random.c 53.2 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
41
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
42
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <linux/suspend.h>
57
#include <crypto/chacha.h>
58
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
59 60
#include <asm/processor.h>
#include <asm/irq.h>
61
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
62 63
#include <asm/io.h>

64 65 66 67 68 69 70 71 72
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
73

74 75 76 77 78
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
79
 * crng_init is protected by base_crng->lock, and only increases
80 81 82
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
83
#define crng_ready() (likely(crng_init > 1))
84 85 86
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87 88
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
89

90
/* Control how we warn userspace. */
91 92
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
93 94
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
95 96 97 98
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

99 100
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
101 102 103
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
119 120 121 122
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
123 124 125 126 127 128
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
129
	while (!crng_ready()) {
130
		int ret;
131 132

		try_to_generate_entropy();
133 134 135
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
136
	}
137 138 139 140 141 142 143 144 145 146 147
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
148
int register_random_ready_notifier(struct notifier_block *nb)
149 150
{
	unsigned long flags;
151
	int ret = -EALREADY;
152 153

	if (crng_ready())
154
		return ret;
155

156 157 158 159 160
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
161 162 163 164 165
}

/*
 * Delete a previously registered readiness callback function.
 */
166
int unregister_random_ready_notifier(struct notifier_block *nb)
167 168
{
	unsigned long flags;
169
	int ret;
170

171 172 173 174
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
175 176 177 178 179 180
}

static void process_random_ready_list(void)
{
	unsigned long flags;

181 182 183
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


210
/*********************************************************************
L
Linus Torvalds 已提交
211
 *
212
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
213
 *
214 215 216
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
217
 *
218 219 220 221 222 223 224 225 226
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
227
 * into the given buffer or as a return value. This is equivalent to
228 229 230 231
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
232 233 234
 *
 *********************************************************************/

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
259

260
/* Used by crng_reseed() to extract a new seed from the input pool. */
261
static bool drain_entropy(void *buf, size_t nbytes, bool force);
262

263
/*
264
 * This extracts a new crng key from the input pool, but only if there is a
265 266
 * sufficient amount of entropy available or force is true, in order to
 * mitigate bruteforcing of newly added bits.
267
 */
268
static void crng_reseed(bool force)
269
{
270
	unsigned long flags;
271 272
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
273
	bool finalize_init = false;
274

275
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
276
	if (!drain_entropy(key, sizeof(key), force))
277
		return;
278

279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
292
	if (!crng_ready()) {
293
		crng_init = 2;
294 295 296 297 298
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
299 300 301 302 303 304 305 306 307
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
308 309 310 311 312
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
313
	}
314 315
}

316
/*
317 318 319 320 321
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
322 323 324 325 326 327 328
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
329 330 331 332
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
333
{
334
	u8 first_block[CHACHA_BLOCK_SIZE];
335

336 337 338 339 340 341 342 343
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
344
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
345
	memzero_explicit(first_block, sizeof(first_block));
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Return whether the crng seed is considered to be sufficiently
 * old that a reseeding might be attempted. This happens if the last
 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
 * an interval proportional to the uptime.
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			interval = max_t(unsigned int, 5 * HZ,
					 (unsigned int)uptime / 2 * HZ);
	}
	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}

370
/*
371 372 373
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
374
 */
375 376
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
377
{
378
	unsigned long flags;
379
	struct crng *crng;
380

381 382 383 384 385 386
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
387
	 * this is what crng_pre_init_inject() mutates during early init.
388
	 */
389
	if (!crng_ready()) {
390 391 392 393 394 395 396 397 398 399
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
400
	}
401 402

	/*
403 404
	 * If the base_crng is old enough, we try to reseed, which in turn
	 * bumps the generation counter that we check below.
405
	 */
406
	if (unlikely(crng_has_old_seed()))
407
		crng_reseed(false);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
435 436
}

437
/*
438 439 440 441 442
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
443
 *
444 445 446 447
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
448
 */
449
static void crng_pre_init_inject(const void *input, size_t len, bool account)
450 451
{
	static int crng_init_cnt = 0;
452
	struct blake2s_state hash;
453 454
	unsigned long flags;

455
	blake2s_init(&hash, sizeof(base_crng.key));
456

457
	spin_lock_irqsave(&base_crng.lock, flags);
458 459
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
460
		return;
461 462
	}

463 464 465
	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, input, len);
	blake2s_final(&hash, base_crng.key);
466

467
	if (account) {
468
		crng_init_cnt += min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
469
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH)
470 471
			crng_init = 1;
	}
472 473

	spin_unlock_irqrestore(&base_crng.lock, flags);
474 475 476

	if (crng_init == 1)
		pr_notice("fast init done\n");
477 478 479
}

static void _get_random_bytes(void *buf, size_t nbytes)
480
{
481
	u32 chacha_state[CHACHA_STATE_WORDS];
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
532
	size_t len, left, ret = 0;
533 534 535 536 537 538
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

539 540 541 542 543 544 545 546 547 548 549 550
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
	if (nbytes <= CHACHA_KEY_SIZE) {
551
		ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes);
552 553
		goto out_zero_chacha;
	}
554

555
	for (;;) {
556 557 558 559 560
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
561 562 563
		left = copy_to_user(buf, output, len);
		if (left) {
			ret += len - left;
564 565 566 567 568
			break;
		}

		buf += len;
		ret += len;
569 570 571
		nbytes -= len;
		if (!nbytes)
			break;
572 573

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
574
		if (ret % PAGE_SIZE == 0) {
575 576 577 578
			if (signal_pending(current))
				break;
			cond_resched();
		}
579
	}
580 581

	memzero_explicit(output, sizeof(output));
582 583
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
584
	return ret ? ret : -EFAULT;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

626 627 628 629 630
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

665 666 667 668 669
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
782
 * is POOL_MIN_BITS entropy credited prior or force is true:
783 784
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
785
 *     static bool drain_entropy(void *buf, size_t nbytes, bool force)
786 787 788
 *
 **********************************************************************/

789 790 791 792 793
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

794
/* For notifying userspace should write into /dev/random. */
795 796 797 798 799 800 801 802 803 804 805 806 807 808
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

809 810 811 812
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
813 814 815 816 817 818

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
819
static void mix_pool_bytes(const void *in, size_t nbytes)
820
{
821 822 823 824 825
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

842
	if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
843
		crng_reseed(false);
844 845 846 847 848 849 850
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
851 852
{
	unsigned long flags;
853 854 855 856 857 858 859 860 861 862 863 864
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
865 866

	spin_lock_irqsave(&input_pool.lock, flags);
867 868 869 870 871 872 873 874 875

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

876
	spin_unlock_irqrestore(&input_pool.lock, flags);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
893 894 895
 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
 * is true, and then we set the entropy count to zero (but don't actually touch
 * any data). Only then can we extract a new key with extract_entropy().
896
 */
897
static bool drain_entropy(void *buf, size_t nbytes, bool force)
898 899 900 901
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
902
		if (!force && entropy_count < POOL_MIN_BITS)
903 904 905 906 907 908
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
926
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
958 959 960 961
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
962 963 964 965 966 967 968 969
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
970
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
971 972 973 974
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
975 976 977 978
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
979
early_param("random.trust_cpu", parse_trust_cpu);
980
early_param("random.trust_bootloader", parse_trust_bootloader);
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
		crng_reseed(true);
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

1009
/*
1010 1011 1012 1013 1014
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
1015
 */
1016
int __init rand_initialize(void)
1017
{
1018 1019 1020 1021
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
1022

1023 1024 1025 1026 1027
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

1028 1029 1030 1031 1032 1033
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
1034
		_mix_pool_bytes(&rv, sizeof(rv));
1035
	}
1036 1037
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
1038

1039 1040
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
1041

1042
	if (arch_init && trust_cpu && !crng_ready()) {
1043 1044 1045
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
1046

1047 1048
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
1049
		unseeded_warning.interval = 0;
1050
	}
1051

1052 1053
	WARN_ON(register_pm_notifier(&pm_notifier));

1054 1055
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
1056
	return 0;
1057
}
1058

1059
/*
1060 1061
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1062
 *
1063 1064 1065
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1066
 */
1067
void add_device_randomness(const void *buf, size_t size)
1068
{
1069 1070
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
1071

1072
	if (crng_init == 0 && size)
1073
		crng_pre_init_inject(buf, size, false);
1074

1075
	spin_lock_irqsave(&input_pool.lock, flags);
1076
	_mix_pool_bytes(&entropy, sizeof(entropy));
1077
	_mix_pool_bytes(buf, size);
1078
	spin_unlock_irqrestore(&input_pool.lock, flags);
1079 1080 1081
}
EXPORT_SYMBOL(add_device_randomness);

1082 1083 1084 1085 1086 1087
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

L
Linus Torvalds 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 */
1097
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1098
{
1099
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
L
Linus Torvalds 已提交
1100 1101
	long delta, delta2, delta3;

1102
	spin_lock_irqsave(&input_pool.lock, flags);
1103
	_mix_pool_bytes(&entropy, sizeof(entropy));
1104 1105
	_mix_pool_bytes(&num, sizeof(num));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1106 1107 1108 1109 1110 1111

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1112 1113
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);
1114

1115 1116
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1117

1118 1119
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1131

1132 1133 1134
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1135
	 * and limit entropy estimate to 12 bits.
1136
	 */
1137
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1138 1139
}

1140
void add_input_randomness(unsigned int type, unsigned int code,
1141
			  unsigned int value)
L
Linus Torvalds 已提交
1142 1143
{
	static unsigned char last_value;
1144
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1145

1146
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151 1152 1153
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1154
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
1190
	if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) {
1191 1192 1193
		crng_pre_init_inject(buffer, count, true);
		mix_pool_bytes(buffer, count);
		return;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
1219
	if (trust_bootloader)
1220 1221 1222 1223 1224 1225
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1226
#if IS_ENABLED(CONFIG_VMGENID)
1227 1228
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
		crng_reseed(true);
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1241
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1242
}
1243
#if IS_MODULE(CONFIG_VMGENID)
1244
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1245
#endif
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1258
#endif
1259

1260
struct fast_pool {
1261
	struct work_struct mix;
1262
	unsigned long pool[4];
1263
	unsigned long last;
1264
	unsigned int count;
1265 1266
};

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
	/* SipHash constants */
	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
		  0x6c7967656e657261UL, 0x7465646279746573UL }
#else
	/* HalfSipHash constants */
	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
#endif
};

1278
/*
1279 1280 1281
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1282
 * four-word SipHash state, while v represents a two-word input.
1283
 */
1284
static void fast_mix(unsigned long s[4], const unsigned long v[2])
1285
{
1286
	size_t i;
1287

1288
	for (i = 0; i < 2; ++i) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		s[3] ^= v[i];
#ifdef CONFIG_64BIT
		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
#else
		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
#endif
		s[0] ^= v[i];
	}
1303 1304
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1328 1329 1330
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1331
	/*
1332 1333 1334 1335 1336
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1337
	 */
1338
	unsigned long pool[2];
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1351
	memcpy(pool, fast_pool->pool, sizeof(pool));
1352
	fast_pool->count = 0;
1353 1354 1355
	fast_pool->last = jiffies;
	local_irq_enable();

1356 1357 1358 1359 1360 1361 1362 1363
	if (unlikely(crng_init == 0)) {
		crng_pre_init_inject(pool, sizeof(pool), true);
		mix_pool_bytes(pool, sizeof(pool));
	} else {
		mix_pool_bytes(pool, sizeof(pool));
		credit_entropy_bits(1);
	}

1364 1365 1366
	memzero_explicit(pool, sizeof(pool));
}

1367
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1368
{
1369
	enum { MIX_INFLIGHT = 1U << 31 };
1370
	unsigned long entropy = random_get_entropy();
1371 1372
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1373
	unsigned int new_count;
1374

1375 1376 1377 1378
	fast_mix(fast_pool->pool, (unsigned long[2]){
		entropy,
		(regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)
	});
1379
	new_count = ++fast_pool->count;
1380

1381
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1382 1383
		return;

1384
	if (new_count < 64 && (!time_is_before_jiffies(fast_pool->last + HZ) ||
1385
			       unlikely(crng_init == 0)))
1386
		return;
1387

1388 1389
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1390
	fast_pool->count |= MIX_INFLIGHT;
1391
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1392
}
1393
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1394

1395 1396 1397 1398 1399 1400
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1414
static void entropy_timer(struct timer_list *timer)
1415
{
1416 1417 1418 1419 1420 1421
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
		credit_entropy_bits(1);
		state->samples = 0;
	}
1422 1423 1424 1425 1426 1427 1428 1429
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
1430 1431 1432 1433
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1434

1435 1436 1437 1438 1439 1440 1441 1442
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1443 1444
		return;

1445
	stack.samples = 0;
1446
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1447
	while (!crng_ready() && !signal_pending(current)) {
1448
		if (!timer_pending(&stack.timer))
1449
			mod_timer(&stack.timer, jiffies + 1);
1450
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1451
		schedule();
1452
		stack.entropy = random_get_entropy();
1453 1454 1455 1456
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1457
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1458 1459
}

1460 1461 1462 1463 1464 1465 1466 1467

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1468 1469 1470 1471 1472 1473 1474 1475
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1476 1477 1478 1479
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1480 1481
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1482 1483 1484 1485 1486 1487 1488 1489 1490
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1491
{
1492 1493
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1494

1495 1496 1497 1498 1499 1500
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1501

1502 1503
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1504

1505 1506
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1507

1508 1509 1510 1511 1512 1513 1514
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1515 1516
}

1517
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1518
{
1519
	__poll_t mask;
L
Linus Torvalds 已提交
1520

1521
	poll_wait(file, &crng_init_wait, wait);
1522 1523
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1524
	if (crng_ready())
1525
		mask |= EPOLLIN | EPOLLRDNORM;
1526
	if (input_pool.entropy_count < POOL_MIN_BITS)
1527
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1528 1529 1530
	return mask;
}

1531
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1532
{
1533
	size_t len;
1534
	int ret = 0;
1535
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1536

1537 1538
	while (count) {
		len = min(count, sizeof(block));
1539 1540 1541 1542
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1543 1544 1545
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1546
		cond_resched();
L
Linus Torvalds 已提交
1547
	}
1548

1549 1550 1551
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1552 1553
}

1554 1555
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1556
{
1557
	int ret;
1558

1559
	ret = write_pool(buffer, count);
1560 1561 1562 1563
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1564 1565
}

1566 1567 1568 1569 1570
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

1571 1572 1573 1574 1575 1576 1577
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	if (!crng_ready() && maxwarn > 0) {
		maxwarn--;
		if (__ratelimit(&urandom_warning))
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
	}

	return get_random_bytes_user(buf, nbytes);
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1599
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1607
		/* Inherently racy, no point locking. */
1608
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614 1615
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1616 1617 1618 1619
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1629
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1630 1631
		if (retval < 0)
			return retval;
1632 1633
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1634 1635
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1636 1637 1638 1639
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1640 1641
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1642
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1643 1644 1645
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1646
		return 0;
1647 1648 1649
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1650
		if (!crng_ready())
1651
			return -ENODATA;
1652
		crng_reseed(false);
1653
		return 0;
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658
	default:
		return -EINVAL;
	}
}

1659 1660 1661 1662 1663
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1664
const struct file_operations random_fops = {
1665
	.read = random_read,
L
Linus Torvalds 已提交
1666
	.write = random_write,
1667
	.poll = random_poll,
M
Matt Mackall 已提交
1668
	.unlocked_ioctl = random_ioctl,
1669
	.compat_ioctl = compat_ptr_ioctl,
1670
	.fasync = random_fasync,
1671
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1672 1673
};

1674 1675 1676 1677 1678 1679 1680 1681 1682
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1683

L
Linus Torvalds 已提交
1684 1685
/********************************************************************
 *
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1708
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1709 1710
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1718
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1719
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1720
static int sysctl_poolsize = POOL_BITS;
1721
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1722 1723

/*
G
Greg Price 已提交
1724
 * This function is used to return both the bootid UUID, and random
1725
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1726 1727
 * then a new UUID is generated and returned to the user.
 */
1728 1729
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1730
{
1731 1732 1733 1734 1735 1736 1737 1738 1739
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1745 1746 1747 1748 1749 1750 1751 1752
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1753

1754 1755
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1756 1757
}

1758 1759 1760 1761 1762 1763 1764
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1765
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1771
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1772 1773 1774
	},
	{
		.procname	= "entropy_avail",
1775
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1776 1777
		.maxlen		= sizeof(int),
		.mode		= 0444,
1778
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1779 1780 1781
	},
	{
		.procname	= "write_wakeup_threshold",
1782
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1783 1784
		.maxlen		= sizeof(int),
		.mode		= 0644,
1785
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1786
	},
1787 1788
	{
		.procname	= "urandom_min_reseed_secs",
1789
		.data		= &sysctl_random_min_urandom_seed,
1790 1791
		.maxlen		= sizeof(int),
		.mode		= 0644,
1792
		.proc_handler	= proc_do_rointvec,
1793
	},
L
Linus Torvalds 已提交
1794 1795 1796 1797
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1798
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1799 1800 1801 1802
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1803
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1804
	},
1805
	{ }
L
Linus Torvalds 已提交
1806
};
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1818
#endif