	}
	return CRNG_RESEED_INTERVAL;
}

245
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
246
static void extract_entropy(void *buf, size_t len);
247

248
/* This extracts a new crng key from the input pool. */
249
static void crng_reseed(struct work_struct *work)
250
{
251
	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
252
	unsigned long flags;
253 254
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
255

256 257 258 259
	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
	if (likely(system_unbound_wq))
		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());

260
	extract_entropy(key, sizeof(key));
261

262 263 264 265 266 267 268 269 270 271 272 273
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
274
	if (!static_branch_likely(&crng_is_ready))
275
		crng_init = CRNG_READY;
276 277
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
278 279
}

280
/*
281
 * This generates a ChaCha block using the provided key, and then
282
 * immediately overwrites that key with half the block. It returns
283 284 285
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
286 287 288 289 290 291 292
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
293 294 295 296
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
297
{
298
	u8 first_block[CHACHA_BLOCK_SIZE];
299

300 301 302 303 304 305 306 307
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
308
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
309
	memzero_explicit(first_block, sizeof(first_block));
310 311
}

312
/*
313 314 315
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
316
 */
317 318
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
319
{
320
	unsigned long flags;
321
	struct crng *crng;
322

323 324 325 326 327
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
328
	 * ready, we do fast key erasure with the base_crng directly, extracting
329
	 * when crng_init is CRNG_EMPTY.
330
	 */
331
	if (!crng_ready()) {
332 333 334 335
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
336
		if (!ready) {
337
			if (crng_init == CRNG_EMPTY)
338
				extract_entropy(base_crng.key, sizeof(base_crng.key));
339 340
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
341
		}
342 343 344
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
345
	}
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
373 374
}

375
static void _get_random_bytes(void *buf, size_t len)
376
{
377
	u32 chacha_state[CHACHA_STATE_WORDS];
378
	u8 tmp[CHACHA_BLOCK_SIZE];
379
	size_t first_block_len;
380

381
	if (!len)
382 383
		return;

384 385 386 387
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
388

389 390
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
391
			chacha20_block(chacha_state, tmp);
392
			memcpy(buf, tmp, len);
393 394 395 396 397 398 399
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
400
		len -= CHACHA_BLOCK_SIZE;
401 402 403 404 405 406 407
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
408 409 410 411 412
 * This returns random bytes in arbitrary quantities. The quality of the
 * random bytes is good as /dev/urandom. In order to ensure that the
 * randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
413
 */
414
void get_random_bytes(void *buf, size_t len)
415
{
416
	warn_unseeded_randomness();
417
	_get_random_bytes(buf, len);
418 419 420
}
EXPORT_SYMBOL(get_random_bytes);

421
static ssize_t get_random_bytes_user(struct iov_iter *iter)
422 423
{
	u32 chacha_state[CHACHA_STATE_WORDS];
424 425
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
426

427
	if (unlikely(!iov_iter_count(iter)))
428 429
		return 0;

430 431
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
432
	 * bytes, in case userspace causes copy_to_iter() below to sleep
433 434 435 436 437 438 439 440
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
441 442
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
443 444
		goto out_zero_chacha;
	}
445

446
	for (;;) {
447
		chacha20_block(chacha_state, block);
448 449 450
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

451 452 453
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
454
			break;
455

456
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
457
		if (ret % PAGE_SIZE == 0) {
458 459 460 461
			if (signal_pending(current))
				break;
			cond_resched();
		}
462
	}
463

464
	memzero_explicit(block, sizeof(block));
465 466
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
467
	return ret ? ret : -EFAULT;
468 469 470 471 472 473 474 475 476
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

530
DEFINE_BATCHED_ENTROPY(u8)
531 532 533
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
534

535 536 537 538 539 540 541 542 543 544 545
u32 __get_random_u32_below(u32 ceil)
{
	/*
	 * This is the slow path for variable ceil. It is still fast, most of
	 * the time, by doing traditional reciprocal multiplication and
	 * opportunistically comparing the lower half to ceil itself, before
	 * falling back to computing a larger bound, and then rejecting samples
	 * whose lower half would indicate a range indivisible by ceil. The use
	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
	 * in 32-bits.
	 */
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	u32 rand = get_random_u32();
	u64 mult;

	/*
	 * This function is technically undefined for ceil == 0, and in fact
	 * for the non-underscored constant version in the header, we build bug
	 * on that. But for the non-constant case, it's convenient to have that
	 * evaluate to being a straight call to get_random_u32(), so that
	 * get_random_u32_inclusive() can work over its whole range without
	 * undefined behavior.
	 */
	if (unlikely(!ceil))
		return rand;

	mult = (u64)ceil * rand;
561 562 563 564 565 566 567 568 569
	if (unlikely((u32)mult < ceil)) {
		u32 bound = -ceil % ceil;
		while (unlikely((u32)mult < bound))
			mult = (u64)ceil * get_random_u32();
	}
	return mult >> 32;
}
EXPORT_SYMBOL(__get_random_u32_below);

570 571 572 573 574
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
575
int __cold random_prepare_cpu(unsigned int cpu)
576 577 578 579 580 581 582
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
583 584
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
585 586 587 588 589 590
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

591 592 593 594 595 596 597

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
598
 *     static void mix_pool_bytes(const void *buf, size_t len)
599 600 601
 *
 * After which, if added entropy should be credited:
 *
602
 *     static void credit_init_bits(size_t bits)
603
 *
604
 * Finally, extract entropy via:
605
 *
606
 *     static void extract_entropy(void *buf, size_t len)
607 608 609
 *
 **********************************************************************/

610 611
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
612 613
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
614 615 616 617 618
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
619
	unsigned int init_bits;
620 621 622 623 624 625 626 627
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

628
static void _mix_pool_bytes(const void *buf, size_t len)
629
{
630
	blake2s_update(&input_pool.hash, buf, len);
631
}
632 633

/*
634 635 636
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
637
 */
638
static void mix_pool_bytes(const void *buf, size_t len)
639
{
640 641 642
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
643
	_mix_pool_bytes(buf, len);
644
	spin_unlock_irqrestore(&input_pool.lock, flags);
645 646
}

647 648 649 650
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
651
static void extract_entropy(void *buf, size_t len)
652 653
{
	unsigned long flags;
654 655 656 657 658
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
659
	size_t i, longs;
660

661 662 663 664 665 666 667 668 669 670 671 672
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
673
	}
674 675

	spin_lock_irqsave(&input_pool.lock, flags);
676 677 678 679 680 681 682 683 684

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

685
	spin_unlock_irqrestore(&input_pool.lock, flags);
686 687
	memzero_explicit(next_key, sizeof(next_key));

688 689
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
690 691 692
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
693
		len -= i;
694 695 696 697 698 699 700
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

701 702 703
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
704
{
705
	static struct execute_work set_ready;
706
	unsigned int new, orig, add;
707 708
	unsigned long flags;

709
	if (!bits)
710 711
		return;

712
	add = min_t(size_t, bits, POOL_BITS);
713

714
	orig = READ_ONCE(input_pool.init_bits);
715
	do {
716
		new = min_t(unsigned int, POOL_BITS, orig + add);
717
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
718

719
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
720
		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
721 722
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
723
		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
724 725 726
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
727
		if (urandom_warning.missed)
728 729 730
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
731
		spin_lock_irqsave(&base_crng.lock, flags);
732
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
733
		if (crng_init == CRNG_EMPTY) {
734
			extract_entropy(base_crng.key, sizeof(base_crng.key));
735
			crng_init = CRNG_EARLY;
736 737 738 739 740
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

741 742 743 744 745 746 747 748

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
749
 *	void add_device_randomness(const void *buf, size_t len);
750
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
751 752
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
753
 *	void add_interrupt_randomness(int irq);
754
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
755
 *	void add_disk_randomness(struct gendisk *disk);
756 757 758 759 760 761 762 763 764 765 766 767 768
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
769 770
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
771
 * command line option 'random.trust_bootloader'.
772
 *
773 774 775 776
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
777 778 779 780 781
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
782 783 784 785 786 787 788 789 790 791 792 793 794
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
795 796
 **********************************************************************/

797 798
static bool trust_cpu __initdata = true;
static bool trust_bootloader __initdata = true;
799 800 801 802
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
803 804 805 806
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
807
early_param("random.trust_cpu", parse_trust_cpu);
808
early_param("random.trust_bootloader", parse_trust_bootloader);
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
827 828
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
829
		crng_reseed(NULL);
830 831 832 833 834 835 836
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

837
/*
838 839
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
840
 */
841
void __init random_init_early(const char *command_line)
842
{
843
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
844
	size_t i, longs, arch_bits;
845

846 847 848 849 850
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

851
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
852
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
853 854 855 856 857
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
858
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
859 860 861 862
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
863
		}
864 865
		arch_bits -= sizeof(*entropy) * 8;
		++i;
866
	}
867

868
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
869
	_mix_pool_bytes(command_line, strlen(command_line));
870 871 872

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
873
		crng_reseed(NULL);
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
889
	add_latent_entropy();
890

891
	/*
892 893
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
894 895 896 897 898
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

899
	/* Reseed if already seeded by earlier phases. */
900
	if (crng_ready())
901
		crng_reseed(NULL);
902

903 904
	WARN_ON(register_pm_notifier(&pm_notifier));

905 906
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
907
}
908

909
/*
910 911
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
912
 *
913 914 915
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
916
 */
917
void add_device_randomness(const void *buf, size_t len)
918
{
919 920
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
921

922
	spin_lock_irqsave(&input_pool.lock, flags);
923
	_mix_pool_bytes(&entropy, sizeof(entropy));
924
	_mix_pool_bytes(buf, len);
925
	spin_unlock_irqrestore(&input_pool.lock, flags);
926 927 928
}
EXPORT_SYMBOL(add_device_randomness);

929
/*
930 931 932
 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 * may produce endless random bits, so this function will sleep for
 * some amount of time after, if the sleep_after parameter is true.
933
 */
934
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
935
{
936
	mix_pool_bytes(buf, len);
937 938
	credit_init_bits(entropy);

939
	/*
940
	 * Throttle writing to once every reseed interval, unless we're not yet
941
	 * initialized or no entropy is credited.
942
	 */
943
	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
944
		schedule_timeout_interruptible(crng_reseed_interval());
945 946 947 948
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
949 950
 * Handle random seed passed by bootloader, and credit it depending
 * on the command line option 'random.trust_bootloader'.
951
 */
952
void __init add_bootloader_randomness(const void *buf, size_t len)
953
{
954
	mix_pool_bytes(buf, len);
955
	if (trust_bootloader)
956
		credit_init_bits(len * 8);
957 958
}

959
#if IS_ENABLED(CONFIG_VMGENID)
960 961
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

962 963 964 965 966
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
967
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
968
{
969
	add_device_randomness(unique_vm_id, len);
970
	if (crng_ready()) {
971
		crng_reseed(NULL);
972 973
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
974
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
975
}
976
#if IS_MODULE(CONFIG_VMGENID)
977
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
978
#endif
979

980
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
981 982 983 984 985
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

986
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
987 988 989 990
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
991
#endif
992

993
struct fast_pool {
994
	unsigned long pool[4];
995
	unsigned long last;
996
	unsigned int count;
997
	struct timer_list mix;
998 999
};

1000 1001
static void mix_interrupt_randomness(struct timer_list *work);

1002 1003
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1004
#define FASTMIX_PERM SIPHASH_PERMUTATION
1005
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1006
#else
1007
#define FASTMIX_PERM HSIPHASH_PERMUTATION
1008
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1009
#endif
1010
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1011 1012
};

1013
/*
1014 1015 1016
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1017
 * four-word SipHash state, while v represents a two-word input.
1018
 */
1019
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1020
{
1021
	s[3] ^= v1;
1022
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1023 1024
	s[0] ^= v1;
	s[3] ^= v2;
1025
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1026
	s[0] ^= v2;
1027 1028
}

1029 1030 1031 1032 1033
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1034
int __cold random_online_cpu(unsigned int cpu)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1052
static void mix_interrupt_randomness(struct timer_list *work)
1053 1054
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1055
	/*
1056 1057 1058 1059 1060
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1061
	 */
1062
	unsigned long pool[2];
1063
	unsigned int count;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1076
	memcpy(pool, fast_pool->pool, sizeof(pool));
1077
	count = fast_pool->count;
1078
	fast_pool->count = 0;
1079 1080 1081
	fast_pool->last = jiffies;
	local_irq_enable();

1082
	mix_pool_bytes(pool, sizeof(pool));
1083
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1084

1085 1086 1087
	memzero_explicit(pool, sizeof(pool));
}

1088
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1089
{
1090
	enum { MIX_INFLIGHT = 1U << 31 };
1091
	unsigned long entropy = random_get_entropy();
1092 1093
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1094
	unsigned int new_count;
1095

1096 1097
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1098
	new_count = ++fast_pool->count;
1099

1100
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1101 1102
		return;

1103
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1104
		return;
1105

1106
	fast_pool->count |= MIX_INFLIGHT;
1107 1108 1109 1110
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1111
}
1112
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1122 1123 1124 1125
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1126 1127 1128 1129 1130
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1131
	unsigned int bits;
1132

1133 1134 1135 1136 1137
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1138
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1139 1140 1141 1142 1143 1144
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1186
	 */
1187 1188 1189
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1190
		_credit_init_bits(bits);
1191 1192
}

1193
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1218
void __cold rand_initialize_disk(struct gendisk *disk)
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1234 1235 1236
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
1237 1238
	atomic_t samples;
	unsigned int samples_per_bit;
1239 1240
};

1241
/*
1242 1243 1244
 * Each time the timer fires, we expect that we got an unpredictable jump in
 * the cycle counter. Even if the timer is running on another CPU, the timer
 * activity will be touching the stack of the CPU that is generating entropy.
1245
 *
1246 1247 1248
 * Note that we don't re-arm the timer in the timer itself - we are happy to be
 * scheduled away, since that just makes the load more complex, but we do not
 * want the timer to keep ticking unless the entropy loop is running.
1249 1250 1251
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1252
static void __cold entropy_timer(struct timer_list *timer)
1253
{
1254
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1255
	unsigned long entropy = random_get_entropy();
1256

1257
	mix_pool_bytes(&entropy, sizeof(entropy));
1258
	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1259
		credit_init_bits(1);
1260 1261 1262
}

/*
1263 1264
 * If we have an actual cycle counter, see if we can generate enough entropy
 * with timing noise.
1265
 */
1266
static void __cold try_to_generate_entropy(void)
1267
{
1268
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1269 1270
	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1271 1272
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1273
	int cpu = -1;
1274

1275
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1276 1277
		stack->entropy = random_get_entropy();
		if (stack->entropy != last)
1278
			++num_different;
1279
		last = stack->entropy;
1280
	}
1281 1282
	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1283 1284
		return;

1285 1286
	atomic_set(&stack->samples, 0);
	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1287
	while (!crng_ready() && !signal_pending(current)) {
1288 1289 1290 1291
		/*
		 * Check !timer_pending() and then ensure that any previous callback has finished
		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
		 */
1292
		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			struct cpumask timer_cpus;
			unsigned int num_cpus;

			/*
			 * Preemption must be disabled here, both to read the current CPU number
			 * and to avoid scheduling a timer on a dead CPU.
			 */
			preempt_disable();

			/* Only schedule callbacks on timer CPUs that are online. */
			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
			num_cpus = cpumask_weight(&timer_cpus);
			/* In very bizarre case of misconfiguration, fallback to all online. */
			if (unlikely(num_cpus == 0)) {
				timer_cpus = *cpu_online_mask;
				num_cpus = cpumask_weight(&timer_cpus);
			}

			/* Basic CPU round-robin, which avoids the current CPU. */
			do {
				cpu = cpumask_next(cpu, &timer_cpus);
				if (cpu == nr_cpumask_bits)
					cpu = cpumask_first(&timer_cpus);
			} while (cpu == smp_processor_id() && num_cpus > 1);

			/* Expiring the timer at `jiffies` means it's the next tick. */
1319
			stack->timer.expires = jiffies;
1320

1321
			add_timer_on(&stack->timer, cpu);
1322 1323 1324

			preempt_enable();
		}
1325
		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1326
		schedule();
1327
		stack->entropy = random_get_entropy();
1328
	}
1329
	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1330

1331 1332
	del_timer_sync(&stack->timer);
	destroy_timer_on_stack(&stack->timer);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1343 1344 1345 1346 1347 1348 1349 1350
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1351 1352 1353 1354
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1355 1356
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1357 1358 1359 1360 1361 1362 1363
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1364
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1365
{
1366 1367 1368 1369
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1370 1371
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1372

1373 1374 1375 1376 1377 1378
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1379

1380
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1381 1382 1383 1384 1385 1386
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1387

1388
	ret = import_single_range(ITER_DEST, ubuf, len, &iov, &iter);
1389 1390 1391
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1392 1393
}

1394
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1395
{
1396
	poll_wait(file, &crng_init_wait, wait);
1397
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1398 1399
}

1400
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1401
{
1402
	u8 block[BLAKE2S_BLOCK_SIZE];
1403 1404
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1415 1416 1417 1418 1419 1420 1421

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1422
	}
1423

1424
	memzero_explicit(block, sizeof(block));
1425
	return ret ? ret : -EFAULT;
1426 1427
}

1428
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1429
{
1430
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1431 1432
}

1433
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1434 1435 1436
{
	static int maxwarn = 10;

1437 1438 1439 1440 1441 1442 1443
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1444 1445 1446 1447 1448
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1449 1450
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1451
		}
1452 1453
	}

1454
	return get_random_bytes_user(iter);
1455 1456
}

1457
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1458 1459 1460
{
	int ret;

1461 1462 1463 1464 1465
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1466 1467 1468
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1469
	return get_random_bytes_user(iter);
1470 1471
}

M
Matt Mackall 已提交
1472
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1473 1474
{
	int __user *p = (int __user *)arg;
1475
	int ent_count;
L
Linus Torvalds 已提交
1476 1477 1478

	switch (cmd) {
	case RNDGETENTCNT:
1479
		/* Inherently racy, no point locking. */
1480
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486 1487
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1488 1489
		if (ent_count < 0)
			return -EINVAL;
1490
		credit_init_bits(ent_count);
1491
		return 0;
1492 1493 1494 1495 1496 1497
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1504 1505
		if (get_user(len, p++))
			return -EFAULT;
1506
		ret = import_single_range(ITER_SOURCE, p, len, &iov, &iter);
1507 1508
		if (unlikely(ret))
			return ret;
1509
		ret = write_pool_user(&iter);
1510 1511 1512 1513
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1514
			return -EFAULT;
1515
		credit_init_bits(ent_count);
1516
		return 0;
1517
	}
L
Linus Torvalds 已提交
1518 1519
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1520
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1521 1522 1523
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1524 1525 1526
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1527
		if (!crng_ready())
1528
			return -ENODATA;
1529
		crng_reseed(NULL);
1530
		return 0;
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535
	default:
		return -EINVAL;
	}
}

1536 1537 1538 1539 1540
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1541
const struct file_operations random_fops = {
1542
	.read_iter = random_read_iter,
1543
	.write_iter = random_write_iter,
1544
	.poll = random_poll,
M
Matt Mackall 已提交
1545
	.unlocked_ioctl = random_ioctl,
1546
	.compat_ioctl = compat_ptr_ioctl,
1547
	.fasync = random_fasync,
1548
	.llseek = noop_llseek,
1549 1550
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1551 1552
};

1553
const struct file_operations urandom_fops = {
1554
	.read_iter = urandom_read_iter,
1555
	.write_iter = random_write_iter,
1556 1557 1558 1559
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1560 1561
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1562 1563
};

1564

L
Linus Torvalds 已提交
1565 1566
/********************************************************************
 *
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1585
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1586 1587 1588
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1589
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1590 1591
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1599
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1600
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1601
static int sysctl_poolsize = POOL_BITS;
1602
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1603 1604

/*
G
Greg Price 已提交
1605
 * This function is used to return both the bootid UUID, and random
1606
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1607 1608
 * then a new UUID is generated and returned to the user.
 */
1609
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1610
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1611
{
1612 1613 1614 1615 1616 1617 1618 1619 1620
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1626 1627 1628 1629 1630 1631 1632 1633
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1634

1635
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1636
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1637 1638
}

1639
/* The same as proc_dointvec, but writes don't change anything. */
1640
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1641 1642
			    size_t *lenp, loff_t *ppos)
{
1643
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1644 1645
}

1646
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1652
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1653 1654 1655
	},
	{
		.procname	= "entropy_avail",
1656
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1657 1658
		.maxlen		= sizeof(int),
		.mode		= 0444,
1659
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1660 1661 1662
	},
	{
		.procname	= "write_wakeup_threshold",
1663
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1664 1665
		.maxlen		= sizeof(int),
		.mode		= 0644,
1666
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1667
	},
1668 1669
	{
		.procname	= "urandom_min_reseed_secs",
1670
		.data		= &sysctl_random_min_urandom_seed,
1671 1672
		.maxlen		= sizeof(int),
		.mode		= 0644,
1673
		.proc_handler	= proc_do_rointvec,
1674
	},
L
Linus Torvalds 已提交
1675 1676 1677 1678
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1679
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1680 1681 1682 1683
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1684
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1685
	},
1686
	{ }
L
Linus Torvalds 已提交
1687
};
1688 1689

/*
1690 1691
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1692 1693 1694 1695 1696 1697 1698
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1699
#endif