random.c 48.1 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89
static struct ratelimit_state urandom_warning =
90
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98
 * to supply cryptographically secure random numbers. This applies to: the
99
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
100
 * u16,u32,u64,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121
 * cryptographically secure random numbers. This applies to: the /dev/urandom
122 123 124
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 * int,long} family of functions. Using any of these functions without first
 * calling this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161
 *	u8 get_random_u8()
 *	u16 get_random_u16()
162 163 164 165 166
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
167
 * into the given buffer or as a return value. This is equivalent to
168 169 170 171
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
172 173 174
 *
 *********************************************************************/

175 176 177 178
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
199

200
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
201
static void extract_entropy(void *buf, size_t len);
202

203 204
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
205
{
206
	unsigned long flags;
207 208
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
209

210
	extract_entropy(key, sizeof(key));
211

212 213 214 215 216 217 218 219 220 221 222 223 224
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
225
	if (!static_branch_likely(&crng_is_ready))
226
		crng_init = CRNG_READY;
227 228
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
229 230
}

231
/*
232
 * This generates a ChaCha block using the provided key, and then
233
 * immediately overwrites that key with half the block. It returns
234 235 236
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
237 238 239 240 241 242 243
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
244 245 246 247
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
248
{
249
	u8 first_block[CHACHA_BLOCK_SIZE];
250

251 252 253 254 255 256 257 258
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
259
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
260
	memzero_explicit(first_block, sizeof(first_block));
261 262
}

263
/*
264 265
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
266
 * proportional to the uptime.
267
 */
268
static unsigned int crng_reseed_interval(void)
269 270 271 272 273 274 275 276
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
277 278
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
279
	}
280
	return CRNG_RESEED_INTERVAL;
281 282
}

283
/*
284 285 286
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
287
 */
288 289
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
290
{
291
	unsigned long flags;
292
	struct crng *crng;
293

294 295 296 297 298
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
299
	 * ready, we do fast key erasure with the base_crng directly, extracting
300
	 * when crng_init is CRNG_EMPTY.
301
	 */
302
	if (!crng_ready()) {
303 304 305 306
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
307
		if (!ready) {
308
			if (crng_init == CRNG_EMPTY)
309
				extract_entropy(base_crng.key, sizeof(base_crng.key));
310 311
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
312
		}
313 314 315
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
316
	}
317 318

	/*
319 320
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
321
	 */
322
	if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
323
		crng_reseed();
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
351 352
}

353
static void _get_random_bytes(void *buf, size_t len)
354
{
355
	u32 chacha_state[CHACHA_STATE_WORDS];
356
	u8 tmp[CHACHA_BLOCK_SIZE];
357
	size_t first_block_len;
358

359
	if (!len)
360 361
		return;

362 363 364 365
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
366

367 368
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
369
			chacha20_block(chacha_state, tmp);
370
			memcpy(buf, tmp, len);
371 372 373 374 375 376 377
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
378
		len -= CHACHA_BLOCK_SIZE;
379 380 381 382 383 384 385
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
386 387 388 389 390
 * This function is the exported kernel interface. It returns some number of
 * good random numbers, suitable for key generation, seeding TCP sequence
 * numbers, etc. In order to ensure that the randomness returned by this
 * function is okay, the function wait_for_random_bytes() should be called and
 * return 0 at least once at any point prior.
391
 */
392
void get_random_bytes(void *buf, size_t len)
393
{
394
	warn_unseeded_randomness();
395
	_get_random_bytes(buf, len);
396 397 398
}
EXPORT_SYMBOL(get_random_bytes);

399
static ssize_t get_random_bytes_user(struct iov_iter *iter)
400 401
{
	u32 chacha_state[CHACHA_STATE_WORDS];
402 403
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
404

405
	if (unlikely(!iov_iter_count(iter)))
406 407
		return 0;

408 409
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
410
	 * bytes, in case userspace causes copy_to_iter() below to sleep
411 412 413 414 415 416 417 418
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
419 420
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
421 422
		goto out_zero_chacha;
	}
423

424
	for (;;) {
425
		chacha20_block(chacha_state, block);
426 427 428
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

429 430 431
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
432
			break;
433

434
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
435
		if (ret % PAGE_SIZE == 0) {
436 437 438 439
			if (signal_pending(current))
				break;
			cond_resched();
		}
440
	}
441

442
	memzero_explicit(block, sizeof(block));
443 444
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
445
	return ret ? ret : -EFAULT;
446 447 448 449 450 451 452 453 454
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

508
DEFINE_BATCHED_ENTROPY(u8)
509 510 511
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
512

513 514 515 516 517
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
518
int __cold random_prepare_cpu(unsigned int cpu)
519 520 521 522 523 524 525
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
526 527
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
528 529 530 531 532 533
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

534 535 536 537 538 539 540

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
541
 *     static void mix_pool_bytes(const void *buf, size_t len)
542 543 544
 *
 * After which, if added entropy should be credited:
 *
545
 *     static void credit_init_bits(size_t bits)
546
 *
547
 * Finally, extract entropy via:
548
 *
549
 *     static void extract_entropy(void *buf, size_t len)
550 551 552
 *
 **********************************************************************/

553 554
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
555 556
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
557 558 559 560 561
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
562
	unsigned int init_bits;
563 564 565 566 567 568 569 570
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

571
static void _mix_pool_bytes(const void *buf, size_t len)
572
{
573
	blake2s_update(&input_pool.hash, buf, len);
574
}
575 576

/*
577 578 579
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
580
 */
581
static void mix_pool_bytes(const void *buf, size_t len)
582
{
583 584 585
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
586
	_mix_pool_bytes(buf, len);
587
	spin_unlock_irqrestore(&input_pool.lock, flags);
588 589
}

590 591 592 593
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
594
static void extract_entropy(void *buf, size_t len)
595 596
{
	unsigned long flags;
597 598 599 600 601
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
602
	size_t i, longs;
603

604 605 606 607 608 609 610 611 612 613 614 615
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
616
	}
617 618

	spin_lock_irqsave(&input_pool.lock, flags);
619 620 621 622 623 624 625 626 627

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

628
	spin_unlock_irqrestore(&input_pool.lock, flags);
629 630
	memzero_explicit(next_key, sizeof(next_key));

631 632
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
633 634 635
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
636
		len -= i;
637 638 639 640 641 642 643
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

644 645 646
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
647
{
648
	static struct execute_work set_ready;
649
	unsigned int new, orig, add;
650 651
	unsigned long flags;

652
	if (!bits)
653 654
		return;

655
	add = min_t(size_t, bits, POOL_BITS);
656

657
	orig = READ_ONCE(input_pool.init_bits);
658
	do {
659
		new = min_t(unsigned int, POOL_BITS, orig + add);
660
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
661

662 663
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
664 665
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
666 667 668
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
669
		if (urandom_warning.missed)
670 671 672
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
673
		spin_lock_irqsave(&base_crng.lock, flags);
674
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
675
		if (crng_init == CRNG_EMPTY) {
676
			extract_entropy(base_crng.key, sizeof(base_crng.key));
677
			crng_init = CRNG_EARLY;
678 679 680 681 682
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

683 684 685 686 687 688 689 690

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
691 692 693 694
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
695
 *	void add_interrupt_randomness(int irq);
696
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
697
 *	void add_disk_randomness(struct gendisk *disk);
698 699 700 701 702 703 704 705 706 707 708 709 710
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
711 712 713
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
714
 *
715 716 717 718
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
719 720 721 722 723
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
724 725 726 727 728 729 730 731 732 733 734 735 736
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
737 738
 **********************************************************************/

739 740
static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
741 742 743 744
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
745 746 747 748
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
749
early_param("random.trust_cpu", parse_trust_cpu);
750
early_param("random.trust_bootloader", parse_trust_bootloader);
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
769 770
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
771
		crng_reseed();
772 773 774 775 776 777 778
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

779
/*
780 781
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
782
 */
783
void __init random_init_early(const char *command_line)
784
{
785
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
786
	size_t i, longs, arch_bits;
787

788 789 790 791 792
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

793
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
794
		longs = arch_get_random_seed_longs_early(entropy, ARRAY_SIZE(entropy) - i);
795 796 797 798 799
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
800
		longs = arch_get_random_longs_early(entropy, ARRAY_SIZE(entropy) - i);
801 802 803 804
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
805
		}
806 807
		arch_bits -= sizeof(*entropy) * 8;
		++i;
808
	}
809

810
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
811
	_mix_pool_bytes(command_line, strlen(command_line));
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
		crng_reseed();
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
831
	add_latent_entropy();
832

833
	/*
834 835
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
836 837 838 839 840
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

841
	/* Reseed if already seeded by earlier phases. */
842 843
	if (crng_ready())
		crng_reseed();
844

845 846
	WARN_ON(register_pm_notifier(&pm_notifier));

847 848
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
849
}
850

851
/*
852 853
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
854
 *
855 856 857
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
858
 */
859
void add_device_randomness(const void *buf, size_t len)
860
{
861 862
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
863

864
	spin_lock_irqsave(&input_pool.lock, flags);
865
	_mix_pool_bytes(&entropy, sizeof(entropy));
866
	_mix_pool_bytes(buf, len);
867
	spin_unlock_irqrestore(&input_pool.lock, flags);
868 869 870
}
EXPORT_SYMBOL(add_device_randomness);

871 872 873 874 875
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
876
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
877
{
878
	mix_pool_bytes(buf, len);
879 880
	credit_init_bits(entropy);

881
	/*
882
	 * Throttle writing to once every reseed interval, unless we're not yet
883
	 * initialized or no entropy is credited.
884
	 */
885
	if (!kthread_should_stop() && (crng_ready() || !entropy))
886
		schedule_timeout_interruptible(crng_reseed_interval());
887 888 889 890
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
891 892
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
893
 */
894
void __init add_bootloader_randomness(const void *buf, size_t len)
895
{
896
	mix_pool_bytes(buf, len);
897
	if (trust_bootloader)
898
		credit_init_bits(len * 8);
899 900
}

901
#if IS_ENABLED(CONFIG_VMGENID)
902 903
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

904 905 906 907 908
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
909
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
910
{
911
	add_device_randomness(unique_vm_id, len);
912
	if (crng_ready()) {
913
		crng_reseed();
914 915
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
916
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
917
}
918
#if IS_MODULE(CONFIG_VMGENID)
919
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
920
#endif
921

922
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
923 924 925 926 927
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

928
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
929 930 931 932
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
933
#endif
934

935
struct fast_pool {
936
	unsigned long pool[4];
937
	unsigned long last;
938
	unsigned int count;
939
	struct timer_list mix;
940 941
};

942 943
static void mix_interrupt_randomness(struct timer_list *work);

944 945
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
946
#define FASTMIX_PERM SIPHASH_PERMUTATION
947
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
948
#else
949
#define FASTMIX_PERM HSIPHASH_PERMUTATION
950
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
951
#endif
952
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
953 954
};

955
/*
956 957 958
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
959
 * four-word SipHash state, while v represents a two-word input.
960
 */
961
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
962
{
963
	s[3] ^= v1;
964
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
965 966
	s[0] ^= v1;
	s[3] ^= v2;
967
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
968
	s[0] ^= v2;
969 970
}

971 972 973 974 975
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
976
int __cold random_online_cpu(unsigned int cpu)
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

994
static void mix_interrupt_randomness(struct timer_list *work)
995 996
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
997
	/*
998 999 1000 1001 1002
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1003
	 */
1004
	unsigned long pool[2];
1005
	unsigned int count;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1018
	memcpy(pool, fast_pool->pool, sizeof(pool));
1019
	count = fast_pool->count;
1020
	fast_pool->count = 0;
1021 1022 1023
	fast_pool->last = jiffies;
	local_irq_enable();

1024
	mix_pool_bytes(pool, sizeof(pool));
1025
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1026

1027 1028 1029
	memzero_explicit(pool, sizeof(pool));
}

1030
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1031
{
1032
	enum { MIX_INFLIGHT = 1U << 31 };
1033
	unsigned long entropy = random_get_entropy();
1034 1035
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1036
	unsigned int new_count;
1037

1038 1039
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1040
	new_count = ++fast_pool->count;
1041

1042
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1043 1044
		return;

1045
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1046
		return;
1047

1048
	fast_pool->count |= MIX_INFLIGHT;
1049 1050 1051 1052
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1053
}
1054
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1064 1065 1066 1067
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1068 1069 1070 1071 1072
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1073
	unsigned int bits;
1074

1075 1076 1077 1078 1079
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1080
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1081 1082 1083 1084 1085 1086
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1128
	 */
1129 1130 1131
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1132
		_credit_init_bits(bits);
1133 1134
}

1135
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1160
void __cold rand_initialize_disk(struct gendisk *disk)
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1176 1177 1178 1179 1180 1181
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1195
static void __cold entropy_timer(struct timer_list *timer)
1196
{
1197 1198 1199
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1200
		credit_init_bits(1);
1201 1202
		state->samples = 0;
	}
1203 1204 1205 1206 1207 1208
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1209
static void __cold try_to_generate_entropy(void)
1210
{
1211
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1212 1213 1214
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1215

1216 1217 1218 1219 1220 1221 1222 1223
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1224 1225
		return;

1226
	stack.samples = 0;
1227
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1228
	while (!crng_ready() && !signal_pending(current)) {
1229
		if (!timer_pending(&stack.timer))
1230
			mod_timer(&stack.timer, jiffies);
1231
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1232
		schedule();
1233
		stack.entropy = random_get_entropy();
1234 1235 1236 1237
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1238
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1249 1250 1251 1252 1253 1254 1255 1256
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1257 1258 1259 1260
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1261 1262
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1263 1264 1265 1266 1267 1268 1269
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1270
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1271
{
1272 1273 1274 1275
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1276 1277
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1278

1279 1280 1281 1282 1283 1284
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1285

1286
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1287 1288 1289 1290 1291 1292
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1293 1294 1295 1296 1297

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1298 1299
}

1300
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1301
{
1302
	poll_wait(file, &crng_init_wait, wait);
1303
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1304 1305
}

1306
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1307
{
1308
	u8 block[BLAKE2S_BLOCK_SIZE];
1309 1310
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1321 1322 1323 1324 1325 1326 1327

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1328
	}
1329

1330
	memzero_explicit(block, sizeof(block));
1331
	return ret ? ret : -EFAULT;
1332 1333
}

1334
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1335
{
1336
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1337 1338
}

1339
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1340 1341 1342
{
	static int maxwarn = 10;

1343 1344 1345 1346 1347 1348 1349
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1350 1351 1352 1353 1354
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1355 1356
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1357
		}
1358 1359
	}

1360
	return get_random_bytes_user(iter);
1361 1362
}

1363
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1364 1365 1366
{
	int ret;

1367 1368 1369 1370 1371
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1372 1373 1374
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1375
	return get_random_bytes_user(iter);
1376 1377
}

M
Matt Mackall 已提交
1378
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1379 1380
{
	int __user *p = (int __user *)arg;
1381
	int ent_count;
L
Linus Torvalds 已提交
1382 1383 1384

	switch (cmd) {
	case RNDGETENTCNT:
1385
		/* Inherently racy, no point locking. */
1386
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1394 1395
		if (ent_count < 0)
			return -EINVAL;
1396
		credit_init_bits(ent_count);
1397
		return 0;
1398 1399 1400 1401 1402 1403
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1410 1411 1412 1413 1414
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1415
		ret = write_pool_user(&iter);
1416 1417 1418 1419
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1420
			return -EFAULT;
1421
		credit_init_bits(ent_count);
1422
		return 0;
1423
	}
L
Linus Torvalds 已提交
1424 1425
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1426
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1427 1428 1429
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1430 1431 1432
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1433
		if (!crng_ready())
1434
			return -ENODATA;
1435
		crng_reseed();
1436
		return 0;
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441
	default:
		return -EINVAL;
	}
}

1442 1443 1444 1445 1446
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1447
const struct file_operations random_fops = {
1448
	.read_iter = random_read_iter,
1449
	.write_iter = random_write_iter,
1450
	.poll = random_poll,
M
Matt Mackall 已提交
1451
	.unlocked_ioctl = random_ioctl,
1452
	.compat_ioctl = compat_ptr_ioctl,
1453
	.fasync = random_fasync,
1454
	.llseek = noop_llseek,
1455 1456
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1457 1458
};

1459
const struct file_operations urandom_fops = {
1460
	.read_iter = urandom_read_iter,
1461
	.write_iter = random_write_iter,
1462 1463 1464 1465
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1466 1467
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1468 1469
};

1470

L
Linus Torvalds 已提交
1471 1472
/********************************************************************
 *
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1491
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1492 1493 1494
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1495
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1496 1497
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1505
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1506
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1507
static int sysctl_poolsize = POOL_BITS;
1508
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1509 1510

/*
G
Greg Price 已提交
1511
 * This function is used to return both the bootid UUID, and random
1512
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1513 1514
 * then a new UUID is generated and returned to the user.
 */
1515
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1516
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1517
{
1518 1519 1520 1521 1522 1523 1524 1525 1526
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1532 1533 1534 1535 1536 1537 1538 1539
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1540

1541
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1542
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1543 1544
}

1545
/* The same as proc_dointvec, but writes don't change anything. */
1546
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1547 1548
			    size_t *lenp, loff_t *ppos)
{
1549
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1550 1551
}

1552
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1553 1554 1555 1556 1557
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1558
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1559 1560 1561
	},
	{
		.procname	= "entropy_avail",
1562
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1563 1564
		.maxlen		= sizeof(int),
		.mode		= 0444,
1565
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1566 1567 1568
	},
	{
		.procname	= "write_wakeup_threshold",
1569
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1570 1571
		.maxlen		= sizeof(int),
		.mode		= 0644,
1572
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1573
	},
1574 1575
	{
		.procname	= "urandom_min_reseed_secs",
1576
		.data		= &sysctl_random_min_urandom_seed,
1577 1578
		.maxlen		= sizeof(int),
		.mode		= 0644,
1579
		.proc_handler	= proc_do_rointvec,
1580
	},
L
Linus Torvalds 已提交
1581 1582 1583 1584
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1585
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1586 1587 1588 1589
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1590
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1591
	},
1592
	{ }
L
Linus Torvalds 已提交
1593
};
1594 1595

/*
1596 1597
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1598 1599 1600 1601 1602 1603 1604
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1605
#endif