random.c 48.0 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 */

/*
 * Exported interfaces ---- output
 * ===============================
 *
13
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
14
 * and two for use from userspace.
L
Linus Torvalds 已提交
15
 *
16 17
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
18
 *
19
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
32 33 34
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
35
 * The primary kernel interfaces are:
36
 *
37
 *	void get_random_bytes(void *buf, size_t nbytes);
38 39 40 41
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
42
 *
43 44 45 46 47
 * These interfaces will return the requested number of random bytes
 * into the given buffer or as a return value. This is equivalent to a
 * read from /dev/urandom. The get_random_{u32,u64,int,long}() family
 * of functions may be higher performance for one-off random integers,
 * because they do a bit of buffering.
48 49 50 51 52 53 54 55 56 57 58
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
59 60 61 62 63 64
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
65
 *	void add_device_randomness(const void *buf, size_t size);
66
 *	void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
67
 *                                unsigned int value);
68
 *	void add_interrupt_randomness(int irq);
69
 *	void add_disk_randomness(struct gendisk *disk);
70
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
71
 *					size_t entropy);
72
 *	void add_bootloader_randomness(const void *buf, size_t size);
L
Linus Torvalds 已提交
73
 *
74 75 76 77 78 79 80 81
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
82 83 84
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
85 86 87
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
88 89 90 91 92 93
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
94 95 96 97 98
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
99 100 101 102 103 104 105 106
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
165 166
 *	mknod /dev/random c 1 8
 *	mknod /dev/urandom c 1 9
L
Linus Torvalds 已提交
167 168
 */

Y
Yangtao Li 已提交
169 170
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
184
#include <linux/mm.h>
185
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
186
#include <linux/spinlock.h>
187
#include <linux/kthread.h>
L
Linus Torvalds 已提交
188
#include <linux/percpu.h>
189
#include <linux/ptrace.h>
190
#include <linux/workqueue.h>
191
#include <linux/irq.h>
192
#include <linux/ratelimit.h>
193 194
#include <linux/syscalls.h>
#include <linux/completion.h>
195
#include <linux/uuid.h>
196
#include <linux/uaccess.h>
197
#include <crypto/chacha.h>
198
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
199 200
#include <asm/processor.h>
#include <asm/irq.h>
201
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
202 203
#include <asm/io.h>

204 205 206 207 208 209 210 211 212
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
213

214 215 216 217 218
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
219
 * crng_init is protected by base_crng->lock, and only increases
220 221 222
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
223
#define crng_ready() (likely(crng_init > 1))
224 225 226 227 228
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);
229

230
/* Control how we warn userspace. */
231 232 233 234 235 236 237 238
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

	if (crng_ready())
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (crng_ready())
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


383
/*********************************************************************
L
Linus Torvalds 已提交
384
 *
385
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
386
 *
387 388 389
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
390
 *
391 392 393 394 395 396 397 398 399 400 401 402 403
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
 * into the given buffer or as a return value. This is equivalent to
 * a read from /dev/urandom. The integer family of functions may be
 * higher performance for one-off random integers, because they do a
 * bit of buffering.
404 405 406
 *
 *********************************************************************/

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
431

432 433
/* Used by crng_reseed() to extract a new seed from the input pool. */
static bool drain_entropy(void *buf, size_t nbytes);
434

435
/*
436 437 438
 * This extracts a new crng key from the input pool, but only if there is a
 * sufficient amount of entropy available, in order to mitigate bruteforcing
 * of newly added bits.
439
 */
440
static void crng_reseed(void)
441
{
442
	unsigned long flags;
443 444
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
445
	bool finalize_init = false;
446

447 448 449
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
	if (!drain_entropy(key, sizeof(key)))
		return;
450

451 452 453 454 455 456 457 458 459 460 461 462 463
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
464 465
	if (crng_init < 2) {
		crng_init = 2;
466 467 468 469 470
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
	}
486 487
}

488
/*
489 490 491 492 493
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
494 495 496 497
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
498
{
499
	u8 first_block[CHACHA_BLOCK_SIZE];
500

501 502 503 504 505 506 507 508 509 510
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
511 512
}

513
/*
514 515 516
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
517
 */
518 519
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
520
{
521
	unsigned long flags;
522
	struct crng *crng;
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
	 * this is what crng_{fast,slow}_load mutate during early init.
	 */
	if (unlikely(!crng_ready())) {
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
543
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/*
	 * If the base_crng is more than 5 minutes old, we reseed, which
	 * in turn bumps the generation counter that we check below.
	 */
	if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
		crng_reseed();

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * This function is for crng_init == 0 only.
 *
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
 */
static size_t crng_fast_load(const void *cp, size_t len)
{
	static int crng_init_cnt = 0;
	unsigned long flags;
	const u8 *src = (const u8 *)cp;
	size_t ret = 0;

	if (!spin_trylock_irqsave(&base_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
		base_crng.key[crng_init_cnt % sizeof(base_crng.key)] ^= *src;
		src++; crng_init_cnt++; len--; ret++;
	}
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
		++base_crng.generation;
		crng_init = 1;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	if (crng_init == 1)
		pr_notice("fast init done\n");
	return ret;
}

/*
 * This function is for crng_init == 0 only.
 *
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So, we simply hash the contents in with the current key. Finally,
 * we do *not* advance crng_init_cnt since buffer we may get may be
 * something like a fixed DMI table (for example), which might very
 * well be unique to the machine, but is otherwise unvarying.
 */
static void crng_slow_load(const void *cp, size_t len)
{
	unsigned long flags;
	struct blake2s_state hash;

	blake2s_init(&hash, sizeof(base_crng.key));

	if (!spin_trylock_irqsave(&base_crng.lock, flags))
		return;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return;
	}

	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, cp, len);
	blake2s_final(&hash, base_crng.key);

	spin_unlock_irqrestore(&base_crng.lock, flags);
}

static void _get_random_bytes(void *buf, size_t nbytes)
650
{
651
	u32 chacha_state[CHACHA_STATE_WORDS];
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

/*
 * Static global variables
 */
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

static void extract_entropy(void *buf, size_t nbytes);
static bool drain_entropy(void *buf, size_t nbytes);

static void crng_reseed(void);

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}

static void mix_pool_bytes(const void *in, size_t nbytes)
{
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
}

struct fast_pool {
	union {
		u32 pool32[4];
		u64 pool64[2];
	};
	unsigned long last;
	u16 reg_idx;
	u8 count;
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
static void fast_mix(u32 pool[4])
{
	u32 a = pool[0],	b = pool[1];
	u32 c = pool[2],	d = pool[3];

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;
974

975 976 977
	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;
978

979 980 981
	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;
982

983 984 985
	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;
986

987 988 989
	pool[0] = a;  pool[1] = b;
	pool[2] = c;  pool[3] = d;
}
990

991 992 993
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;
994

995 996
	if (!nbits)
		return;
997

998
	add = min_t(size_t, nbits, POOL_BITS);
999

1000 1001 1002 1003 1004 1005 1006
	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
		crng_reseed();
1007 1008
}

L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1018
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1019 1020
};

1021 1022
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1023
/*
1024 1025
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1026
 *
1027 1028 1029
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1030
 */
1031
void add_device_randomness(const void *buf, size_t size)
1032
{
1033
	unsigned long time = random_get_entropy() ^ jiffies;
1034
	unsigned long flags;
1035

1036 1037
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1038

1039
	spin_lock_irqsave(&input_pool.lock, flags);
1040 1041
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
1042
	spin_unlock_irqrestore(&input_pool.lock, flags);
1043 1044 1045
}
EXPORT_SYMBOL(add_device_randomness);

1046
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1047

L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
1058
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1059 1060 1061
{
	struct {
		long jiffies;
1062 1063
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
1064 1065 1066 1067
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1068
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1069
	sample.num = num;
1070
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
1071 1072 1073 1074 1075 1076

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1077 1078
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1079

1080 1081
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1082

1083 1084
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1096

1097 1098 1099
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1100
	 * and limit entropy estimate to 12 bits.
1101
	 */
1102
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1103 1104
}

1105
void add_input_randomness(unsigned int type, unsigned int code,
1106
			  unsigned int value)
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1118
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1119

1120 1121
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1122
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1123
{
1124
	u32 *ptr = (u32 *)regs;
1125
	unsigned int idx;
1126 1127 1128

	if (regs == NULL)
		return 0;
1129
	idx = READ_ONCE(f->reg_idx);
1130
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
1131 1132 1133
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1134
	return *ptr;
1135 1136
}

1137
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1138
{
1139 1140 1141 1142
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
	unsigned long now = jiffies;
	cycles_t cycles = random_get_entropy();
1143

1144 1145
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	if (sizeof(cycles) == 8)
		fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
	else {
		fast_pool->pool32[0] ^= cycles ^ irq;
		fast_pool->pool32[1] ^= now;
	}

	if (sizeof(unsigned long) == 8)
		fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
	else {
		fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
		fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
	}

	fast_mix(fast_pool->pool32);
	++fast_pool->count;
1163

T
Theodore Ts'o 已提交
1164
	if (unlikely(crng_init == 0)) {
1165
		if (fast_pool->count >= 64 &&
1166
		    crng_fast_load(fast_pool->pool32, sizeof(fast_pool->pool32)) > 0) {
1167 1168
			fast_pool->count = 0;
			fast_pool->last = now;
1169
			if (spin_trylock(&input_pool.lock)) {
1170
				_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
1171 1172
				spin_unlock(&input_pool.lock);
			}
1173 1174 1175 1176
		}
		return;
	}

1177
	if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1178 1179
		return;

1180
	if (!spin_trylock(&input_pool.lock))
1181
		return;
1182

1183
	fast_pool->last = now;
1184
	_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
1185
	spin_unlock(&input_pool.lock);
1186

1187
	fast_pool->count = 0;
1188

1189
	/* award one bit for the contents of the fast pool */
1190
	credit_entropy_bits(1);
L
Linus Torvalds 已提交
1191
}
1192
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1193

1194
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1195 1196 1197 1198 1199
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1200
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
L
Linus Torvalds 已提交
1201
}
1202
EXPORT_SYMBOL_GPL(add_disk_randomness);
1203
#endif
L
Linus Torvalds 已提交
1204 1205 1206 1207 1208 1209 1210

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

G
Greg Price 已提交
1211
/*
1212 1213
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
G
Greg Price 已提交
1214
 */
1215
static void extract_entropy(void *buf, size_t nbytes)
L
Linus Torvalds 已提交
1216
{
1217
	unsigned long flags;
1218 1219
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
1220
		unsigned long rdseed[32 / sizeof(long)];
1221 1222 1223 1224
		size_t counter;
	} block;
	size_t i;

1225 1226 1227 1228
	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
1229 1230
	}

1231
	spin_lock_irqsave(&input_pool.lock, flags);
1232

1233 1234
	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);
L
Linus Torvalds 已提交
1235

1236
	/* next_key = HASHPRF(seed, RDSEED || 0) */
1237 1238 1239
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
L
Linus Torvalds 已提交
1240

1241 1242
	spin_unlock_irqrestore(&input_pool.lock, flags);
	memzero_explicit(next_key, sizeof(next_key));
1243 1244

	while (nbytes) {
1245
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
1246
		/* output = HASHPRF(seed, RDSEED || ++counter) */
1247 1248
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
1249 1250 1251 1252
		nbytes -= i;
		buf += i;
	}

1253 1254
	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
 * set the entropy count to zero (but don't actually touch any data). Only then
 * can we extract a new key with extract_entropy().
 */
static bool drain_entropy(void *buf, size_t nbytes)
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
		if (entropy_count < POOL_MIN_BITS)
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1291
	credit_entropy_bits(1);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1314
			mod_timer(&stack.timer, jiffies + 1);
1315
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1316 1317 1318 1319 1320 1321
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1322
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1323 1324
}

1325 1326 1327 1328 1329 1330 1331
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

L
Linus Torvalds 已提交
1332
/*
1333 1334 1335 1336 1337 1338 1339 1340
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
L
Linus Torvalds 已提交
1341
 */
1342
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1343
{
1344
	size_t i;
1345
	ktime_t now = ktime_get_real();
1346
	bool arch_init = true;
1347
	unsigned long rv;
L
Linus Torvalds 已提交
1348

1349
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
1350 1351 1352 1353 1354
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
1355
		mix_pool_bytes(&rv, sizeof(rv));
1356
	}
1357 1358 1359
	mix_pool_bytes(&now, sizeof(now));
	mix_pool_bytes(utsname(), sizeof(*(utsname())));

1360
	extract_entropy(base_crng.key, sizeof(base_crng.key));
1361 1362
	++base_crng.generation;

1363 1364 1365 1366 1367
	if (arch_init && trust_cpu && crng_init < 2) {
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}

1368 1369 1370 1371
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1372 1373 1374
	return 0;
}

1375
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1381
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1382 1383
	 * source.
	 */
1384
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1385 1386
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1387
		disk->random = state;
1388
	}
L
Linus Torvalds 已提交
1389
}
1390
#endif
L
Linus Torvalds 已提交
1391

1392 1393
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
L
Linus Torvalds 已提交
1394
{
1395
	static int maxwarn = 10;
1396

1397
	if (!crng_ready() && maxwarn > 0) {
1398
		maxwarn--;
1399
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1400 1401
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1402
	}
1403

1404
	return get_random_bytes_user(buf, nbytes);
L
Linus Torvalds 已提交
1405 1406
}

1407 1408
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
1409 1410 1411 1412 1413 1414
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1415
	return get_random_bytes_user(buf, nbytes);
1416 1417
}

1418
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1419
{
1420
	__poll_t mask;
L
Linus Torvalds 已提交
1421

1422
	poll_wait(file, &crng_init_wait, wait);
1423 1424
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1425
	if (crng_ready())
1426
		mask |= EPOLLIN | EPOLLRDNORM;
1427
	if (input_pool.entropy_count < POOL_MIN_BITS)
1428
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1429 1430 1431
	return mask;
}

1432
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1433
{
1434
	size_t len;
1435
	int ret = 0;
1436
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1437

1438 1439
	while (count) {
		len = min(count, sizeof(block));
1440 1441 1442 1443
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1444 1445 1446
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1447
		cond_resched();
L
Linus Torvalds 已提交
1448
	}
1449

1450 1451 1452
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1453 1454
}

1455 1456
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1457
{
1458
	int ret;
1459

1460
	ret = write_pool(buffer, count);
1461 1462 1463 1464
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1465 1466
}

M
Matt Mackall 已提交
1467
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1475
		/* inherently racy, no point locking */
1476
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482 1483
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1484 1485 1486 1487
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1497
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1498 1499
		if (retval < 0)
			return retval;
1500 1501
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1502 1503
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1504 1505 1506 1507
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1508 1509
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1510
		if (xchg(&input_pool.entropy_count, 0)) {
1511 1512 1513
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1514
		return 0;
1515 1516 1517 1518 1519
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1520
		crng_reseed();
1521
		return 0;
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526
	default:
		return -EINVAL;
	}
}

1527 1528 1529 1530 1531
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1532
const struct file_operations random_fops = {
1533
	.read = random_read,
L
Linus Torvalds 已提交
1534
	.write = random_write,
1535
	.poll = random_poll,
M
Matt Mackall 已提交
1536
	.unlocked_ioctl = random_ioctl,
1537
	.compat_ioctl = compat_ptr_ioctl,
1538
	.fasync = random_fasync,
1539
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1540 1541
};

1542
const struct file_operations urandom_fops = {
1543
	.read = urandom_read,
L
Linus Torvalds 已提交
1544
	.write = random_write,
M
Matt Mackall 已提交
1545
	.unlocked_ioctl = random_ioctl,
1546
	.compat_ioctl = compat_ptr_ioctl,
1547
	.fasync = random_fasync,
1548
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1549 1550
};

1551 1552
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
1553
{
1554
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1555 1556 1557 1558 1559 1560
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
1561
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1562 1563 1564 1565 1566
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

1567
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1568 1569
		int ret;

1570 1571
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1572 1573 1574
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
1575
	}
1576
	return get_random_bytes_user(buf, count);
1577 1578
}

L
Linus Torvalds 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1589
static int random_min_urandom_seed = 60;
1590 1591
static int random_write_wakeup_bits = POOL_MIN_BITS;
static int sysctl_poolsize = POOL_BITS;
L
Linus Torvalds 已提交
1592 1593 1594
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1595
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1596 1597 1598
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1599 1600 1601
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1602
 */
1603 1604
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1605
{
1606
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611 1612
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1613 1614 1615 1616 1617 1618 1619 1620
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1621

J
Joe Perches 已提交
1622 1623
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1624 1625 1626
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1627
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1628 1629
}

1630
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1636
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1637 1638 1639
	},
	{
		.procname	= "entropy_avail",
1640
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1641 1642
		.maxlen		= sizeof(int),
		.mode		= 0444,
1643
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1644 1645 1646
	},
	{
		.procname	= "write_wakeup_threshold",
1647
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
1648 1649
		.maxlen		= sizeof(int),
		.mode		= 0644,
1650
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1651
	},
1652 1653 1654 1655 1656 1657 1658
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1664
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1670
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1671
	},
1672
	{ }
L
Linus Torvalds 已提交
1673
};
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1685
#endif	/* CONFIG_SYSCTL */
L
Linus Torvalds 已提交
1686

1687 1688 1689 1690
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
1691
void add_hwgenerator_randomness(const void *buffer, size_t count,
1692 1693
				size_t entropy)
{
T
Theodore Ts'o 已提交
1694
	if (unlikely(crng_init == 0)) {
1695
		size_t ret = crng_fast_load(buffer, count);
1696
		mix_pool_bytes(buffer, ret);
1697 1698 1699 1700
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
1701
	}
1702

1703
	/* Throttle writing if we're above the trickle threshold.
1704 1705 1706
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
1707
	 */
1708
	wait_event_interruptible_timeout(random_write_wait,
1709
			!system_wq || kthread_should_stop() ||
1710
			input_pool.entropy_count < POOL_MIN_BITS,
1711
			CRNG_RESEED_INTERVAL);
1712 1713
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
1714 1715
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
1716 1717 1718 1719 1720 1721

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
1722
void add_bootloader_randomness(const void *buf, size_t size)
H
Hsin-Yi Wang 已提交
1723 1724 1725 1726 1727 1728
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
1729
EXPORT_SYMBOL_GPL(add_bootloader_randomness);