random.c 51.5 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <linux/sched/isolation.h>
57
#include <crypto/chacha.h>
58
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
59 60
#include <asm/processor.h>
#include <asm/irq.h>
61
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
62 63
#include <asm/io.h>

64 65 66 67 68 69 70 71 72
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
73

74
/*
75
 * crng_init is protected by base_crng->lock, and only increases
76
 * its value (from empty->early->ready).
77
 */
78 79 80 81
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
82 83 84
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
85
/* Various types of waiters for crng_init->CRNG_READY transition. */
86 87
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
88
static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
89

90
/* Control how we warn userspace. */
91
static struct ratelimit_state urandom_warning =
92
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
93 94
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
95 96 97
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
100
 * to supply cryptographically secure random numbers. This applies to: the
101
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
102
 * u16,u32,u64,long} family of functions.
103 104 105 106 107 108 109 110 111 112
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

113
static void __cold crng_set_ready(struct work_struct *work)
114 115 116 117
{
	static_branch_enable(&crng_is_ready);
}

118 119 120 121 122
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
123
 * cryptographically secure random numbers. This applies to: the /dev/urandom
124
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
125
 * long} family of functions. Using any of these functions without first
126
 * calling this function forfeits the guarantee of security.
127 128 129 130 131 132
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
133
	while (!crng_ready()) {
134
		int ret;
135 136

		try_to_generate_entropy();
137 138 139
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
140
	}
141 142 143 144
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * Add a callback function that will be invoked when the crng is initialised,
 * or immediately if it already has been. Only use this is you are absolutely
 * sure it is required. Most users should instead be able to test
 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 */
int __cold execute_with_initialized_rng(struct notifier_block *nb)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&random_ready_notifier.lock, flags);
	if (crng_ready())
		nb->notifier_call(nb, 0, NULL);
	else
		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
	return ret;
}

165
#define warn_unseeded_randomness() \
166 167 168
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
169 170


171
/*********************************************************************
L
Linus Torvalds 已提交
172
 *
173
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
174
 *
175 176 177
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
178
 *
179 180
 * There are a few exported interfaces for use by other drivers:
 *
181
 *	void get_random_bytes(void *buf, size_t len)
182 183
 *	u8 get_random_u8()
 *	u16 get_random_u16()
184
 *	u32 get_random_u32()
185
 *	u32 get_random_u32_below(u32 ceil)
186 187
 *	u32 get_random_u32_above(u32 floor)
 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
188 189 190 191
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
192
 * into the given buffer or as a return value. This is equivalent to
193 194 195 196
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
197 198 199
 *
 *********************************************************************/

200 201 202 203
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 * proportional to the uptime.
 */
static unsigned int crng_reseed_interval(void)
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
	}
	return CRNG_RESEED_INTERVAL;
}

244
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
245
static void extract_entropy(void *buf, size_t len);
246

247
/* This extracts a new crng key from the input pool. */
248
static void crng_reseed(struct work_struct *work)
249
{
250
	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
251
	unsigned long flags;
252 253
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
254

255 256 257 258
	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
	if (likely(system_unbound_wq))
		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());

259
	extract_entropy(key, sizeof(key));
260

261 262 263 264 265 266 267 268 269 270 271 272
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
273
	if (!static_branch_likely(&crng_is_ready))
274
		crng_init = CRNG_READY;
275 276
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
277 278
}

279
/*
280
 * This generates a ChaCha block using the provided key, and then
281
 * immediately overwrites that key with half the block. It returns
282 283 284
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
285 286 287 288 289 290 291
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
292 293 294 295
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
296
{
297
	u8 first_block[CHACHA_BLOCK_SIZE];
298

299 300 301 302 303 304 305 306
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
307
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
308
	memzero_explicit(first_block, sizeof(first_block));
309 310
}

311
/*
312 313 314
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
315
 */
316 317
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
318
{
319
	unsigned long flags;
320
	struct crng *crng;
321

322 323 324 325 326
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
327
	 * ready, we do fast key erasure with the base_crng directly, extracting
328
	 * when crng_init is CRNG_EMPTY.
329
	 */
330
	if (!crng_ready()) {
331 332 333 334
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
335
		if (!ready) {
336
			if (crng_init == CRNG_EMPTY)
337
				extract_entropy(base_crng.key, sizeof(base_crng.key));
338 339
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
340
		}
341 342 343
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
344
	}
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
372 373
}

374
static void _get_random_bytes(void *buf, size_t len)
375
{
376
	u32 chacha_state[CHACHA_STATE_WORDS];
377
	u8 tmp[CHACHA_BLOCK_SIZE];
378
	size_t first_block_len;
379

380
	if (!len)
381 382
		return;

383 384 385 386
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
387

388 389
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
390
			chacha20_block(chacha_state, tmp);
391
			memcpy(buf, tmp, len);
392 393 394 395 396 397 398
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
399
		len -= CHACHA_BLOCK_SIZE;
400 401 402 403 404 405 406
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
407 408 409 410 411
 * This returns random bytes in arbitrary quantities. The quality of the
 * random bytes is good as /dev/urandom. In order to ensure that the
 * randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
412
 */
413
void get_random_bytes(void *buf, size_t len)
414
{
415
	warn_unseeded_randomness();
416
	_get_random_bytes(buf, len);
417 418 419
}
EXPORT_SYMBOL(get_random_bytes);

420
static ssize_t get_random_bytes_user(struct iov_iter *iter)
421 422
{
	u32 chacha_state[CHACHA_STATE_WORDS];
423 424
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
425

426
	if (unlikely(!iov_iter_count(iter)))
427 428
		return 0;

429 430
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
431
	 * bytes, in case userspace causes copy_to_iter() below to sleep
432 433 434 435 436 437 438 439
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
440 441
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
442 443
		goto out_zero_chacha;
	}
444

445
	for (;;) {
446
		chacha20_block(chacha_state, block);
447 448 449
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

450 451 452
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
453
			break;
454

455
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
456
		if (ret % PAGE_SIZE == 0) {
457 458 459 460
			if (signal_pending(current))
				break;
			cond_resched();
		}
461
	}
462

463
	memzero_explicit(block, sizeof(block));
464 465
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
466
	return ret ? ret : -EFAULT;
467 468 469 470 471 472 473 474 475
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

529
DEFINE_BATCHED_ENTROPY(u8)
530 531 532
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
533

534 535 536 537 538 539 540 541 542 543 544
u32 __get_random_u32_below(u32 ceil)
{
	/*
	 * This is the slow path for variable ceil. It is still fast, most of
	 * the time, by doing traditional reciprocal multiplication and
	 * opportunistically comparing the lower half to ceil itself, before
	 * falling back to computing a larger bound, and then rejecting samples
	 * whose lower half would indicate a range indivisible by ceil. The use
	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
	 * in 32-bits.
	 */
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	u32 rand = get_random_u32();
	u64 mult;

	/*
	 * This function is technically undefined for ceil == 0, and in fact
	 * for the non-underscored constant version in the header, we build bug
	 * on that. But for the non-constant case, it's convenient to have that
	 * evaluate to being a straight call to get_random_u32(), so that
	 * get_random_u32_inclusive() can work over its whole range without
	 * undefined behavior.
	 */
	if (unlikely(!ceil))
		return rand;

	mult = (u64)ceil * rand;
560 561 562 563 564 565 566 567 568
	if (unlikely((u32)mult < ceil)) {
		u32 bound = -ceil % ceil;
		while (unlikely((u32)mult < bound))
			mult = (u64)ceil * get_random_u32();
	}
	return mult >> 32;
}
EXPORT_SYMBOL(__get_random_u32_below);

569 570 571 572 573
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
574
int __cold random_prepare_cpu(unsigned int cpu)
575 576 577 578 579 580 581
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
582 583
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
584 585 586 587 588 589
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

590 591 592 593 594 595 596

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
597
 *     static void mix_pool_bytes(const void *buf, size_t len)
598 599 600
 *
 * After which, if added entropy should be credited:
 *
601
 *     static void credit_init_bits(size_t bits)
602
 *
603
 * Finally, extract entropy via:
604
 *
605
 *     static void extract_entropy(void *buf, size_t len)
606 607 608
 *
 **********************************************************************/

609 610
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
611 612
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
613 614 615 616 617
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
618
	unsigned int init_bits;
619 620 621 622 623 624 625 626
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

627
static void _mix_pool_bytes(const void *buf, size_t len)
628
{
629
	blake2s_update(&input_pool.hash, buf, len);
630
}
631 632

/*
633 634 635
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
636
 */
637
static void mix_pool_bytes(const void *buf, size_t len)
638
{
639 640 641
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
642
	_mix_pool_bytes(buf, len);
643
	spin_unlock_irqrestore(&input_pool.lock, flags);
644 645
}

646 647 648 649
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
650
static void extract_entropy(void *buf, size_t len)
651 652
{
	unsigned long flags;
653 654 655 656 657
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
658
	size_t i, longs;
659

660 661 662 663 664 665 666 667 668 669 670 671
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
672
	}
673 674

	spin_lock_irqsave(&input_pool.lock, flags);
675 676 677 678 679 680 681 682 683

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

684
	spin_unlock_irqrestore(&input_pool.lock, flags);
685 686
	memzero_explicit(next_key, sizeof(next_key));

687 688
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
689 690 691
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
692
		len -= i;
693 694 695 696 697 698 699
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

700 701 702
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
703
{
704
	static struct execute_work set_ready;
705
	unsigned int new, orig, add;
706 707
	unsigned long flags;

708
	if (!bits)
709 710
		return;

711
	add = min_t(size_t, bits, POOL_BITS);
712

713
	orig = READ_ONCE(input_pool.init_bits);
714
	do {
715
		new = min_t(unsigned int, POOL_BITS, orig + add);
716
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
717

718
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
719
		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
720 721
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
722
		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
723 724 725
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
726
		if (urandom_warning.missed)
727 728 729
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
730
		spin_lock_irqsave(&base_crng.lock, flags);
731
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
732
		if (crng_init == CRNG_EMPTY) {
733
			extract_entropy(base_crng.key, sizeof(base_crng.key));
734
			crng_init = CRNG_EARLY;
735 736 737 738 739
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

740 741 742 743 744 745 746 747

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
748
 *	void add_device_randomness(const void *buf, size_t len);
749
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
750 751
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
752
 *	void add_interrupt_randomness(int irq);
753
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
754
 *	void add_disk_randomness(struct gendisk *disk);
755 756 757 758 759 760 761 762 763 764 765 766 767
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
768 769
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
770
 * command line option 'random.trust_bootloader'.
771
 *
772 773 774 775
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
776 777 778 779 780
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
781 782 783 784 785 786 787 788 789 790 791 792 793
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
794 795
 **********************************************************************/

796 797
static bool trust_cpu __initdata = true;
static bool trust_bootloader __initdata = true;
798 799 800 801
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
802 803 804 805
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
806
early_param("random.trust_cpu", parse_trust_cpu);
807
early_param("random.trust_bootloader", parse_trust_bootloader);
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
826 827
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
828
		crng_reseed(NULL);
829 830 831 832 833 834 835
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

836
/*
837 838
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
839
 */
840
void __init random_init_early(const char *command_line)
841
{
842
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
843
	size_t i, longs, arch_bits;
844

845 846 847 848 849
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

850
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
851
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
852 853 854 855 856
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
857
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
858 859 860 861
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
862
		}
863 864
		arch_bits -= sizeof(*entropy) * 8;
		++i;
865
	}
866

867
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
868
	_mix_pool_bytes(command_line, strlen(command_line));
869 870 871

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
872
		crng_reseed(NULL);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
888
	add_latent_entropy();
889

890
	/*
891 892
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
893 894 895 896 897
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

898
	/* Reseed if already seeded by earlier phases. */
899
	if (crng_ready())
900
		crng_reseed(NULL);
901

902 903
	WARN_ON(register_pm_notifier(&pm_notifier));

904 905
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
906
}
907

908
/*
909 910
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
911
 *
912 913 914
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
915
 */
916
void add_device_randomness(const void *buf, size_t len)
917
{
918 919
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
920

921
	spin_lock_irqsave(&input_pool.lock, flags);
922
	_mix_pool_bytes(&entropy, sizeof(entropy));
923
	_mix_pool_bytes(buf, len);
924
	spin_unlock_irqrestore(&input_pool.lock, flags);
925 926 927
}
EXPORT_SYMBOL(add_device_randomness);

928
/*
929 930 931
 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 * may produce endless random bits, so this function will sleep for
 * some amount of time after, if the sleep_after parameter is true.
932
 */
933
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
934
{
935
	mix_pool_bytes(buf, len);
936 937
	credit_init_bits(entropy);

938
	/*
939
	 * Throttle writing to once every reseed interval, unless we're not yet
940
	 * initialized or no entropy is credited.
941
	 */
942
	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
943
		schedule_timeout_interruptible(crng_reseed_interval());
944 945 946 947
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
948 949
 * Handle random seed passed by bootloader, and credit it depending
 * on the command line option 'random.trust_bootloader'.
950
 */
951
void __init add_bootloader_randomness(const void *buf, size_t len)
952
{
953
	mix_pool_bytes(buf, len);
954
	if (trust_bootloader)
955
		credit_init_bits(len * 8);
956 957
}

958
#if IS_ENABLED(CONFIG_VMGENID)
959 960
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

961 962 963 964 965
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
966
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
967
{
968
	add_device_randomness(unique_vm_id, len);
969
	if (crng_ready()) {
970
		crng_reseed(NULL);
971 972
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
973
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
974
}
975
#if IS_MODULE(CONFIG_VMGENID)
976
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
977
#endif
978

979
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
980 981 982 983 984
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

985
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
986 987 988 989
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
990
#endif
991

992
struct fast_pool {
993
	unsigned long pool[4];
994
	unsigned long last;
995
	unsigned int count;
996
	struct timer_list mix;
997 998
};

999 1000
static void mix_interrupt_randomness(struct timer_list *work);

1001 1002
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1003
#define FASTMIX_PERM SIPHASH_PERMUTATION
1004
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1005
#else
1006
#define FASTMIX_PERM HSIPHASH_PERMUTATION
1007
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1008
#endif
1009
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1010 1011
};

1012
/*
1013 1014 1015
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1016
 * four-word SipHash state, while v represents a two-word input.
1017
 */
1018
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1019
{
1020
	s[3] ^= v1;
1021
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1022 1023
	s[0] ^= v1;
	s[3] ^= v2;
1024
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1025
	s[0] ^= v2;
1026 1027
}

1028 1029 1030 1031 1032
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1033
int __cold random_online_cpu(unsigned int cpu)
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1051
static void mix_interrupt_randomness(struct timer_list *work)
1052 1053
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1054
	/*
1055 1056 1057 1058 1059
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1060
	 */
1061
	unsigned long pool[2];
1062
	unsigned int count;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1075
	memcpy(pool, fast_pool->pool, sizeof(pool));
1076
	count = fast_pool->count;
1077
	fast_pool->count = 0;
1078 1079 1080
	fast_pool->last = jiffies;
	local_irq_enable();

1081
	mix_pool_bytes(pool, sizeof(pool));
1082
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1083

1084 1085 1086
	memzero_explicit(pool, sizeof(pool));
}

1087
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1088
{
1089
	enum { MIX_INFLIGHT = 1U << 31 };
1090
	unsigned long entropy = random_get_entropy();
1091 1092
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1093
	unsigned int new_count;
1094

1095 1096
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1097
	new_count = ++fast_pool->count;
1098

1099
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1100 1101
		return;

1102
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1103
		return;
1104

1105
	fast_pool->count |= MIX_INFLIGHT;
1106 1107 1108 1109
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1110
}
1111
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1121 1122 1123 1124
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1125 1126 1127 1128 1129
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1130
	unsigned int bits;
1131

1132 1133 1134 1135 1136
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1137
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1138 1139 1140 1141 1142 1143
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1185
	 */
1186 1187 1188
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1189
		_credit_init_bits(bits);
1190 1191
}

1192
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1217
void __cold rand_initialize_disk(struct gendisk *disk)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1233 1234 1235
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
1236 1237
	atomic_t samples;
	unsigned int samples_per_bit;
1238 1239
};

1240
/*
1241 1242 1243
 * Each time the timer fires, we expect that we got an unpredictable jump in
 * the cycle counter. Even if the timer is running on another CPU, the timer
 * activity will be touching the stack of the CPU that is generating entropy.
1244
 *
1245 1246 1247
 * Note that we don't re-arm the timer in the timer itself - we are happy to be
 * scheduled away, since that just makes the load more complex, but we do not
 * want the timer to keep ticking unless the entropy loop is running.
1248 1249 1250
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1251
static void __cold entropy_timer(struct timer_list *timer)
1252
{
1253
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1254
	unsigned long entropy = random_get_entropy();
1255

1256
	mix_pool_bytes(&entropy, sizeof(entropy));
1257
	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1258
		credit_init_bits(1);
1259 1260 1261
}

/*
1262 1263
 * If we have an actual cycle counter, see if we can generate enough entropy
 * with timing noise.
1264
 */
1265
static void __cold try_to_generate_entropy(void)
1266
{
1267
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1268 1269 1270
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1271
	int cpu = -1;
1272

1273 1274 1275 1276 1277 1278 1279 1280
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1281 1282
		return;

1283
	atomic_set(&stack.samples, 0);
1284
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1285
	while (!crng_ready() && !signal_pending(current)) {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		/*
		 * Check !timer_pending() and then ensure that any previous callback has finished
		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
		 */
		if (!timer_pending(&stack.timer) && try_to_del_timer_sync(&stack.timer) >= 0) {
			struct cpumask timer_cpus;
			unsigned int num_cpus;

			/*
			 * Preemption must be disabled here, both to read the current CPU number
			 * and to avoid scheduling a timer on a dead CPU.
			 */
			preempt_disable();

			/* Only schedule callbacks on timer CPUs that are online. */
			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
			num_cpus = cpumask_weight(&timer_cpus);
			/* In very bizarre case of misconfiguration, fallback to all online. */
			if (unlikely(num_cpus == 0)) {
				timer_cpus = *cpu_online_mask;
				num_cpus = cpumask_weight(&timer_cpus);
			}

			/* Basic CPU round-robin, which avoids the current CPU. */
			do {
				cpu = cpumask_next(cpu, &timer_cpus);
				if (cpu == nr_cpumask_bits)
					cpu = cpumask_first(&timer_cpus);
			} while (cpu == smp_processor_id() && num_cpus > 1);

			/* Expiring the timer at `jiffies` means it's the next tick. */
			stack.timer.expires = jiffies;

			add_timer_on(&stack.timer, cpu);

			preempt_enable();
		}
1323
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1324
		schedule();
1325
		stack.entropy = random_get_entropy();
1326
	}
1327
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1328 1329 1330 1331 1332

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
}

1333 1334 1335 1336 1337 1338 1339 1340

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1341 1342 1343 1344 1345 1346 1347 1348
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1349 1350 1351 1352
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1353 1354
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1355 1356 1357 1358 1359 1360 1361
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1362
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1363
{
1364 1365 1366 1367
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1368 1369
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1370

1371 1372 1373 1374 1375 1376
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1377

1378
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1379 1380 1381 1382 1383 1384
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1385 1386 1387 1388 1389

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1390 1391
}

1392
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1393
{
1394
	poll_wait(file, &crng_init_wait, wait);
1395
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1396 1397
}

1398
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1399
{
1400
	u8 block[BLAKE2S_BLOCK_SIZE];
1401 1402
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1413 1414 1415 1416 1417 1418 1419

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1420
	}
1421

1422
	memzero_explicit(block, sizeof(block));
1423
	return ret ? ret : -EFAULT;
1424 1425
}

1426
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1427
{
1428
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1429 1430
}

1431
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1432 1433 1434
{
	static int maxwarn = 10;

1435 1436 1437 1438 1439 1440 1441
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1442 1443 1444 1445 1446
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1447 1448
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1449
		}
1450 1451
	}

1452
	return get_random_bytes_user(iter);
1453 1454
}

1455
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1456 1457 1458
{
	int ret;

1459 1460 1461 1462 1463
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1464 1465 1466
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1467
	return get_random_bytes_user(iter);
1468 1469
}

M
Matt Mackall 已提交
1470
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1471 1472
{
	int __user *p = (int __user *)arg;
1473
	int ent_count;
L
Linus Torvalds 已提交
1474 1475 1476

	switch (cmd) {
	case RNDGETENTCNT:
1477
		/* Inherently racy, no point locking. */
1478
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1486 1487
		if (ent_count < 0)
			return -EINVAL;
1488
		credit_init_bits(ent_count);
1489
		return 0;
1490 1491 1492 1493 1494 1495
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1496 1497 1498 1499 1500 1501
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1502 1503 1504 1505 1506
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1507
		ret = write_pool_user(&iter);
1508 1509 1510 1511
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1512
			return -EFAULT;
1513
		credit_init_bits(ent_count);
1514
		return 0;
1515
	}
L
Linus Torvalds 已提交
1516 1517
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1518
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1519 1520 1521
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1522 1523 1524
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1525
		if (!crng_ready())
1526
			return -ENODATA;
1527
		crng_reseed(NULL);
1528
		return 0;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533
	default:
		return -EINVAL;
	}
}

1534 1535 1536 1537 1538
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1539
const struct file_operations random_fops = {
1540
	.read_iter = random_read_iter,
1541
	.write_iter = random_write_iter,
1542
	.poll = random_poll,
M
Matt Mackall 已提交
1543
	.unlocked_ioctl = random_ioctl,
1544
	.compat_ioctl = compat_ptr_ioctl,
1545
	.fasync = random_fasync,
1546
	.llseek = noop_llseek,
1547 1548
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1549 1550
};

1551
const struct file_operations urandom_fops = {
1552
	.read_iter = urandom_read_iter,
1553
	.write_iter = random_write_iter,
1554 1555 1556 1557
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1558 1559
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1560 1561
};

1562

L
Linus Torvalds 已提交
1563 1564
/********************************************************************
 *
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1583
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1584 1585 1586
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1587
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1588 1589
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1597
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1598
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1599
static int sysctl_poolsize = POOL_BITS;
1600
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1601 1602

/*
G
Greg Price 已提交
1603
 * This function is used to return both the bootid UUID, and random
1604
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1605 1606
 * then a new UUID is generated and returned to the user.
 */
1607
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1608
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1609
{
1610 1611 1612 1613 1614 1615 1616 1617 1618
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1624 1625 1626 1627 1628 1629 1630 1631
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1632

1633
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1634
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1635 1636
}

1637
/* The same as proc_dointvec, but writes don't change anything. */
1638
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1639 1640
			    size_t *lenp, loff_t *ppos)
{
1641
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1642 1643
}

1644
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1650
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1651 1652 1653
	},
	{
		.procname	= "entropy_avail",
1654
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1655 1656
		.maxlen		= sizeof(int),
		.mode		= 0444,
1657
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1658 1659 1660
	},
	{
		.procname	= "write_wakeup_threshold",
1661
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1662 1663
		.maxlen		= sizeof(int),
		.mode		= 0644,
1664
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1665
	},
1666 1667
	{
		.procname	= "urandom_min_reseed_secs",
1668
		.data		= &sysctl_random_min_urandom_seed,
1669 1670
		.maxlen		= sizeof(int),
		.mode		= 0644,
1671
		.proc_handler	= proc_do_rointvec,
1672
	},
L
Linus Torvalds 已提交
1673 1674 1675 1676
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1677
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1678 1679 1680 1681
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1682
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1683
	},
1684
	{ }
L
Linus Torvalds 已提交
1685
};
1686 1687

/*
1688 1689
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1690 1691 1692 1693 1694 1695 1696
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1697
#endif