random.c 52.5 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 */

/*
 * Exported interfaces ---- output
 * ===============================
 *
13
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
14
 * and two for use from userspace.
L
Linus Torvalds 已提交
15
 *
16 17
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
18
 *
19
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
32 33 34
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
35
 * The primary kernel interfaces are:
36
 *
37
 *	void get_random_bytes(void *buf, size_t nbytes);
38 39 40 41
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
42
 *
43 44 45 46 47
 * These interfaces will return the requested number of random bytes
 * into the given buffer or as a return value. This is equivalent to a
 * read from /dev/urandom. The get_random_{u32,u64,int,long}() family
 * of functions may be higher performance for one-off random integers,
 * because they do a bit of buffering.
48 49 50 51 52 53 54 55 56 57 58
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
59 60 61 62 63 64
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
65
 *	void add_device_randomness(const void *buf, size_t size);
66
 *	void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
67
 *                                unsigned int value);
68
 *	void add_interrupt_randomness(int irq);
69
 *	void add_disk_randomness(struct gendisk *disk);
70
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
71
 *					size_t entropy);
72
 *	void add_bootloader_randomness(const void *buf, size_t size);
L
Linus Torvalds 已提交
73
 *
74 75 76 77 78 79 80 81
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
82 83 84
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
85 86 87
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
88 89 90 91 92 93
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
94 95 96 97 98
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
99 100 101 102 103 104 105 106
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
165 166
 *	mknod /dev/random c 1 8
 *	mknod /dev/urandom c 1 9
L
Linus Torvalds 已提交
167 168
 */

Y
Yangtao Li 已提交
169 170
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
184
#include <linux/mm.h>
185
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
186
#include <linux/spinlock.h>
187
#include <linux/kthread.h>
L
Linus Torvalds 已提交
188
#include <linux/percpu.h>
189
#include <linux/ptrace.h>
190
#include <linux/workqueue.h>
191
#include <linux/irq.h>
192
#include <linux/ratelimit.h>
193 194
#include <linux/syscalls.h>
#include <linux/completion.h>
195
#include <linux/uuid.h>
196
#include <linux/uaccess.h>
197
#include <crypto/chacha.h>
198
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
199 200
#include <asm/processor.h>
#include <asm/irq.h>
201
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
202 203
#include <asm/io.h>

204 205 206 207 208 209 210 211 212
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
213

214 215 216 217 218
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
219
 * crng_init is protected by base_crng->lock, and only increases
220 221 222
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
223
#define crng_ready() (likely(crng_init > 1))
224 225 226 227 228
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);
229

230
/* Control how we warn userspace. */
231 232 233 234 235 236 237 238
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

	if (crng_ready())
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (crng_ready())
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


383
/*********************************************************************
L
Linus Torvalds 已提交
384
 *
385
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
386
 *
387 388 389
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
390
 *
391 392 393 394 395 396 397 398 399 400 401 402 403
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
 * into the given buffer or as a return value. This is equivalent to
 * a read from /dev/urandom. The integer family of functions may be
 * higher performance for one-off random integers, because they do a
 * bit of buffering.
404 405 406
 *
 *********************************************************************/

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
431

432 433
/* Used by crng_reseed() to extract a new seed from the input pool. */
static bool drain_entropy(void *buf, size_t nbytes);
434

435
/*
436 437 438
 * This extracts a new crng key from the input pool, but only if there is a
 * sufficient amount of entropy available, in order to mitigate bruteforcing
 * of newly added bits.
439
 */
440
static void crng_reseed(void)
441
{
442
	unsigned long flags;
443 444
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
445
	bool finalize_init = false;
446

447 448 449
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
	if (!drain_entropy(key, sizeof(key)))
		return;
450

451 452 453 454 455 456 457 458 459 460 461 462 463
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
464 465
	if (crng_init < 2) {
		crng_init = 2;
466 467 468 469 470
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
	}
486 487
}

488
/*
489 490 491 492 493
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
494 495 496 497
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
498
{
499
	u8 first_block[CHACHA_BLOCK_SIZE];
500

501 502 503 504 505 506 507 508 509 510
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
511 512
}

513
/*
514 515 516
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
517
 */
518 519
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
520
{
521
	unsigned long flags;
522
	struct crng *crng;
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
	 * this is what crng_{fast,slow}_load mutate during early init.
	 */
	if (unlikely(!crng_ready())) {
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
543
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/*
	 * If the base_crng is more than 5 minutes old, we reseed, which
	 * in turn bumps the generation counter that we check below.
	 */
	if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
		crng_reseed();

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * This function is for crng_init == 0 only.
 *
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
 */
static size_t crng_fast_load(const void *cp, size_t len)
{
	static int crng_init_cnt = 0;
	unsigned long flags;
	const u8 *src = (const u8 *)cp;
	size_t ret = 0;

	if (!spin_trylock_irqsave(&base_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
		base_crng.key[crng_init_cnt % sizeof(base_crng.key)] ^= *src;
		src++; crng_init_cnt++; len--; ret++;
	}
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
		++base_crng.generation;
		crng_init = 1;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	if (crng_init == 1)
		pr_notice("fast init done\n");
	return ret;
}

/*
 * This function is for crng_init == 0 only.
 *
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So, we simply hash the contents in with the current key. Finally,
 * we do *not* advance crng_init_cnt since buffer we may get may be
 * something like a fixed DMI table (for example), which might very
 * well be unique to the machine, but is otherwise unvarying.
 */
static void crng_slow_load(const void *cp, size_t len)
{
	unsigned long flags;
	struct blake2s_state hash;

	blake2s_init(&hash, sizeof(base_crng.key));

	if (!spin_trylock_irqsave(&base_crng.lock, flags))
		return;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return;
	}

	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, cp, len);
	blake2s_final(&hash, base_crng.key);

	spin_unlock_irqrestore(&base_crng.lock, flags);
}

static void _get_random_bytes(void *buf, size_t nbytes)
650
{
651
	u32 chacha_state[CHACHA_STATE_WORDS];
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
 * is POOL_MIN_BITS entropy credited prior:
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *     static bool drain_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

920 921 922 923 924
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

925
/* For notifying userspace should write into /dev/random. */
926 927 928 929 930 931 932 933 934 935 936 937 938 939
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

940 941 942 943
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
944 945 946 947 948 949

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
950
static void mix_pool_bytes(const void *in, size_t nbytes)
951
{
952 953 954 955 956
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
		crng_reseed();
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
982 983
{
	unsigned long flags;
984 985 986 987 988 989 990 991 992 993 994 995
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
996 997

	spin_lock_irqsave(&input_pool.lock, flags);
998 999 1000 1001 1002 1003 1004 1005 1006

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

1007
	spin_unlock_irqrestore(&input_pool.lock, flags);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
 * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
 * set the entropy count to zero (but don't actually touch any data). Only then
 * can we extract a new key with extract_entropy().
 */
static bool drain_entropy(void *buf, size_t nbytes)
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
		if (entropy_count < POOL_MIN_BITS)
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
1101 1102

/*
1103 1104 1105 1106 1107
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
1108
 */
1109
int __init rand_initialize(void)
1110
{
1111 1112 1113 1114
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		mix_pool_bytes(&rv, sizeof(rv));
	}
	mix_pool_bytes(&now, sizeof(now));
	mix_pool_bytes(utsname(), sizeof(*(utsname())));
1126

1127 1128
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
1129

1130 1131 1132 1133
	if (arch_init && trust_cpu && crng_init < 2) {
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
1134

1135 1136 1137 1138 1139
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
	return 0;
1140
}
1141

L
Linus Torvalds 已提交
1142 1143 1144
/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1145
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1146 1147
};

1148
/*
1149 1150
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1151
 *
1152 1153 1154
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1155
 */
1156
void add_device_randomness(const void *buf, size_t size)
1157
{
1158
	unsigned long time = random_get_entropy() ^ jiffies;
1159
	unsigned long flags;
1160

1161 1162
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1163

1164
	spin_lock_irqsave(&input_pool.lock, flags);
1165 1166
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
1167
	spin_unlock_irqrestore(&input_pool.lock, flags);
1168 1169 1170
}
EXPORT_SYMBOL(add_device_randomness);

L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
1181
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1182 1183 1184
{
	struct {
		long jiffies;
1185 1186
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
1187 1188 1189 1190
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1191
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1192
	sample.num = num;
1193
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198 1199

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1200 1201
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1202

1203 1204
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1205

1206 1207
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1219

1220 1221 1222
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1223
	 * and limit entropy estimate to 12 bits.
1224
	 */
1225
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1226 1227
}

1228
void add_input_randomness(unsigned int type, unsigned int code,
1229
			  unsigned int value)
L
Linus Torvalds 已提交
1230 1231
{
	static unsigned char last_value;
1232
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1233

1234
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1235 1236 1237 1238 1239 1240 1241
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1242
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
	if (unlikely(crng_init == 0)) {
		size_t ret = crng_fast_load(buffer, count);
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

struct fast_pool {
	union {
		u32 pool32[4];
		u64 pool64[2];
	};
	unsigned long last;
	u16 reg_idx;
	u8 count;
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector. It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
static void fast_mix(u32 pool[4])
{
	u32 a = pool[0],	b = pool[1];
	u32 c = pool[2],	d = pool[3];

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	pool[0] = a;  pool[1] = b;
	pool[2] = c;  pool[3] = d;
}

1357 1358
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1359
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1360
{
1361
	u32 *ptr = (u32 *)regs;
1362
	unsigned int idx;
1363 1364 1365

	if (regs == NULL)
		return 0;
1366
	idx = READ_ONCE(f->reg_idx);
1367
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
1368 1369 1370
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1371
	return *ptr;
1372 1373
}

1374
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1375
{
1376 1377 1378 1379
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
	unsigned long now = jiffies;
	cycles_t cycles = random_get_entropy();
1380

1381 1382
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (sizeof(cycles) == 8)
		fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
	else {
		fast_pool->pool32[0] ^= cycles ^ irq;
		fast_pool->pool32[1] ^= now;
	}

	if (sizeof(unsigned long) == 8)
		fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
	else {
		fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
		fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
	}

	fast_mix(fast_pool->pool32);
	++fast_pool->count;
1400

T
Theodore Ts'o 已提交
1401
	if (unlikely(crng_init == 0)) {
1402
		if (fast_pool->count >= 64 &&
1403
		    crng_fast_load(fast_pool->pool32, sizeof(fast_pool->pool32)) > 0) {
1404 1405
			fast_pool->count = 0;
			fast_pool->last = now;
1406
			if (spin_trylock(&input_pool.lock)) {
1407
				_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
1408 1409
				spin_unlock(&input_pool.lock);
			}
1410 1411 1412 1413
		}
		return;
	}

1414
	if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1415 1416
		return;

1417
	if (!spin_trylock(&input_pool.lock))
1418
		return;
1419

1420
	fast_pool->last = now;
1421
	_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
1422
	spin_unlock(&input_pool.lock);
1423

1424
	fast_pool->count = 0;
1425

1426
	/* Award one bit for the contents of the fast pool. */
1427
	credit_entropy_bits(1);
L
Linus Torvalds 已提交
1428
}
1429
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1446
	credit_entropy_bits(1);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1469
			mod_timer(&stack.timer, jiffies + 1);
1470
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1471 1472 1473 1474 1475 1476
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1477
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1511
{
1512 1513
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1514

1515 1516 1517 1518 1519 1520
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1521

1522 1523
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1524

1525 1526
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1527

1528 1529 1530 1531 1532 1533 1534
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1535 1536
}

1537
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1538
{
1539
	__poll_t mask;
L
Linus Torvalds 已提交
1540

1541
	poll_wait(file, &crng_init_wait, wait);
1542 1543
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1544
	if (crng_ready())
1545
		mask |= EPOLLIN | EPOLLRDNORM;
1546
	if (input_pool.entropy_count < POOL_MIN_BITS)
1547
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1548 1549 1550
	return mask;
}

1551
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1552
{
1553
	size_t len;
1554
	int ret = 0;
1555
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1556

1557 1558
	while (count) {
		len = min(count, sizeof(block));
1559 1560 1561 1562
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1563 1564 1565
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1566
		cond_resched();
L
Linus Torvalds 已提交
1567
	}
1568

1569 1570 1571
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1572 1573
}

1574 1575
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1576
{
1577
	int ret;
1578

1579
	ret = write_pool(buffer, count);
1580 1581 1582 1583
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

	if (!crng_ready() && maxwarn > 0) {
		maxwarn--;
		if (__ratelimit(&urandom_warning))
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
	}

	return get_random_bytes_user(buf, nbytes);
}

static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1612
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1620
		/* Inherently racy, no point locking. */
1621
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1629 1630 1631 1632
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1642
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1643 1644
		if (retval < 0)
			return retval;
1645 1646
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1647 1648
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1649 1650 1651 1652
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1653 1654
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1655
		if (xchg(&input_pool.entropy_count, 0)) {
1656 1657 1658
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1659
		return 0;
1660 1661 1662 1663 1664
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1665
		crng_reseed();
1666
		return 0;
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671
	default:
		return -EINVAL;
	}
}

1672 1673 1674 1675 1676
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1677
const struct file_operations random_fops = {
1678
	.read = random_read,
L
Linus Torvalds 已提交
1679
	.write = random_write,
1680
	.poll = random_poll,
M
Matt Mackall 已提交
1681
	.unlocked_ioctl = random_ioctl,
1682
	.compat_ioctl = compat_ptr_ioctl,
1683
	.fasync = random_fasync,
1684
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1685 1686
};

1687
const struct file_operations urandom_fops = {
1688
	.read = urandom_read,
L
Linus Torvalds 已提交
1689
	.write = random_write,
M
Matt Mackall 已提交
1690
	.unlocked_ioctl = random_ioctl,
1691
	.compat_ioctl = compat_ptr_ioctl,
1692
	.fasync = random_fasync,
1693
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1694 1695
};

1696

L
Linus Torvalds 已提交
1697 1698
/********************************************************************
 *
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
 * - urandom_min_reseed_secs - fixed to the meaningless value "60".
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1731 1732
static int sysctl_random_min_urandom_seed = 60;
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1733
static int sysctl_poolsize = POOL_BITS;
L
Linus Torvalds 已提交
1734 1735 1736
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1737
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1738 1739 1740
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1741 1742 1743
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1744
 */
1745 1746
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1747
{
1748
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1755 1756 1757 1758 1759 1760 1761 1762
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1763

J
Joe Perches 已提交
1764 1765
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1766 1767 1768
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1769
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1770 1771
}

1772
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1778
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1779 1780 1781
	},
	{
		.procname	= "entropy_avail",
1782
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1783 1784
		.maxlen		= sizeof(int),
		.mode		= 0444,
1785
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1786 1787 1788
	},
	{
		.procname	= "write_wakeup_threshold",
1789
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1790 1791
		.maxlen		= sizeof(int),
		.mode		= 0644,
1792
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1793
	},
1794 1795
	{
		.procname	= "urandom_min_reseed_secs",
1796
		.data		= &sysctl_random_min_urandom_seed,
1797 1798 1799 1800
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1806
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1812
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1813
	},
1814
	{ }
L
Linus Torvalds 已提交
1815
};
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1827
#endif