random.c 51.0 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
41
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
42
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73 74 75 76 77
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
78
 * crng_init is protected by base_crng->lock, and only increases
79 80 81
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
82
#define crng_ready() (likely(crng_init > 1))
83 84 85
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
86 87
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
88

89
/* Control how we warn userspace. */
90 91
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
92 93
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
94 95 96 97
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
100 101 102
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
118 119 120 121
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
122 123 124 125 126 127
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
128
	while (!crng_ready()) {
129
		int ret;
130 131

		try_to_generate_entropy();
132 133 134
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
135
	}
136 137 138 139 140 141 142 143 144 145 146
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
147
int register_random_ready_notifier(struct notifier_block *nb)
148 149
{
	unsigned long flags;
150
	int ret = -EALREADY;
151 152

	if (crng_ready())
153
		return ret;
154

155 156 157 158 159
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
160 161 162 163 164
}

/*
 * Delete a previously registered readiness callback function.
 */
165
int unregister_random_ready_notifier(struct notifier_block *nb)
166 167
{
	unsigned long flags;
168
	int ret;
169

170 171 172 173
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
174 175 176 177 178 179
}

static void process_random_ready_list(void)
{
	unsigned long flags;

180 181 182
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


209
/*********************************************************************
L
Linus Torvalds 已提交
210
 *
211
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
212
 *
213 214 215
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
216
 *
217 218 219 220 221 222 223 224 225
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
226 227 228 229
 * into the given buffer or as a return value. This is equivalent to
 * a read from /dev/urandom. The integer family of functions may be
 * higher performance for one-off random integers, because they do a
 * bit of buffering.
230 231 232
 *
 *********************************************************************/

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
257

258
/* Used by crng_reseed() to extract a new seed from the input pool. */
259
static bool drain_entropy(void *buf, size_t nbytes, bool force);
260

261
/*
262
 * This extracts a new crng key from the input pool, but only if there is a
263 264
 * sufficient amount of entropy available or force is true, in order to
 * mitigate bruteforcing of newly added bits.
265
 */
266
static void crng_reseed(bool force)
267
{
268
	unsigned long flags;
269 270
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
271
	bool finalize_init = false;
272

273
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
274
	if (!drain_entropy(key, sizeof(key), force))
275
		return;
276

277 278 279 280 281 282 283 284 285 286 287 288 289
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
290
	if (!crng_ready()) {
291
		crng_init = 2;
292 293 294 295 296
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
297 298 299 300 301 302 303 304 305
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
306 307 308 309 310
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
311
	}
312 313
}

314
/*
315 316 317 318 319
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
320 321 322 323
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
324
{
325
	u8 first_block[CHACHA_BLOCK_SIZE];
326

327 328 329 330 331 332 333 334 335 336
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
337 338
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Return whether the crng seed is considered to be sufficiently
 * old that a reseeding might be attempted. This happens if the last
 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
 * an interval proportional to the uptime.
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			interval = max_t(unsigned int, 5 * HZ,
					 (unsigned int)uptime / 2 * HZ);
	}
	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}

361
/*
362 363 364
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
365
 */
366 367
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
368
{
369
	unsigned long flags;
370
	struct crng *crng;
371

372 373 374 375 376 377
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
378
	 * this is what crng_pre_init_inject() mutates during early init.
379
	 */
380
	if (!crng_ready()) {
381 382 383 384 385 386 387 388 389 390
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
391
	}
392 393

	/*
394 395
	 * If the base_crng is old enough, we try to reseed, which in turn
	 * bumps the generation counter that we check below.
396
	 */
397
	if (unlikely(crng_has_old_seed()))
398
		crng_reseed(false);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
426 427
}

428
/*
429 430 431 432 433
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
434
 *
435 436 437 438 439 440 441
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
 *
 * Returns the number of bytes processed from input, which is bounded
 * by CRNG_INIT_CNT_THRESH if account is true.
442
 */
443
static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
444 445
{
	static int crng_init_cnt = 0;
446
	struct blake2s_state hash;
447 448
	unsigned long flags;

449
	blake2s_init(&hash, sizeof(base_crng.key));
450

451
	spin_lock_irqsave(&base_crng.lock, flags);
452 453 454 455 456
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}

457 458
	if (account)
		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
459

460 461 462
	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, input, len);
	blake2s_final(&hash, base_crng.key);
463

464 465 466 467 468 469 470
	if (account) {
		crng_init_cnt += len;
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
			++base_crng.generation;
			crng_init = 1;
		}
	}
471 472

	spin_unlock_irqrestore(&base_crng.lock, flags);
473 474 475 476 477

	if (crng_init == 1)
		pr_notice("fast init done\n");

	return len;
478 479 480
}

static void _get_random_bytes(void *buf, size_t nbytes)
481
{
482
	u32 chacha_state[CHACHA_STATE_WORDS];
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
763
 * is POOL_MIN_BITS entropy credited prior or force is true:
764 765
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
766
 *     static bool drain_entropy(void *buf, size_t nbytes, bool force)
767 768 769
 *
 **********************************************************************/

770 771 772 773 774
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

775
/* For notifying userspace should write into /dev/random. */
776 777 778 779 780 781 782 783 784 785 786 787 788 789
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

790 791 792 793
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
794 795 796 797 798 799

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
800
static void mix_pool_bytes(const void *in, size_t nbytes)
801
{
802 803 804 805 806
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

823
	if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
824
		crng_reseed(false);
825 826 827 828 829 830 831
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
832 833
{
	unsigned long flags;
834 835 836 837 838 839 840 841 842 843 844 845
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
846 847

	spin_lock_irqsave(&input_pool.lock, flags);
848 849 850 851 852 853 854 855 856

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

857
	spin_unlock_irqrestore(&input_pool.lock, flags);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
874 875 876
 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
 * is true, and then we set the entropy count to zero (but don't actually touch
 * any data). Only then can we extract a new key with extract_entropy().
877
 */
878
static bool drain_entropy(void *buf, size_t nbytes, bool force)
879 880 881 882
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
883
		if (!force && entropy_count < POOL_MIN_BITS)
884 885 886 887 888 889
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
907
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
939 940 941 942
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
943 944 945 946 947 948 949 950 951 952 953 954 955
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
956 957

/*
958 959 960 961 962
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
963
 */
964
int __init rand_initialize(void)
965
{
966 967 968 969
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
970

971 972 973 974 975 976
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
977
		_mix_pool_bytes(&rv, sizeof(rv));
978
	}
979 980
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
981

982 983
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
984

985
	if (arch_init && trust_cpu && !crng_ready()) {
986 987 988
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
989

990 991
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
992
		unseeded_warning.interval = 0;
993
	}
994
	return 0;
995
}
996

997
/*
998 999
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1000
 *
1001 1002 1003
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1004
 */
1005
void add_device_randomness(const void *buf, size_t size)
1006
{
1007 1008
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
1009

1010
	if (crng_init == 0 && size)
1011
		crng_pre_init_inject(buf, size, false);
1012

1013
	spin_lock_irqsave(&input_pool.lock, flags);
1014 1015
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
1016
	_mix_pool_bytes(buf, size);
1017
	spin_unlock_irqrestore(&input_pool.lock, flags);
1018 1019 1020
}
EXPORT_SYMBOL(add_device_randomness);

1021 1022 1023 1024 1025 1026
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

L
Linus Torvalds 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 */
1036
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1037
{
1038 1039
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
L
Linus Torvalds 已提交
1040 1041
	long delta, delta2, delta3;

1042 1043 1044 1045 1046
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&num, sizeof(num));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1047 1048 1049 1050 1051 1052

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1053 1054
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);
1055

1056 1057
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1058

1059 1060
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1072

1073 1074 1075
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1076
	 * and limit entropy estimate to 12 bits.
1077
	 */
1078
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1079 1080
}

1081
void add_input_randomness(unsigned int type, unsigned int code,
1082
			  unsigned int value)
L
Linus Torvalds 已提交
1083 1084
{
	static unsigned char last_value;
1085
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1086

1087
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1088 1089 1090 1091 1092 1093 1094
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1095
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
1131
	if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) {
1132
		size_t ret = crng_pre_init_inject(buffer, count, true);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1170
#if IS_ENABLED(CONFIG_VMGENID)
1171 1172
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
		crng_reseed(true);
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1185
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1186
}
1187
#if IS_MODULE(CONFIG_VMGENID)
1188
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1189
#endif
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1202
#endif
1203

1204
struct fast_pool {
1205
	struct work_struct mix;
1206
	unsigned long pool[4];
1207
	unsigned long last;
1208
	unsigned int count;
1209 1210 1211
	u16 reg_idx;
};

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
	/* SipHash constants */
	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
		  0x6c7967656e657261UL, 0x7465646279746573UL }
#else
	/* HalfSipHash constants */
	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
#endif
};

1223
/*
1224 1225 1226 1227
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
 * 128 or 256-bit SipHash state, while v represents a 128-bit input.
1228
 */
1229
static void fast_mix(unsigned long s[4], const unsigned long *v)
1230
{
1231
	size_t i;
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	for (i = 0; i < 16 / sizeof(long); ++i) {
		s[3] ^= v[i];
#ifdef CONFIG_64BIT
		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
#else
		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
#endif
		s[0] ^= v[i];
	}
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1273
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1274
{
1275
	unsigned long *ptr = (unsigned long *)regs;
1276
	unsigned int idx;
1277 1278 1279

	if (regs == NULL)
		return 0;
1280
	idx = READ_ONCE(f->reg_idx);
1281
	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1282 1283 1284
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1285
	return *ptr;
1286 1287
}

1288 1289 1290
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * The size of the copied stack pool is explicitly 16 bytes so that we
	 * tax mix_pool_byte()'s compression function the same amount on all
	 * platforms. This means on 64-bit we copy half the pool into this,
	 * while on 32-bit we copy all of it. The entropy is supposed to be
	 * sufficiently dispersed between bits that in the sponge-like
	 * half case, on average we don't wind up "losing" some.
	 */
	u8 pool[16];
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1312
	memcpy(pool, fast_pool->pool, sizeof(pool));
1313
	fast_pool->count = 0;
1314 1315 1316
	fast_pool->last = jiffies;
	local_irq_enable();

1317 1318 1319 1320 1321 1322 1323 1324
	if (unlikely(crng_init == 0)) {
		crng_pre_init_inject(pool, sizeof(pool), true);
		mix_pool_bytes(pool, sizeof(pool));
	} else {
		mix_pool_bytes(pool, sizeof(pool));
		credit_entropy_bits(1);
	}

1325 1326 1327
	memzero_explicit(pool, sizeof(pool));
}

1328
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1329
{
1330
	enum { MIX_INFLIGHT = 1U << 31 };
1331 1332
	cycles_t cycles = random_get_entropy();
	unsigned long now = jiffies;
1333 1334
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1335
	unsigned int new_count;
1336 1337 1338 1339 1340
	union {
		u32 u32[4];
		u64 u64[2];
		unsigned long longs[16 / sizeof(long)];
	} irq_data;
1341

1342 1343
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1344

1345
	if (sizeof(cycles) == 8)
1346
		irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
1347
	else {
1348 1349
		irq_data.u32[0] = cycles ^ irq;
		irq_data.u32[1] = now;
1350 1351 1352
	}

	if (sizeof(unsigned long) == 8)
1353
		irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
1354
	else {
1355 1356
		irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
		irq_data.u32[3] = get_reg(fast_pool, regs);
1357 1358
	}

1359
	fast_mix(fast_pool->pool, irq_data.longs);
1360
	new_count = ++fast_pool->count;
1361

1362
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1363 1364
		return;

1365 1366
	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
			       unlikely(crng_init == 0)))
1367
		return;
1368

1369 1370
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1371
	fast_pool->count |= MIX_INFLIGHT;
1372
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1373
}
1374
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1391
	credit_entropy_bits(1);
1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
1401
		cycles_t cycles;
1402 1403 1404
		struct timer_list timer;
	} stack;

1405
	stack.cycles = random_get_entropy();
1406 1407

	/* Slow counter - or none. Don't even bother */
1408
	if (stack.cycles == random_get_entropy())
1409 1410 1411
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1412
	while (!crng_ready() && !signal_pending(current)) {
1413
		if (!timer_pending(&stack.timer))
1414
			mod_timer(&stack.timer, jiffies + 1);
1415
		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1416
		schedule();
1417
		stack.cycles = random_get_entropy();
1418 1419 1420 1421
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1422
	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1433 1434 1435 1436 1437 1438 1439 1440
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1441 1442 1443 1444
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1445 1446
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1447 1448 1449 1450 1451 1452 1453 1454 1455
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1456
{
1457 1458
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1459

1460 1461 1462 1463 1464 1465
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1466

1467 1468
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1469

1470 1471
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1472

1473 1474 1475 1476 1477 1478 1479
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1480 1481
}

1482
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1483
{
1484
	__poll_t mask;
L
Linus Torvalds 已提交
1485

1486
	poll_wait(file, &crng_init_wait, wait);
1487 1488
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1489
	if (crng_ready())
1490
		mask |= EPOLLIN | EPOLLRDNORM;
1491
	if (input_pool.entropy_count < POOL_MIN_BITS)
1492
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1493 1494 1495
	return mask;
}

1496
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1497
{
1498
	size_t len;
1499
	int ret = 0;
1500
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1501

1502 1503
	while (count) {
		len = min(count, sizeof(block));
1504 1505 1506 1507
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1508 1509 1510
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1511
		cond_resched();
L
Linus Torvalds 已提交
1512
	}
1513

1514 1515 1516
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1517 1518
}

1519 1520
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1521
{
1522
	int ret;
1523

1524
	ret = write_pool(buffer, count);
1525 1526 1527 1528
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

	if (!crng_ready() && maxwarn > 0) {
		maxwarn--;
		if (__ratelimit(&urandom_warning))
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
	}

	return get_random_bytes_user(buf, nbytes);
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1557
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1565
		/* Inherently racy, no point locking. */
1566
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1567 1568 1569 1570 1571 1572 1573
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1574 1575 1576 1577
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1587
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1588 1589
		if (retval < 0)
			return retval;
1590 1591
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1592 1593
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1594 1595 1596 1597
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1598 1599
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1600
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1601 1602 1603
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1604
		return 0;
1605 1606 1607
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1608
		if (!crng_ready())
1609
			return -ENODATA;
1610
		crng_reseed(false);
1611
		return 0;
L
Linus Torvalds 已提交
1612 1613 1614 1615 1616
	default:
		return -EINVAL;
	}
}

1617 1618 1619 1620 1621
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1622
const struct file_operations random_fops = {
1623
	.read = random_read,
L
Linus Torvalds 已提交
1624
	.write = random_write,
1625
	.poll = random_poll,
M
Matt Mackall 已提交
1626
	.unlocked_ioctl = random_ioctl,
1627
	.compat_ioctl = compat_ptr_ioctl,
1628
	.fasync = random_fasync,
1629
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1630 1631
};

1632 1633 1634 1635 1636 1637 1638 1639 1640
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1641

L
Linus Torvalds 已提交
1642 1643
/********************************************************************
 *
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1666
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1667 1668
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1676
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1677
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1678
static int sysctl_poolsize = POOL_BITS;
1679
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1680 1681

/*
G
Greg Price 已提交
1682
 * This function is used to return both the bootid UUID, and random
1683
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1684 1685
 * then a new UUID is generated and returned to the user.
 */
1686 1687
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1688
{
1689 1690 1691 1692 1693 1694 1695 1696 1697
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1698 1699 1700 1701 1702

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1703 1704 1705 1706 1707 1708 1709 1710
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1711

1712 1713
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1714 1715
}

1716 1717 1718 1719 1720 1721 1722
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1723
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1729
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1730 1731 1732
	},
	{
		.procname	= "entropy_avail",
1733
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1734 1735
		.maxlen		= sizeof(int),
		.mode		= 0444,
1736
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1737 1738 1739
	},
	{
		.procname	= "write_wakeup_threshold",
1740
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1741 1742
		.maxlen		= sizeof(int),
		.mode		= 0644,
1743
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1744
	},
1745 1746
	{
		.procname	= "urandom_min_reseed_secs",
1747
		.data		= &sysctl_random_min_urandom_seed,
1748 1749
		.maxlen		= sizeof(int),
		.mode		= 0644,
1750
		.proc_handler	= proc_do_rointvec,
1751
	},
L
Linus Torvalds 已提交
1752 1753 1754 1755
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1756
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1757 1758 1759 1760
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1761
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1762
	},
1763
	{ }
L
Linus Torvalds 已提交
1764
};
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1776
#endif