random.c 49.2 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73 74 75 76 77
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
78
 * crng_init is protected by base_crng->lock, and only increases
79 80 81
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
82
#define crng_ready() (likely(crng_init > 1))
83 84 85
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
86 87
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
88

89
/* Control how we warn userspace. */
90 91 92 93 94 95
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98 99
 * to supply cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}().
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
115 116 117 118
 * cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}(). Using any
 * of these functions without first calling this function means that
 * the returned numbers might not be cryptographically secure.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
148
int register_random_ready_notifier(struct notifier_block *nb)
149 150
{
	unsigned long flags;
151
	int ret = -EALREADY;
152 153

	if (crng_ready())
154
		return ret;
155

156 157 158 159 160
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
161 162 163 164 165
}

/*
 * Delete a previously registered readiness callback function.
 */
166
int unregister_random_ready_notifier(struct notifier_block *nb)
167 168
{
	unsigned long flags;
169
	int ret;
170

171 172 173 174
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
175 176 177 178 179 180
}

static void process_random_ready_list(void)
{
	unsigned long flags;

181 182 183
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


210
/*********************************************************************
L
Linus Torvalds 已提交
211
 *
212
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
213
 *
214 215 216
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
217
 *
218 219 220 221 222 223 224 225 226
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
227 228 229 230
 * into the given buffer or as a return value. The returned numbers are
 * the same as those of getrandom(0). The integer family of functions may
 * be higher performance for one-off random integers, because they do a
 * bit of buffering and do not invoke reseeding.
231 232 233
 *
 *********************************************************************/

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
258

259
/* Used by crng_reseed() to extract a new seed from the input pool. */
260
static bool drain_entropy(void *buf, size_t nbytes, bool force);
261

262
/*
263
 * This extracts a new crng key from the input pool, but only if there is a
264 265
 * sufficient amount of entropy available or force is true, in order to
 * mitigate bruteforcing of newly added bits.
266
 */
267
static void crng_reseed(bool force)
268
{
269
	unsigned long flags;
270 271
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
272
	bool finalize_init = false;
273

274
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
275
	if (!drain_entropy(key, sizeof(key), force))
276
		return;
277

278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
291 292
	if (crng_init < 2) {
		crng_init = 2;
293 294 295 296 297
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
298 299 300 301 302 303 304 305 306 307
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
	}
308 309
}

310
/*
311 312 313 314 315
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
316 317 318 319
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
320
{
321
	u8 first_block[CHACHA_BLOCK_SIZE];
322

323 324 325 326 327 328 329 330 331 332
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
333 334
}

335
/*
336 337 338
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
339
 */
340 341
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
342
{
343
	unsigned long flags;
344
	struct crng *crng;
345

346 347 348 349 350 351
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
352
	 * this is what crng_pre_init_inject() mutates during early init.
353 354 355 356 357 358 359 360 361 362 363 364
	 */
	if (unlikely(!crng_ready())) {
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
365
	}
366 367 368 369 370 371

	/*
	 * If the base_crng is more than 5 minutes old, we reseed, which
	 * in turn bumps the generation counter that we check below.
	 */
	if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
372
		crng_reseed(false);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
400 401
}

402
/*
403 404 405 406 407
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
408
 *
409 410 411 412 413 414 415
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
 *
 * Returns the number of bytes processed from input, which is bounded
 * by CRNG_INIT_CNT_THRESH if account is true.
416
 */
417
static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
418 419
{
	static int crng_init_cnt = 0;
420
	struct blake2s_state hash;
421 422
	unsigned long flags;

423
	blake2s_init(&hash, sizeof(base_crng.key));
424

425
	spin_lock_irqsave(&base_crng.lock, flags);
426 427 428 429 430
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}

431 432
	if (account)
		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
433

434 435 436
	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, input, len);
	blake2s_final(&hash, base_crng.key);
437

438 439 440 441 442 443 444
	if (account) {
		crng_init_cnt += len;
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
			++base_crng.generation;
			crng_init = 1;
		}
	}
445 446

	spin_unlock_irqrestore(&base_crng.lock, flags);
447 448 449 450 451

	if (crng_init == 1)
		pr_notice("fast init done\n");

	return len;
452 453 454
}

static void _get_random_bytes(void *buf, size_t nbytes)
455
{
456
	u32 chacha_state[CHACHA_STATE_WORDS];
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
737
 * is POOL_MIN_BITS entropy credited prior or force is true:
738 739
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
740
 *     static bool drain_entropy(void *buf, size_t nbytes, bool force)
741 742 743
 *
 **********************************************************************/

744 745 746 747 748
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

749
/* For notifying userspace should write into /dev/random. */
750 751 752 753 754 755 756 757 758 759 760 761 762 763
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

764 765 766 767
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
768 769 770 771 772 773

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
774
static void mix_pool_bytes(const void *in, size_t nbytes)
775
{
776 777 778 779 780
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
781 782
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
798
		crng_reseed(false);
799 800 801 802 803 804 805
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
806 807
{
	unsigned long flags;
808 809 810 811 812 813 814 815 816 817 818 819
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
820 821

	spin_lock_irqsave(&input_pool.lock, flags);
822 823 824 825 826 827 828 829 830

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

831
	spin_unlock_irqrestore(&input_pool.lock, flags);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
848 849 850
 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
 * is true, and then we set the entropy count to zero (but don't actually touch
 * any data). Only then can we extract a new key with extract_entropy().
851
 */
852
static bool drain_entropy(void *buf, size_t nbytes, bool force)
853 854 855 856
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
857
		if (!force && entropy_count < POOL_MIN_BITS)
858 859 860 861 862 863
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
864 865
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
881
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
913 914 915 916
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
917 918 919 920 921 922 923 924 925 926 927 928 929
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
930 931

/*
932 933 934 935 936
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
937
 */
938
int __init rand_initialize(void)
939
{
940 941 942 943
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
944

945 946 947 948 949 950
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
951
		_mix_pool_bytes(&rv, sizeof(rv));
952
	}
953 954
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
955

956 957
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
958

959 960 961 962
	if (arch_init && trust_cpu && crng_init < 2) {
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
963

964
	if (ratelimit_disable)
965 966
		unseeded_warning.interval = 0;
	return 0;
967
}
968

969
/*
970 971
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
972
 *
973 974 975
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
976
 */
977
void add_device_randomness(const void *buf, size_t size)
978
{
979 980
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
981

982
	if (crng_init == 0 && size)
983
		crng_pre_init_inject(buf, size, false);
984

985
	spin_lock_irqsave(&input_pool.lock, flags);
986 987
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
988
	_mix_pool_bytes(buf, size);
989
	spin_unlock_irqrestore(&input_pool.lock, flags);
990 991 992
}
EXPORT_SYMBOL(add_device_randomness);

993 994 995 996 997 998
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 */
1008
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1009
{
1010 1011
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
L
Linus Torvalds 已提交
1012 1013
	long delta, delta2, delta3;

1014 1015 1016 1017 1018
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&num, sizeof(num));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023 1024

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1025 1026
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);
1027

1028 1029
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1030

1031 1032
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1044

1045 1046 1047
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1048
	 * and limit entropy estimate to 12 bits.
1049
	 */
1050
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1051 1052
}

1053
void add_input_randomness(unsigned int type, unsigned int code,
1054
			  unsigned int value)
L
Linus Torvalds 已提交
1055 1056
{
	static unsigned char last_value;
1057
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1058

1059
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1060 1061 1062 1063 1064 1065 1066
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1067
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
	if (unlikely(crng_init == 0)) {
1104
		size_t ret = crng_pre_init_inject(buffer, count, true);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1142
#if IS_ENABLED(CONFIG_VMGENID)
1143 1144
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
		crng_reseed(true);
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1157
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1158
}
1159
#if IS_MODULE(CONFIG_VMGENID)
1160
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1161
#endif
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1174
#endif
1175

1176
struct fast_pool {
1177
	struct work_struct mix;
1178
	unsigned long pool[4];
1179
	unsigned long last;
1180
	unsigned int count;
1181 1182 1183
	u16 reg_idx;
};

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
	/* SipHash constants */
	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
		  0x6c7967656e657261UL, 0x7465646279746573UL }
#else
	/* HalfSipHash constants */
	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
#endif
};

1195
/*
1196 1197 1198 1199
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
 * 128 or 256-bit SipHash state, while v represents a 128-bit input.
1200
 */
1201
static void fast_mix(unsigned long s[4], const unsigned long *v)
1202
{
1203
	size_t i;
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	for (i = 0; i < 16 / sizeof(long); ++i) {
		s[3] ^= v[i];
#ifdef CONFIG_64BIT
		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
#else
		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
#endif
		s[0] ^= v[i];
	}
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1245
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1246
{
1247
	unsigned long *ptr = (unsigned long *)regs;
1248
	unsigned int idx;
1249 1250 1251

	if (regs == NULL)
		return 0;
1252
	idx = READ_ONCE(f->reg_idx);
1253
	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1254 1255 1256
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1257
	return *ptr;
1258 1259
}

1260 1261 1262
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * The size of the copied stack pool is explicitly 16 bytes so that we
	 * tax mix_pool_byte()'s compression function the same amount on all
	 * platforms. This means on 64-bit we copy half the pool into this,
	 * while on 32-bit we copy all of it. The entropy is supposed to be
	 * sufficiently dispersed between bits that in the sponge-like
	 * half case, on average we don't wind up "losing" some.
	 */
	u8 pool[16];
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1284
	memcpy(pool, fast_pool->pool, sizeof(pool));
1285
	fast_pool->count = 0;
1286 1287 1288
	fast_pool->last = jiffies;
	local_irq_enable();

1289 1290 1291 1292 1293 1294 1295 1296
	if (unlikely(crng_init == 0)) {
		crng_pre_init_inject(pool, sizeof(pool), true);
		mix_pool_bytes(pool, sizeof(pool));
	} else {
		mix_pool_bytes(pool, sizeof(pool));
		credit_entropy_bits(1);
	}

1297 1298 1299
	memzero_explicit(pool, sizeof(pool));
}

1300
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1301
{
1302
	enum { MIX_INFLIGHT = 1U << 31 };
1303 1304
	cycles_t cycles = random_get_entropy();
	unsigned long now = jiffies;
1305 1306
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1307
	unsigned int new_count;
1308 1309 1310 1311 1312
	union {
		u32 u32[4];
		u64 u64[2];
		unsigned long longs[16 / sizeof(long)];
	} irq_data;
1313

1314 1315
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1316

1317
	if (sizeof(cycles) == 8)
1318
		irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
1319
	else {
1320 1321
		irq_data.u32[0] = cycles ^ irq;
		irq_data.u32[1] = now;
1322 1323 1324
	}

	if (sizeof(unsigned long) == 8)
1325
		irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
1326
	else {
1327 1328
		irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
		irq_data.u32[3] = get_reg(fast_pool, regs);
1329 1330
	}

1331
	fast_mix(fast_pool->pool, irq_data.longs);
1332
	new_count = ++fast_pool->count;
1333

1334
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1335 1336
		return;

1337 1338
	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
			       unlikely(crng_init == 0)))
1339
		return;
1340

1341 1342
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1343
	fast_pool->count |= MIX_INFLIGHT;
1344
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1345
}
1346
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1363
	credit_entropy_bits(1);
1364 1365 1366 1367 1368 1369 1370 1371 1372
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
1373
		cycles_t cycles;
1374 1375 1376
		struct timer_list timer;
	} stack;

1377
	stack.cycles = random_get_entropy();
1378 1379

	/* Slow counter - or none. Don't even bother */
1380
	if (stack.cycles == random_get_entropy())
1381 1382 1383 1384 1385
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1386
			mod_timer(&stack.timer, jiffies + 1);
1387
		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1388
		schedule();
1389
		stack.cycles = random_get_entropy();
1390 1391 1392 1393
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1394
	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1395 1396
}

1397 1398 1399 1400 1401 1402 1403 1404

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1405 1406 1407
 * Reading from /dev/random and /dev/urandom both have the same effect
 * as calling getrandom(2) with flags=0. (In earlier versions, however,
 * they each had different semantics.)
1408 1409 1410 1411
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1412 1413 1414
 * Polling on /dev/random or /dev/urandom indicates when the RNG
 * is initialized, on the read side, and when it wants new entropy,
 * on the write side.
1415 1416 1417 1418 1419 1420 1421 1422 1423
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1424
{
1425 1426
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1427

1428 1429 1430 1431 1432 1433
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1434

1435 1436
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1437

1438 1439
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1440

1441 1442 1443 1444 1445 1446 1447
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1448 1449
}

1450
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1451
{
1452
	__poll_t mask;
L
Linus Torvalds 已提交
1453

1454
	poll_wait(file, &crng_init_wait, wait);
1455 1456
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1457
	if (crng_ready())
1458
		mask |= EPOLLIN | EPOLLRDNORM;
1459
	if (input_pool.entropy_count < POOL_MIN_BITS)
1460
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1461 1462 1463
	return mask;
}

1464
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1465
{
1466
	size_t len;
1467
	int ret = 0;
1468
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1469

1470 1471
	while (count) {
		len = min(count, sizeof(block));
1472 1473 1474 1475
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1476 1477 1478
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1479
		cond_resched();
L
Linus Torvalds 已提交
1480
	}
1481

1482 1483 1484
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1485 1486
}

1487 1488
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1489
{
1490
	int ret;
1491

1492
	ret = write_pool(buffer, count);
1493 1494 1495 1496
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1510
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1518
		/* Inherently racy, no point locking. */
1519
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1527 1528 1529 1530
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1540
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1541 1542
		if (retval < 0)
			return retval;
1543 1544
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1545 1546
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1547 1548 1549 1550
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1551 1552
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1553
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1554 1555 1556
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1557
		return 0;
1558 1559 1560 1561 1562
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1563
		crng_reseed(false);
1564
		return 0;
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569
	default:
		return -EINVAL;
	}
}

1570 1571 1572 1573 1574
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1575
const struct file_operations random_fops = {
1576
	.read = random_read,
L
Linus Torvalds 已提交
1577
	.write = random_write,
1578
	.poll = random_poll,
M
Matt Mackall 已提交
1579
	.unlocked_ioctl = random_ioctl,
1580
	.compat_ioctl = compat_ptr_ioctl,
1581
	.fasync = random_fasync,
1582
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1583 1584
};

1585

L
Linus Torvalds 已提交
1586 1587
/********************************************************************
 *
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1610
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1611 1612
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1620
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1621
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1622
static int sysctl_poolsize = POOL_BITS;
1623
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1624 1625

/*
G
Greg Price 已提交
1626
 * This function is used to return both the bootid UUID, and random
1627
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1628 1629
 * then a new UUID is generated and returned to the user.
 */
1630 1631
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1632
{
1633 1634 1635 1636 1637 1638 1639 1640 1641
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1647 1648 1649 1650 1651 1652 1653 1654
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1655

1656 1657
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1658 1659
}

1660 1661 1662 1663 1664 1665 1666
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1667
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1673
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1674 1675 1676
	},
	{
		.procname	= "entropy_avail",
1677
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1678 1679
		.maxlen		= sizeof(int),
		.mode		= 0444,
1680
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1681 1682 1683
	},
	{
		.procname	= "write_wakeup_threshold",
1684
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1685 1686
		.maxlen		= sizeof(int),
		.mode		= 0644,
1687
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1688
	},
1689 1690
	{
		.procname	= "urandom_min_reseed_secs",
1691
		.data		= &sysctl_random_min_urandom_seed,
1692 1693
		.maxlen		= sizeof(int),
		.mode		= 0644,
1694
		.proc_handler	= proc_do_rointvec,
1695
	},
L
Linus Torvalds 已提交
1696 1697 1698 1699
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1700
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1701 1702 1703 1704
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1705
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1706
	},
1707
	{ }
L
Linus Torvalds 已提交
1708
};
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1720
#endif