random.c 49.8 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87 88
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
89

90
/* Control how we warn userspace. */
91 92
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
93 94
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
95 96 97
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
100 101 102
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
103 104 105 106 107 108 109 110 111 112
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

113 114 115 116 117
static void crng_set_ready(struct work_struct *work)
{
	static_branch_enable(&crng_is_ready);
}

118 119 120 121 122
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
123 124 125 126
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
127 128 129 130 131 132
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
133
	while (!crng_ready()) {
134
		int ret;
135 136

		try_to_generate_entropy();
137 138 139
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
140
	}
141 142 143 144 145 146 147 148 149 150 151
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
152
int register_random_ready_notifier(struct notifier_block *nb)
153 154
{
	unsigned long flags;
155
	int ret = -EALREADY;
156 157

	if (crng_ready())
158
		return ret;
159

160 161 162 163 164
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
165 166 167 168 169
}

/*
 * Delete a previously registered readiness callback function.
 */
170
int unregister_random_ready_notifier(struct notifier_block *nb)
171 172
{
	unsigned long flags;
173
	int ret;
174

175 176 177 178
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
179 180 181 182 183 184
}

static void process_random_ready_list(void)
{
	unsigned long flags;

185 186 187
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
188 189
}

190 191
#define warn_unseeded_randomness() \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_)
192

193
static void _warn_unseeded_randomness(const char *func_name, void *caller)
194
{
195
	if (!IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) || crng_ready())
196
		return;
197 198
	printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
			func_name, caller, crng_init);
199 200 201
}


202
/*********************************************************************
L
Linus Torvalds 已提交
203
 *
204
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
205
 *
206 207 208
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
209
 *
210 211
 * There are a few exported interfaces for use by other drivers:
 *
212
 *	void get_random_bytes(void *buf, size_t len)
213 214 215 216 217 218
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
219
 * into the given buffer or as a return value. This is equivalent to
220 221 222 223
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
224 225 226
 *
 *********************************************************************/

227 228 229 230
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
251

252
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
253
static void extract_entropy(void *buf, size_t len);
254

255 256
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
257
{
258
	unsigned long flags;
259 260
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
261

262
	extract_entropy(key, sizeof(key));
263

264 265 266 267 268 269 270 271 272 273 274 275 276
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
277
	if (!static_branch_likely(&crng_is_ready))
278
		crng_init = CRNG_READY;
279 280
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
281 282
}

283
/*
284 285 286 287 288
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
289 290 291 292 293 294 295
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
296 297 298 299
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
300
{
301
	u8 first_block[CHACHA_BLOCK_SIZE];
302

303 304 305 306 307 308 309 310
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
311
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
312
	memzero_explicit(first_block, sizeof(first_block));
313 314
}

315
/*
316 317 318 319
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
320 321 322 323 324 325 326 327 328 329 330
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
331
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
332 333
					 (unsigned int)uptime / 2 * HZ);
	}
334
	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
335 336
}

337
/*
338 339 340
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
341
 */
342 343
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
344
{
345
	unsigned long flags;
346
	struct crng *crng;
347

348 349 350 351 352
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
353
	 * ready, we do fast key erasure with the base_crng directly, extracting
354
	 * when crng_init is CRNG_EMPTY.
355
	 */
356
	if (!crng_ready()) {
357 358 359 360
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
361
		if (!ready) {
362
			if (crng_init == CRNG_EMPTY)
363
				extract_entropy(base_crng.key, sizeof(base_crng.key));
364 365
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
366
		}
367 368 369
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
370
	}
371 372

	/*
373 374
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
375
	 */
376
	if (unlikely(crng_has_old_seed()))
377
		crng_reseed();
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
405 406
}

407
static void _get_random_bytes(void *buf, size_t len)
408
{
409
	u32 chacha_state[CHACHA_STATE_WORDS];
410
	u8 tmp[CHACHA_BLOCK_SIZE];
411
	size_t first_block_len;
412

413
	if (!len)
414 415
		return;

416 417 418 419
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
420

421 422
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
423
			chacha20_block(chacha_state, tmp);
424
			memcpy(buf, tmp, len);
425 426 427 428 429 430 431
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
432
		len -= CHACHA_BLOCK_SIZE;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
449
void get_random_bytes(void *buf, size_t len)
450
{
451
	warn_unseeded_randomness();
452
	_get_random_bytes(buf, len);
453 454 455
}
EXPORT_SYMBOL(get_random_bytes);

456
static ssize_t get_random_bytes_user(void __user *ubuf, size_t len)
457
{
458
	size_t block_len, left, ret = 0;
459 460 461
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

462
	if (!len)
463 464
		return 0;

465 466 467 468 469 470 471 472 473 474 475
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
476 477
	if (len <= CHACHA_KEY_SIZE) {
		ret = len - copy_to_user(ubuf, &chacha_state[4], len);
478 479
		goto out_zero_chacha;
	}
480

481
	for (;;) {
482 483 484 485
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

486 487
		block_len = min_t(size_t, len, CHACHA_BLOCK_SIZE);
		left = copy_to_user(ubuf, output, block_len);
488
		if (left) {
489
			ret += block_len - left;
490 491 492
			break;
		}

493 494 495 496
		ubuf += block_len;
		ret += block_len;
		len -= block_len;
		if (!len)
497
			break;
498 499

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
500
		if (ret % PAGE_SIZE == 0) {
501 502 503 504
			if (signal_pending(current))
				break;
			cond_resched();
		}
505
	}
506 507

	memzero_explicit(output, sizeof(output));
508 509
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
510
	return ret ? ret : -EFAULT;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

549
	warn_unseeded_randomness();
550

551 552 553 554 555
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

587
	warn_unseeded_randomness();
588

589 590 591 592 593
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
670
size_t __must_check get_random_bytes_arch(void *buf, size_t len)
671
{
672
	size_t left = len;
673 674 675 676
	u8 *p = buf;

	while (left) {
		unsigned long v;
677
		size_t block_len = min_t(size_t, left, sizeof(unsigned long));
678 679 680 681

		if (!arch_get_random_long(&v))
			break;

682 683 684
		memcpy(p, &v, block_len);
		p += block_len;
		left -= block_len;
685 686
	}

687
	return len - left;
688 689 690
}
EXPORT_SYMBOL(get_random_bytes_arch);

691 692 693 694 695 696 697

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
698
 *     static void mix_pool_bytes(const void *buf, size_t len)
699 700 701
 *
 * After which, if added entropy should be credited:
 *
702
 *     static void credit_init_bits(size_t bits)
703
 *
704
 * Finally, extract entropy via:
705
 *
706
 *     static void extract_entropy(void *buf, size_t len)
707 708 709
 *
 **********************************************************************/

710 711
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
712 713
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
714 715 716 717 718
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
719
	unsigned int init_bits;
720 721 722 723 724 725 726 727
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

728
static void _mix_pool_bytes(const void *buf, size_t len)
729
{
730
	blake2s_update(&input_pool.hash, buf, len);
731
}
732 733

/*
734 735 736
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
737
 */
738
static void mix_pool_bytes(const void *buf, size_t len)
739
{
740 741 742
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
743
	_mix_pool_bytes(buf, len);
744
	spin_unlock_irqrestore(&input_pool.lock, flags);
745 746
}

747 748 749 750
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
751
static void extract_entropy(void *buf, size_t len)
752 753
{
	unsigned long flags;
754 755 756 757 758 759 760 761 762 763 764 765
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
766 767

	spin_lock_irqsave(&input_pool.lock, flags);
768 769 770 771 772 773 774 775 776

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

777
	spin_unlock_irqrestore(&input_pool.lock, flags);
778 779
	memzero_explicit(next_key, sizeof(next_key));

780 781
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
782 783 784
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
785
		len -= i;
786 787 788 789 790 791 792
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

793
static void credit_init_bits(size_t bits)
794
{
795
	static struct execute_work set_ready;
796
	unsigned int new, orig, add;
797 798
	unsigned long flags;

799
	if (crng_ready() || !bits)
800 801
		return;

802
	add = min_t(size_t, bits, POOL_BITS);
803 804

	do {
805
		orig = READ_ONCE(input_pool.init_bits);
806 807
		new = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
808

809 810
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
811
		execute_in_process_context(crng_set_ready, &set_ready);
812 813 814 815
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
816
		if (urandom_warning.missed)
817 818 819
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
820
		spin_lock_irqsave(&base_crng.lock, flags);
821
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
822
		if (crng_init == CRNG_EMPTY) {
823
			extract_entropy(base_crng.key, sizeof(base_crng.key));
824
			crng_init = CRNG_EARLY;
825 826 827 828 829
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

830 831 832 833 834 835 836 837

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
838 839 840 841
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
842
 *	void add_interrupt_randomness(int irq);
843
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
844
 *	void add_disk_randomness(struct gendisk *disk);
845 846 847 848 849 850 851 852 853 854 855 856 857
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
858 859 860
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
861
 *
862 863 864 865
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
866 867 868 869 870
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
871 872 873 874 875 876 877 878 879 880 881 882 883
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
884 885 886
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
887
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
888 889 890 891
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
892 893 894 895
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
896
early_param("random.trust_cpu", parse_trust_cpu);
897
early_param("random.trust_bootloader", parse_trust_bootloader);
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
918
		crng_reseed();
919 920 921 922 923 924 925
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

926
/*
927
 * The first collection of entropy occurs at system boot while interrupts
928 929 930 931 932
 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
 * utsname(), and the command line. Depending on the above configuration knob,
 * RDSEED may be considered sufficient for initialization. Note that much
 * earlier setup may already have pushed entropy into the input pool by the
 * time we get here.
933
 */
934
int __init random_init(const char *command_line)
935
{
936
	ktime_t now = ktime_get_real();
937
	unsigned int i, arch_bytes;
938
	unsigned long entropy;
939

940 941 942 943 944
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

945
	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
946 947 948 949 950
	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
		if (!arch_get_random_seed_long_early(&entropy) &&
		    !arch_get_random_long_early(&entropy)) {
			entropy = random_get_entropy();
			arch_bytes -= sizeof(entropy);
951
		}
952
		_mix_pool_bytes(&entropy, sizeof(entropy));
953
	}
954 955
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
956 957
	_mix_pool_bytes(command_line, strlen(command_line));
	add_latent_entropy();
958

959 960
	if (crng_ready())
		crng_reseed();
961 962
	else if (trust_cpu)
		credit_init_bits(arch_bytes * 8);
963

964 965
	WARN_ON(register_pm_notifier(&pm_notifier));

966 967
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
968
	return 0;
969
}
970

971
/*
972 973
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
974
 *
975 976 977
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
978
 */
979
void add_device_randomness(const void *buf, size_t len)
980
{
981 982
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
983

984
	spin_lock_irqsave(&input_pool.lock, flags);
985
	_mix_pool_bytes(&entropy, sizeof(entropy));
986
	_mix_pool_bytes(buf, len);
987
	spin_unlock_irqrestore(&input_pool.lock, flags);
988 989 990
}
EXPORT_SYMBOL(add_device_randomness);

991 992 993 994 995
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
996
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
997
{
998
	mix_pool_bytes(buf, len);
999 1000
	credit_init_bits(entropy);

1001
	/*
1002 1003
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
1004
	 */
1005 1006
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
1007 1008 1009 1010
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
1011 1012
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
1013
 */
1014
void add_bootloader_randomness(const void *buf, size_t len)
1015
{
1016
	mix_pool_bytes(buf, len);
1017
	if (trust_bootloader)
1018
		credit_init_bits(len * 8);
1019 1020 1021
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1022
#if IS_ENABLED(CONFIG_VMGENID)
1023 1024
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1025 1026 1027 1028 1029
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
1030
void add_vmfork_randomness(const void *unique_vm_id, size_t len)
1031
{
1032
	add_device_randomness(unique_vm_id, len);
1033
	if (crng_ready()) {
1034
		crng_reseed();
1035 1036
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1037
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1038
}
1039
#if IS_MODULE(CONFIG_VMGENID)
1040
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1041
#endif
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1054
#endif
1055

1056
struct fast_pool {
1057
	struct work_struct mix;
1058
	unsigned long pool[4];
1059
	unsigned long last;
1060
	unsigned int count;
1061 1062
};

1063 1064
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1065 1066
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
1067
#else
1068 1069
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
1070 1071 1072
#endif
};

1073
/*
1074 1075 1076
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1077
 * four-word SipHash state, while v represents a two-word input.
1078
 */
1079
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1080
{
1081
	s[3] ^= v1;
1082
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1083 1084
	s[0] ^= v1;
	s[3] ^= v2;
1085
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1086
	s[0] ^= v2;
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1112 1113 1114
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1115
	/*
1116 1117 1118 1119 1120
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1121
	 */
1122
	unsigned long pool[2];
1123
	unsigned int count;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1136
	memcpy(pool, fast_pool->pool, sizeof(pool));
1137
	count = fast_pool->count;
1138
	fast_pool->count = 0;
1139 1140 1141
	fast_pool->last = jiffies;
	local_irq_enable();

1142
	mix_pool_bytes(pool, sizeof(pool));
1143
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1144

1145 1146 1147
	memzero_explicit(pool, sizeof(pool));
}

1148
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1149
{
1150
	enum { MIX_INFLIGHT = 1U << 31 };
1151
	unsigned long entropy = random_get_entropy();
1152 1153
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1154
	unsigned int new_count;
1155

1156 1157
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1158
	new_count = ++fast_pool->count;
1159

1160
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1161 1162
		return;

1163
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1164
		return;
1165

1166 1167
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1168
	fast_pool->count |= MIX_INFLIGHT;
1169
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1170
}
1171
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1172

1173 1174 1175 1176 1177 1178 1179 1180
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1181 1182 1183 1184
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1185 1186 1187 1188 1189
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1190
	unsigned int bits;
1191

1192 1193 1194 1195 1196
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1197
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1198 1199 1200 1201 1202 1203
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1245
	 */
1246 1247 1248 1249
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
		credit_init_bits(bits);
1250 1251
}

1252
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1293 1294 1295 1296 1297 1298
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1312
static void entropy_timer(struct timer_list *timer)
1313
{
1314 1315 1316
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1317
		credit_init_bits(1);
1318 1319
		state->samples = 0;
	}
1320 1321 1322 1323 1324 1325 1326 1327
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
1328 1329 1330 1331
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1332

1333 1334 1335 1336 1337 1338 1339 1340
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1341 1342
		return;

1343
	stack.samples = 0;
1344
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1345
	while (!crng_ready() && !signal_pending(current)) {
1346
		if (!timer_pending(&stack.timer))
1347
			mod_timer(&stack.timer, jiffies + 1);
1348
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1349
		schedule();
1350
		stack.entropy = random_get_entropy();
1351 1352 1353 1354
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1355
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1366 1367 1368 1369 1370 1371 1372 1373
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1374 1375 1376 1377
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1378 1379
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1380 1381 1382 1383 1384 1385 1386
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1387
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1388
{
1389 1390
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1391

1392 1393 1394 1395 1396 1397
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1398

1399 1400
	if (len > INT_MAX)
		len = INT_MAX;
L
Linus Torvalds 已提交
1401

1402
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1403
		int ret;
1404

1405 1406 1407 1408 1409 1410
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1411
	return get_random_bytes_user(ubuf, len);
1412 1413
}

1414
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1415
{
1416
	poll_wait(file, &crng_init_wait, wait);
1417
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1418 1419
}

1420
static int write_pool(const char __user *ubuf, size_t len)
L
Linus Torvalds 已提交
1421
{
1422
	size_t block_len;
1423
	int ret = 0;
1424
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1425

1426 1427 1428
	while (len) {
		block_len = min(len, sizeof(block));
		if (copy_from_user(block, ubuf, block_len)) {
1429 1430 1431
			ret = -EFAULT;
			goto out;
		}
1432 1433 1434
		len -= block_len;
		ubuf += block_len;
		mix_pool_bytes(block, block_len);
1435
		cond_resched();
L
Linus Torvalds 已提交
1436
	}
1437

1438 1439 1440
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1441 1442
}

1443 1444
static ssize_t random_write(struct file *file, const char __user *ubuf,
			    size_t len, loff_t *ppos)
1445
{
1446
	int ret;
1447

1448
	ret = write_pool(ubuf, len);
1449 1450 1451
	if (ret)
		return ret;

1452
	return (ssize_t)len;
L
Linus Torvalds 已提交
1453 1454
}

1455 1456
static ssize_t urandom_read(struct file *file, char __user *ubuf,
			    size_t len, loff_t *ppos)
1457 1458 1459
{
	static int maxwarn = 10;

1460 1461 1462 1463 1464 1465 1466
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1467 1468 1469 1470 1471
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1472
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1473
				  current->comm, len);
1474
		}
1475 1476
	}

1477
	return get_random_bytes_user(ubuf, len);
1478 1479
}

1480 1481
static ssize_t random_read(struct file *file, char __user *ubuf,
			   size_t len, loff_t *ppos)
1482 1483 1484 1485 1486 1487
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1488
	return get_random_bytes_user(ubuf, len);
1489 1490
}

M
Matt Mackall 已提交
1491
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1492 1493 1494 1495 1496 1497 1498
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1499
		/* Inherently racy, no point locking. */
1500
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505 1506 1507
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1508 1509
		if (ent_count < 0)
			return -EINVAL;
1510
		credit_init_bits(ent_count);
1511
		return 0;
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1521
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1522 1523
		if (retval < 0)
			return retval;
1524
		credit_init_bits(ent_count);
1525
		return 0;
L
Linus Torvalds 已提交
1526 1527
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1528
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1529 1530 1531
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1532 1533 1534
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1535
		if (!crng_ready())
1536
			return -ENODATA;
1537
		crng_reseed();
1538
		return 0;
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543
	default:
		return -EINVAL;
	}
}

1544 1545 1546 1547 1548
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1549
const struct file_operations random_fops = {
1550
	.read = random_read,
L
Linus Torvalds 已提交
1551
	.write = random_write,
1552
	.poll = random_poll,
M
Matt Mackall 已提交
1553
	.unlocked_ioctl = random_ioctl,
1554
	.compat_ioctl = compat_ptr_ioctl,
1555
	.fasync = random_fasync,
1556
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1557 1558
};

1559 1560 1561 1562 1563 1564 1565 1566 1567
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1568

L
Linus Torvalds 已提交
1569 1570
/********************************************************************
 *
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1589
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1590 1591 1592
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1593
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1594 1595
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1603
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1604
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1605
static int sysctl_poolsize = POOL_BITS;
1606
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1607 1608

/*
G
Greg Price 已提交
1609
 * This function is used to return both the bootid UUID, and random
1610
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1611 1612
 * then a new UUID is generated and returned to the user.
 */
1613
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1614
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1615
{
1616 1617 1618 1619 1620 1621 1622 1623 1624
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1630 1631 1632 1633 1634 1635 1636 1637
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1638

1639
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1640
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1641 1642
}

1643
/* The same as proc_dointvec, but writes don't change anything. */
1644
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1645 1646
			    size_t *lenp, loff_t *ppos)
{
1647
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1648 1649
}

1650
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1656
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1657 1658 1659
	},
	{
		.procname	= "entropy_avail",
1660
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1661 1662
		.maxlen		= sizeof(int),
		.mode		= 0444,
1663
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1664 1665 1666
	},
	{
		.procname	= "write_wakeup_threshold",
1667
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1668 1669
		.maxlen		= sizeof(int),
		.mode		= 0644,
1670
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1671
	},
1672 1673
	{
		.procname	= "urandom_min_reseed_secs",
1674
		.data		= &sysctl_random_min_urandom_seed,
1675 1676
		.maxlen		= sizeof(int),
		.mode		= 0644,
1677
		.proc_handler	= proc_do_rointvec,
1678
	},
L
Linus Torvalds 已提交
1679 1680 1681 1682
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1683
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1684 1685 1686 1687
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1688
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1689
	},
1690
	{ }
L
Linus Torvalds 已提交
1691
};
1692 1693

/*
1694 1695
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1696 1697 1698 1699 1700 1701 1702
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1703
#endif