random.c 50.3 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <crypto/chacha.h>
56
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
57 58
#include <asm/processor.h>
#include <asm/irq.h>
59
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
60 61
#include <asm/io.h>

62 63 64 65 66 67 68 69 70
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
71

72 73 74 75 76
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
77
 * crng_init is protected by base_crng->lock, and only increases
78 79 80
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
81
#define crng_ready() (likely(crng_init > 1))
82 83 84
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
85 86
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
87

88
/* Control how we warn userspace. */
89 90
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
91 92
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
93 94 95 96
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

97 98
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
99 100 101
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
117 118 119 120
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
121 122 123 124 125 126
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
127
	while (!crng_ready()) {
128
		int ret;
129 130

		try_to_generate_entropy();
131 132 133
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
134
	}
135 136 137 138 139 140 141 142 143 144 145
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
146
int register_random_ready_notifier(struct notifier_block *nb)
147 148
{
	unsigned long flags;
149
	int ret = -EALREADY;
150 151

	if (crng_ready())
152
		return ret;
153

154 155 156 157 158
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
159 160 161 162 163
}

/*
 * Delete a previously registered readiness callback function.
 */
164
int unregister_random_ready_notifier(struct notifier_block *nb)
165 166
{
	unsigned long flags;
167
	int ret;
168

169 170 171 172
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
173 174 175 176 177 178
}

static void process_random_ready_list(void)
{
	unsigned long flags;

179 180 181
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


208
/*********************************************************************
L
Linus Torvalds 已提交
209
 *
210
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
211
 *
212 213 214
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
215
 *
216 217 218 219 220 221 222 223 224
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
225
 * into the given buffer or as a return value. This is equivalent to
226 227 228 229
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
230 231 232
 *
 *********************************************************************/

233 234 235 236
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
257

258
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
259
static void extract_entropy(void *buf, size_t nbytes);
260

261 262
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
263
{
264
	unsigned long flags;
265 266
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
267
	bool finalize_init = false;
268

269
	extract_entropy(key, sizeof(key));
270

271 272 273 274 275 276 277 278 279 280 281 282 283
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
284
	if (!crng_ready()) {
285
		crng_init = 2;
286 287 288 289 290
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
291 292 293 294 295 296 297 298 299
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
300 301 302 303 304
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
305
	}
306 307
}

308
/*
309 310 311 312 313
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
314 315 316 317 318 319 320
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
321 322 323 324
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
325
{
326
	u8 first_block[CHACHA_BLOCK_SIZE];
327

328 329 330 331 332 333 334 335
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
336
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
337
	memzero_explicit(first_block, sizeof(first_block));
338 339
}

340
/*
341 342 343 344
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
345 346 347 348 349 350 351 352 353 354 355
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
356
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
357 358 359 360 361
					 (unsigned int)uptime / 2 * HZ);
	}
	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}

362
/*
363 364 365
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
366
 */
367 368
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
369
{
370
	unsigned long flags;
371
	struct crng *crng;
372

373 374 375 376 377
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
378 379
	 * ready, we do fast key erasure with the base_crng directly, extracting
	 * when crng_init==0.
380
	 */
381
	if (!crng_ready()) {
382 383 384 385
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
386 387 388
		if (!ready) {
			if (crng_init == 0)
				extract_entropy(base_crng.key, sizeof(base_crng.key));
389 390
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
391
		}
392 393 394
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
395
	}
396 397

	/*
398 399
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
400
	 */
401
	if (unlikely(crng_has_old_seed()))
402
		crng_reseed();
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
430 431
}

432
static void _get_random_bytes(void *buf, size_t nbytes)
433
{
434
	u32 chacha_state[CHACHA_STATE_WORDS];
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
485
	size_t len, left, ret = 0;
486 487 488 489 490 491
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

492 493 494 495 496 497 498 499 500 501 502 503
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
	if (nbytes <= CHACHA_KEY_SIZE) {
504
		ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes);
505 506
		goto out_zero_chacha;
	}
507

508
	for (;;) {
509 510 511 512 513
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
514 515 516
		left = copy_to_user(buf, output, len);
		if (left) {
			ret += len - left;
517 518 519 520 521
			break;
		}

		buf += len;
		ret += len;
522 523 524
		nbytes -= len;
		if (!nbytes)
			break;
525 526

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
527
		if (ret % PAGE_SIZE == 0) {
528 529 530 531
			if (signal_pending(current))
				break;
			cond_resched();
		}
532
	}
533 534

	memzero_explicit(output, sizeof(output));
535 536
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
537
	return ret ? ret : -EFAULT;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

579 580 581 582 583
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

618 619 620 621 622
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

720 721 722 723 724 725 726 727 728 729 730

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
731
 *     static void credit_init_bits(size_t nbits)
732
 *
733
 * Finally, extract entropy via:
734 735 736 737 738
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

739 740
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
741 742
	POOL_INIT_BITS = POOL_BITS, /* No point in settling for less. */
	POOL_FAST_INIT_BITS = POOL_INIT_BITS / 2
743 744 745 746 747
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
748
	unsigned int init_bits;
749 750 751 752 753 754 755 756
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

757 758 759 760
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
761 762

/*
763 764 765
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
766
 */
767
static void mix_pool_bytes(const void *in, size_t nbytes)
768
{
769 770 771 772 773
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
774 775
}

776 777 778 779 780
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
781 782
{
	unsigned long flags;
783 784 785 786 787 788 789 790 791 792 793 794
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
795 796

	spin_lock_irqsave(&input_pool.lock, flags);
797 798 799 800 801 802 803 804 805

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

806
	spin_unlock_irqrestore(&input_pool.lock, flags);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

822
static void credit_init_bits(size_t nbits)
823
{
824
	unsigned int init_bits, orig, add;
825 826
	unsigned long flags;

827
	if (crng_ready() || !nbits)
828 829 830 831 832
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
833 834 835
		orig = READ_ONCE(input_pool.init_bits);
		init_bits = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, init_bits) != orig);
836

837 838 839
	if (!crng_ready() && init_bits >= POOL_INIT_BITS)
		crng_reseed();
	else if (unlikely(crng_init == 0 && init_bits >= POOL_FAST_INIT_BITS)) {
840 841 842 843 844 845 846 847 848
		spin_lock_irqsave(&base_crng.lock, flags);
		if (crng_init == 0) {
			extract_entropy(base_crng.key, sizeof(base_crng.key));
			crng_init = 1;
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

849 850 851 852 853 854 855 856 857 858 859 860

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
861
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
862
 *	void add_interrupt_randomness(int irq);
863 864 865
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
866 867 868 869 870 871 872 873 874 875 876 877 878
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
879 880 881
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
882
 *
883 884 885 886
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
887 888 889 890 891
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
892 893 894 895 896 897 898 899 900 901 902 903 904
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
905 906 907
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
908
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
909 910 911 912
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
913 914 915 916
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
917
early_param("random.trust_cpu", parse_trust_cpu);
918
early_param("random.trust_bootloader", parse_trust_bootloader);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
939
		crng_reseed();
940 941 942 943 944 945 946
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

947
/*
948 949 950 951 952
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
953
 */
954
int __init rand_initialize(void)
955
{
956 957 958 959
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
960

961 962 963 964 965
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

966 967 968 969 970 971
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
972
		_mix_pool_bytes(&rv, sizeof(rv));
973
	}
974 975
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
976

977 978 979 980
	if (crng_ready())
		crng_reseed();
	else if (arch_init && trust_cpu)
		credit_init_bits(BLAKE2S_BLOCK_SIZE * 8);
981

982 983
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
984
		unseeded_warning.interval = 0;
985
	}
986

987 988
	WARN_ON(register_pm_notifier(&pm_notifier));

989 990
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
991
	return 0;
992
}
993

994
/*
995 996
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
997
 *
998 999 1000
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1001
 */
1002
void add_device_randomness(const void *buf, size_t size)
1003
{
1004 1005
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
1006

1007
	spin_lock_irqsave(&input_pool.lock, flags);
1008
	_mix_pool_bytes(&entropy, sizeof(entropy));
1009
	_mix_pool_bytes(buf, size);
1010
	spin_unlock_irqrestore(&input_pool.lock, flags);
1011 1012 1013
}
EXPORT_SYMBOL(add_device_randomness);

1014 1015 1016 1017 1018 1019 1020 1021
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
1022 1023 1024
	mix_pool_bytes(buffer, count);
	credit_init_bits(entropy);

1025
	/*
1026 1027
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
1028
	 */
1029 1030
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
1031 1032 1033 1034
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
1035 1036
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
1037 1038 1039
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
1040
	mix_pool_bytes(buf, size);
1041
	if (trust_bootloader)
1042
		credit_init_bits(size * 8);
1043 1044 1045
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1046
#if IS_ENABLED(CONFIG_VMGENID)
1047 1048
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
1058
		crng_reseed();
1059 1060
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1061
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1062
}
1063
#if IS_MODULE(CONFIG_VMGENID)
1064
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1065
#endif
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1078
#endif
1079

1080
struct fast_pool {
1081
	struct work_struct mix;
1082
	unsigned long pool[4];
1083
	unsigned long last;
1084
	unsigned int count;
1085 1086
};

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
	/* SipHash constants */
	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
		  0x6c7967656e657261UL, 0x7465646279746573UL }
#else
	/* HalfSipHash constants */
	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
#endif
};

1098
/*
1099 1100 1101
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1102
 * four-word SipHash state, while v represents a two-word input.
1103
 */
1104
static void fast_mix(unsigned long s[4], const unsigned long v[2])
1105
{
1106
	size_t i;
1107

1108
	for (i = 0; i < 2; ++i) {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		s[3] ^= v[i];
#ifdef CONFIG_64BIT
		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
#else
		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
#endif
		s[0] ^= v[i];
	}
1123 1124
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1148 1149 1150
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1151
	/*
1152 1153 1154 1155 1156
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1157
	 */
1158
	unsigned long pool[2];
1159
	unsigned int count;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1172
	memcpy(pool, fast_pool->pool, sizeof(pool));
1173
	count = fast_pool->count;
1174
	fast_pool->count = 0;
1175 1176 1177
	fast_pool->last = jiffies;
	local_irq_enable();

1178
	mix_pool_bytes(pool, sizeof(pool));
1179
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1180

1181 1182 1183
	memzero_explicit(pool, sizeof(pool));
}

1184
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1185
{
1186
	enum { MIX_INFLIGHT = 1U << 31 };
1187
	unsigned long entropy = random_get_entropy();
1188 1189
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1190
	unsigned int new_count;
1191

1192 1193 1194 1195
	fast_mix(fast_pool->pool, (unsigned long[2]){
		entropy,
		(regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)
	});
1196
	new_count = ++fast_pool->count;
1197

1198
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1199 1200
		return;

1201
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1202
		return;
1203

1204 1205
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1206
	fast_pool->count |= MIX_INFLIGHT;
1207
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1208
}
1209
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1210

1211 1212 1213 1214 1215 1216 1217 1218
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1219 1220 1221 1222
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1223 1224 1225 1226 1227
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1228
	unsigned int bits;
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
		fast_mix(this_cpu_ptr(&irq_randomness)->pool,
			 (unsigned long[2]){ entropy, num });
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1284
	 */
1285 1286 1287 1288
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
		credit_init_bits(bits);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

void add_input_randomness(unsigned int type, unsigned int code,
			  unsigned int value)
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1333 1334 1335 1336 1337 1338
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1352
static void entropy_timer(struct timer_list *timer)
1353
{
1354 1355 1356
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1357
		credit_init_bits(1);
1358 1359
		state->samples = 0;
	}
1360 1361 1362 1363 1364 1365 1366 1367
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
1368 1369 1370 1371
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1372

1373 1374 1375 1376 1377 1378 1379 1380
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1381 1382
		return;

1383
	stack.samples = 0;
1384
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1385
	while (!crng_ready() && !signal_pending(current)) {
1386
		if (!timer_pending(&stack.timer))
1387
			mod_timer(&stack.timer, jiffies + 1);
1388
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1389
		schedule();
1390
		stack.entropy = random_get_entropy();
1391 1392 1393 1394
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1395
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1396 1397
}

1398 1399 1400 1401 1402 1403 1404 1405

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1406 1407 1408 1409 1410 1411 1412 1413
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1414 1415 1416 1417
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1418 1419
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1420 1421 1422 1423 1424 1425 1426 1427 1428
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1429
{
1430 1431
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1432

1433 1434 1435 1436 1437 1438
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1439

1440 1441
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1442

1443 1444
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1445

1446 1447 1448 1449 1450 1451 1452
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1453 1454
}

1455
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1456
{
1457
	poll_wait(file, &crng_init_wait, wait);
1458
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1459 1460
}

1461
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1462
{
1463
	size_t len;
1464
	int ret = 0;
1465
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1466

1467 1468
	while (count) {
		len = min(count, sizeof(block));
1469 1470 1471 1472
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1473 1474 1475
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1476
		cond_resched();
L
Linus Torvalds 已提交
1477
	}
1478

1479 1480 1481
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1482 1483
}

1484 1485
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1486
{
1487
	int ret;
1488

1489
	ret = write_pool(buffer, count);
1490 1491 1492 1493
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1494 1495
}

1496 1497 1498 1499 1500
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

1501 1502 1503 1504 1505 1506 1507
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (!crng_ready() && maxwarn > 0) {
		maxwarn--;
		if (__ratelimit(&urandom_warning))
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
	}

	return get_random_bytes_user(buf, nbytes);
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1529
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1537
		/* Inherently racy, no point locking. */
1538
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1546 1547
		if (ent_count < 0)
			return -EINVAL;
1548
		credit_init_bits(ent_count);
1549
		return 0;
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1559
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1560 1561
		if (retval < 0)
			return retval;
1562
		credit_init_bits(ent_count);
1563
		return 0;
L
Linus Torvalds 已提交
1564 1565
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1566
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1567 1568 1569
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1570 1571 1572
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1573
		if (!crng_ready())
1574
			return -ENODATA;
1575
		crng_reseed();
1576
		return 0;
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581
	default:
		return -EINVAL;
	}
}

1582 1583 1584 1585 1586
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1587
const struct file_operations random_fops = {
1588
	.read = random_read,
L
Linus Torvalds 已提交
1589
	.write = random_write,
1590
	.poll = random_poll,
M
Matt Mackall 已提交
1591
	.unlocked_ioctl = random_ioctl,
1592
	.compat_ioctl = compat_ptr_ioctl,
1593
	.fasync = random_fasync,
1594
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1595 1596
};

1597 1598 1599 1600 1601 1602 1603 1604 1605
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1606

L
Linus Torvalds 已提交
1607 1608
/********************************************************************
 *
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1627
 *   more entropy, tied to the POOL_INIT_BITS constant. It is writable
1628 1629 1630
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1631
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1632 1633
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1641
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1642
static int sysctl_random_write_wakeup_bits = POOL_INIT_BITS;
1643
static int sysctl_poolsize = POOL_BITS;
1644
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1645 1646

/*
G
Greg Price 已提交
1647
 * This function is used to return both the bootid UUID, and random
1648
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1649 1650
 * then a new UUID is generated and returned to the user.
 */
1651 1652
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1653
{
1654 1655 1656 1657 1658 1659 1660 1661 1662
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1668 1669 1670 1671 1672 1673 1674 1675
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1676

1677 1678
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1679 1680
}

1681 1682 1683 1684 1685 1686 1687
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1688
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1694
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1695 1696 1697
	},
	{
		.procname	= "entropy_avail",
1698
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1699 1700
		.maxlen		= sizeof(int),
		.mode		= 0444,
1701
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1702 1703 1704
	},
	{
		.procname	= "write_wakeup_threshold",
1705
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1706 1707
		.maxlen		= sizeof(int),
		.mode		= 0644,
1708
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1709
	},
1710 1711
	{
		.procname	= "urandom_min_reseed_secs",
1712
		.data		= &sysctl_random_min_urandom_seed,
1713 1714
		.maxlen		= sizeof(int),
		.mode		= 0644,
1715
		.proc_handler	= proc_do_rointvec,
1716
	},
L
Linus Torvalds 已提交
1717 1718 1719 1720
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1721
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1722 1723 1724 1725
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1726
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1727
	},
1728
	{ }
L
Linus Torvalds 已提交
1729
};
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1741
#endif