random.c 49.4 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89
static struct ratelimit_state urandom_warning =
90
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98
 * to supply cryptographically secure random numbers. This applies to: the
99
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
100
 * u16,u32,u64,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121
 * cryptographically secure random numbers. This applies to: the /dev/urandom
122
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
123
 * long} family of functions. Using any of these functions without first
124
 * calling this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161
 *	u8 get_random_u8()
 *	u16 get_random_u16()
162
 *	u32 get_random_u32()
163
 *	u32 get_random_u32_below(u32 ceil)
164 165
 *	u32 get_random_u32_above(u32 floor)
 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
166 167 168 169
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
170
 * into the given buffer or as a return value. This is equivalent to
171 172 173 174
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
175 176 177
 *
 *********************************************************************/

178 179 180 181
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 * proportional to the uptime.
 */
static unsigned int crng_reseed_interval(void)
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
	}
	return CRNG_RESEED_INTERVAL;
}

222
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
223
static void extract_entropy(void *buf, size_t len);
224

225
/* This extracts a new crng key from the input pool. */
226
static void crng_reseed(struct work_struct *work)
227
{
228
	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
229
	unsigned long flags;
230 231
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
232

233 234 235 236
	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
	if (likely(system_unbound_wq))
		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());

237
	extract_entropy(key, sizeof(key));
238

239 240 241 242 243 244 245 246 247 248 249 250
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
251
	if (!static_branch_likely(&crng_is_ready))
252
		crng_init = CRNG_READY;
253 254
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
255 256
}

257
/*
258
 * This generates a ChaCha block using the provided key, and then
259
 * immediately overwrites that key with half the block. It returns
260 261 262
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
263 264 265 266 267 268 269
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
270 271 272 273
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
274
{
275
	u8 first_block[CHACHA_BLOCK_SIZE];
276

277 278 279 280 281 282 283 284
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
285
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
286
	memzero_explicit(first_block, sizeof(first_block));
287 288
}

289
/*
290 291 292
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
293
 */
294 295
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
296
{
297
	unsigned long flags;
298
	struct crng *crng;
299

300 301 302 303 304
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
305
	 * ready, we do fast key erasure with the base_crng directly, extracting
306
	 * when crng_init is CRNG_EMPTY.
307
	 */
308
	if (!crng_ready()) {
309 310 311 312
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
313
		if (!ready) {
314
			if (crng_init == CRNG_EMPTY)
315
				extract_entropy(base_crng.key, sizeof(base_crng.key));
316 317
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
318
		}
319 320 321
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
322
	}
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
350 351
}

352
static void _get_random_bytes(void *buf, size_t len)
353
{
354
	u32 chacha_state[CHACHA_STATE_WORDS];
355
	u8 tmp[CHACHA_BLOCK_SIZE];
356
	size_t first_block_len;
357

358
	if (!len)
359 360
		return;

361 362 363 364
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
365

366 367
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
368
			chacha20_block(chacha_state, tmp);
369
			memcpy(buf, tmp, len);
370 371 372 373 374 375 376
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
377
		len -= CHACHA_BLOCK_SIZE;
378 379 380 381 382 383 384
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
385 386 387 388 389
 * This returns random bytes in arbitrary quantities. The quality of the
 * random bytes is good as /dev/urandom. In order to ensure that the
 * randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
390
 */
391
void get_random_bytes(void *buf, size_t len)
392
{
393
	warn_unseeded_randomness();
394
	_get_random_bytes(buf, len);
395 396 397
}
EXPORT_SYMBOL(get_random_bytes);

398
static ssize_t get_random_bytes_user(struct iov_iter *iter)
399 400
{
	u32 chacha_state[CHACHA_STATE_WORDS];
401 402
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
403

404
	if (unlikely(!iov_iter_count(iter)))
405 406
		return 0;

407 408
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
409
	 * bytes, in case userspace causes copy_to_iter() below to sleep
410 411 412 413 414 415 416 417
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
418 419
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
420 421
		goto out_zero_chacha;
	}
422

423
	for (;;) {
424
		chacha20_block(chacha_state, block);
425 426 427
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

428 429 430
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
431
			break;
432

433
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
434
		if (ret % PAGE_SIZE == 0) {
435 436 437 438
			if (signal_pending(current))
				break;
			cond_resched();
		}
439
	}
440

441
	memzero_explicit(block, sizeof(block));
442 443
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
444
	return ret ? ret : -EFAULT;
445 446 447 448 449 450 451 452 453
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

507
DEFINE_BATCHED_ENTROPY(u8)
508 509 510
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
511

512 513 514 515 516 517 518 519 520 521 522
u32 __get_random_u32_below(u32 ceil)
{
	/*
	 * This is the slow path for variable ceil. It is still fast, most of
	 * the time, by doing traditional reciprocal multiplication and
	 * opportunistically comparing the lower half to ceil itself, before
	 * falling back to computing a larger bound, and then rejecting samples
	 * whose lower half would indicate a range indivisible by ceil. The use
	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
	 * in 32-bits.
	 */
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	u32 rand = get_random_u32();
	u64 mult;

	/*
	 * This function is technically undefined for ceil == 0, and in fact
	 * for the non-underscored constant version in the header, we build bug
	 * on that. But for the non-constant case, it's convenient to have that
	 * evaluate to being a straight call to get_random_u32(), so that
	 * get_random_u32_inclusive() can work over its whole range without
	 * undefined behavior.
	 */
	if (unlikely(!ceil))
		return rand;

	mult = (u64)ceil * rand;
538 539 540 541 542 543 544 545 546
	if (unlikely((u32)mult < ceil)) {
		u32 bound = -ceil % ceil;
		while (unlikely((u32)mult < bound))
			mult = (u64)ceil * get_random_u32();
	}
	return mult >> 32;
}
EXPORT_SYMBOL(__get_random_u32_below);

547 548 549 550 551
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
552
int __cold random_prepare_cpu(unsigned int cpu)
553 554 555 556 557 558 559
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
560 561
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
562 563 564 565 566 567
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

568 569 570 571 572 573 574

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
575
 *     static void mix_pool_bytes(const void *buf, size_t len)
576 577 578
 *
 * After which, if added entropy should be credited:
 *
579
 *     static void credit_init_bits(size_t bits)
580
 *
581
 * Finally, extract entropy via:
582
 *
583
 *     static void extract_entropy(void *buf, size_t len)
584 585 586
 *
 **********************************************************************/

587 588
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
589 590
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
591 592 593 594 595
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
596
	unsigned int init_bits;
597 598 599 600 601 602 603 604
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

605
static void _mix_pool_bytes(const void *buf, size_t len)
606
{
607
	blake2s_update(&input_pool.hash, buf, len);
608
}
609 610

/*
611 612 613
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
614
 */
615
static void mix_pool_bytes(const void *buf, size_t len)
616
{
617 618 619
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
620
	_mix_pool_bytes(buf, len);
621
	spin_unlock_irqrestore(&input_pool.lock, flags);
622 623
}

624 625 626 627
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
628
static void extract_entropy(void *buf, size_t len)
629 630
{
	unsigned long flags;
631 632 633 634 635
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
636
	size_t i, longs;
637

638 639 640 641 642 643 644 645 646 647 648 649
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
650
	}
651 652

	spin_lock_irqsave(&input_pool.lock, flags);
653 654 655 656 657 658 659 660 661

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

662
	spin_unlock_irqrestore(&input_pool.lock, flags);
663 664
	memzero_explicit(next_key, sizeof(next_key));

665 666
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
667 668 669
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
670
		len -= i;
671 672 673 674 675 676 677
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

678 679 680
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
681
{
682
	static struct execute_work set_ready;
683
	unsigned int new, orig, add;
684 685
	unsigned long flags;

686
	if (!bits)
687 688
		return;

689
	add = min_t(size_t, bits, POOL_BITS);
690

691
	orig = READ_ONCE(input_pool.init_bits);
692
	do {
693
		new = min_t(unsigned int, POOL_BITS, orig + add);
694
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
695

696
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
697
		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
698 699
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
700 701 702
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
703
		if (urandom_warning.missed)
704 705 706
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
707
		spin_lock_irqsave(&base_crng.lock, flags);
708
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
709
		if (crng_init == CRNG_EMPTY) {
710
			extract_entropy(base_crng.key, sizeof(base_crng.key));
711
			crng_init = CRNG_EARLY;
712 713 714 715 716
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

717 718 719 720 721 722 723 724

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
725
 *	void add_device_randomness(const void *buf, size_t len);
726
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
727 728
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
729
 *	void add_interrupt_randomness(int irq);
730
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
731
 *	void add_disk_randomness(struct gendisk *disk);
732 733 734 735 736 737 738 739 740 741 742 743 744
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
745 746
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
747
 * command line option 'random.trust_bootloader'.
748
 *
749 750 751 752
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
753 754 755 756 757
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
758 759 760 761 762 763 764 765 766 767 768 769 770
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
771 772
 **********************************************************************/

773 774
static bool trust_cpu __initdata = true;
static bool trust_bootloader __initdata = true;
775 776 777 778
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
779 780 781 782
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
783
early_param("random.trust_cpu", parse_trust_cpu);
784
early_param("random.trust_bootloader", parse_trust_bootloader);
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
803 804
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
805
		crng_reseed(NULL);
806 807 808 809 810 811 812
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

813
/*
814 815
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
816
 */
817
void __init random_init_early(const char *command_line)
818
{
819
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
820
	size_t i, longs, arch_bits;
821

822 823 824 825 826
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

827
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
828
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
829 830 831 832 833
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
834
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
835 836 837 838
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
839
		}
840 841
		arch_bits -= sizeof(*entropy) * 8;
		++i;
842
	}
843

844
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
845
	_mix_pool_bytes(command_line, strlen(command_line));
846 847 848

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
849
		crng_reseed(NULL);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
865
	add_latent_entropy();
866

867
	/*
868 869
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
870 871 872 873 874
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

875
	/* Reseed if already seeded by earlier phases. */
876
	if (crng_ready())
877
		crng_reseed(NULL);
878

879 880
	WARN_ON(register_pm_notifier(&pm_notifier));

881 882
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
883
}
884

885
/*
886 887
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
888
 *
889 890 891
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
892
 */
893
void add_device_randomness(const void *buf, size_t len)
894
{
895 896
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
897

898
	spin_lock_irqsave(&input_pool.lock, flags);
899
	_mix_pool_bytes(&entropy, sizeof(entropy));
900
	_mix_pool_bytes(buf, len);
901
	spin_unlock_irqrestore(&input_pool.lock, flags);
902 903 904
}
EXPORT_SYMBOL(add_device_randomness);

905
/*
906 907 908
 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 * may produce endless random bits, so this function will sleep for
 * some amount of time after, if the sleep_after parameter is true.
909
 */
910
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
911
{
912
	mix_pool_bytes(buf, len);
913 914
	credit_init_bits(entropy);

915
	/*
916
	 * Throttle writing to once every reseed interval, unless we're not yet
917
	 * initialized or no entropy is credited.
918
	 */
919
	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
920
		schedule_timeout_interruptible(crng_reseed_interval());
921 922 923 924
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
925 926
 * Handle random seed passed by bootloader, and credit it depending
 * on the command line option 'random.trust_bootloader'.
927
 */
928
void __init add_bootloader_randomness(const void *buf, size_t len)
929
{
930
	mix_pool_bytes(buf, len);
931
	if (trust_bootloader)
932
		credit_init_bits(len * 8);
933 934
}

935
#if IS_ENABLED(CONFIG_VMGENID)
936 937
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

938 939 940 941 942
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
943
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
944
{
945
	add_device_randomness(unique_vm_id, len);
946
	if (crng_ready()) {
947
		crng_reseed(NULL);
948 949
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
950
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
951
}
952
#if IS_MODULE(CONFIG_VMGENID)
953
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
954
#endif
955

956
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
957 958 959 960 961
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

962
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
963 964 965 966
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
967
#endif
968

969
struct fast_pool {
970
	unsigned long pool[4];
971
	unsigned long last;
972
	unsigned int count;
973
	struct timer_list mix;
974 975
};

976 977
static void mix_interrupt_randomness(struct timer_list *work);

978 979
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
980
#define FASTMIX_PERM SIPHASH_PERMUTATION
981
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
982
#else
983
#define FASTMIX_PERM HSIPHASH_PERMUTATION
984
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
985
#endif
986
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
987 988
};

989
/*
990 991 992
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
993
 * four-word SipHash state, while v represents a two-word input.
994
 */
995
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
996
{
997
	s[3] ^= v1;
998
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
999 1000
	s[0] ^= v1;
	s[3] ^= v2;
1001
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1002
	s[0] ^= v2;
1003 1004
}

1005 1006 1007 1008 1009
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1010
int __cold random_online_cpu(unsigned int cpu)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1028
static void mix_interrupt_randomness(struct timer_list *work)
1029 1030
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1031
	/*
1032 1033 1034 1035 1036
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1037
	 */
1038
	unsigned long pool[2];
1039
	unsigned int count;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1052
	memcpy(pool, fast_pool->pool, sizeof(pool));
1053
	count = fast_pool->count;
1054
	fast_pool->count = 0;
1055 1056 1057
	fast_pool->last = jiffies;
	local_irq_enable();

1058
	mix_pool_bytes(pool, sizeof(pool));
1059
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1060

1061 1062 1063
	memzero_explicit(pool, sizeof(pool));
}

1064
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1065
{
1066
	enum { MIX_INFLIGHT = 1U << 31 };
1067
	unsigned long entropy = random_get_entropy();
1068 1069
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1070
	unsigned int new_count;
1071

1072 1073
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1074
	new_count = ++fast_pool->count;
1075

1076
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1077 1078
		return;

1079
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1080
		return;
1081

1082
	fast_pool->count |= MIX_INFLIGHT;
1083 1084 1085 1086
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1087
}
1088
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1098 1099 1100 1101
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1102 1103 1104 1105 1106
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1107
	unsigned int bits;
1108

1109 1110 1111 1112 1113
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1114
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1115 1116 1117 1118 1119 1120
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1162
	 */
1163 1164 1165
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1166
		_credit_init_bits(bits);
1167 1168
}

1169
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1194
void __cold rand_initialize_disk(struct gendisk *disk)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1210 1211 1212 1213 1214 1215
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1229
static void __cold entropy_timer(struct timer_list *timer)
1230
{
1231 1232 1233
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1234
		credit_init_bits(1);
1235 1236
		state->samples = 0;
	}
1237 1238 1239 1240 1241 1242
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1243
static void __cold try_to_generate_entropy(void)
1244
{
1245
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1246 1247 1248
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1249

1250 1251 1252 1253 1254 1255 1256 1257
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1258 1259
		return;

1260
	stack.samples = 0;
1261
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1262
	while (!crng_ready() && !signal_pending(current)) {
1263
		if (!timer_pending(&stack.timer))
1264
			mod_timer(&stack.timer, jiffies);
1265
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1266
		schedule();
1267
		stack.entropy = random_get_entropy();
1268 1269 1270 1271
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1272
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1283 1284 1285 1286 1287 1288 1289 1290
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1291 1292 1293 1294
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1295 1296
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1297 1298 1299 1300 1301 1302 1303
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1304
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1305
{
1306 1307 1308 1309
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1310 1311
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1312

1313 1314 1315 1316 1317 1318
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1319

1320
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1321 1322 1323 1324 1325 1326
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1327 1328 1329 1330 1331

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1332 1333
}

1334
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1335
{
1336
	poll_wait(file, &crng_init_wait, wait);
1337
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1338 1339
}

1340
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1341
{
1342
	u8 block[BLAKE2S_BLOCK_SIZE];
1343 1344
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1355 1356 1357 1358 1359 1360 1361

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1362
	}
1363

1364
	memzero_explicit(block, sizeof(block));
1365
	return ret ? ret : -EFAULT;
1366 1367
}

1368
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1369
{
1370
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1371 1372
}

1373
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1374 1375 1376
{
	static int maxwarn = 10;

1377 1378 1379 1380 1381 1382 1383
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1384 1385 1386 1387 1388
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1389 1390
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1391
		}
1392 1393
	}

1394
	return get_random_bytes_user(iter);
1395 1396
}

1397
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1398 1399 1400
{
	int ret;

1401 1402 1403 1404 1405
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1406 1407 1408
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1409
	return get_random_bytes_user(iter);
1410 1411
}

M
Matt Mackall 已提交
1412
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1413 1414
{
	int __user *p = (int __user *)arg;
1415
	int ent_count;
L
Linus Torvalds 已提交
1416 1417 1418

	switch (cmd) {
	case RNDGETENTCNT:
1419
		/* Inherently racy, no point locking. */
1420
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1428 1429
		if (ent_count < 0)
			return -EINVAL;
1430
		credit_init_bits(ent_count);
1431
		return 0;
1432 1433 1434 1435 1436 1437
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1444 1445 1446 1447 1448
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1449
		ret = write_pool_user(&iter);
1450 1451 1452 1453
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1454
			return -EFAULT;
1455
		credit_init_bits(ent_count);
1456
		return 0;
1457
	}
L
Linus Torvalds 已提交
1458 1459
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1460
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1461 1462 1463
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1464 1465 1466
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1467
		if (!crng_ready())
1468
			return -ENODATA;
1469
		crng_reseed(NULL);
1470
		return 0;
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475
	default:
		return -EINVAL;
	}
}

1476 1477 1478 1479 1480
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1481
const struct file_operations random_fops = {
1482
	.read_iter = random_read_iter,
1483
	.write_iter = random_write_iter,
1484
	.poll = random_poll,
M
Matt Mackall 已提交
1485
	.unlocked_ioctl = random_ioctl,
1486
	.compat_ioctl = compat_ptr_ioctl,
1487
	.fasync = random_fasync,
1488
	.llseek = noop_llseek,
1489 1490
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1491 1492
};

1493
const struct file_operations urandom_fops = {
1494
	.read_iter = urandom_read_iter,
1495
	.write_iter = random_write_iter,
1496 1497 1498 1499
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1500 1501
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1502 1503
};

1504

L
Linus Torvalds 已提交
1505 1506
/********************************************************************
 *
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1525
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1526 1527 1528
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1529
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1530 1531
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537 1538
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1539
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1540
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1541
static int sysctl_poolsize = POOL_BITS;
1542
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1543 1544

/*
G
Greg Price 已提交
1545
 * This function is used to return both the bootid UUID, and random
1546
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1547 1548
 * then a new UUID is generated and returned to the user.
 */
1549
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1550
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1551
{
1552 1553 1554 1555 1556 1557 1558 1559 1560
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1561 1562 1563 1564 1565

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1566 1567 1568 1569 1570 1571 1572 1573
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1574

1575
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1576
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1577 1578
}

1579
/* The same as proc_dointvec, but writes don't change anything. */
1580
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1581 1582
			    size_t *lenp, loff_t *ppos)
{
1583
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1584 1585
}

1586
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1592
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1593 1594 1595
	},
	{
		.procname	= "entropy_avail",
1596
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1597 1598
		.maxlen		= sizeof(int),
		.mode		= 0444,
1599
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1600 1601 1602
	},
	{
		.procname	= "write_wakeup_threshold",
1603
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1604 1605
		.maxlen		= sizeof(int),
		.mode		= 0644,
1606
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1607
	},
1608 1609
	{
		.procname	= "urandom_min_reseed_secs",
1610
		.data		= &sysctl_random_min_urandom_seed,
1611 1612
		.maxlen		= sizeof(int),
		.mode		= 0644,
1613
		.proc_handler	= proc_do_rointvec,
1614
	},
L
Linus Torvalds 已提交
1615 1616 1617 1618
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1619
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1620 1621 1622 1623
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1624
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1625
	},
1626
	{ }
L
Linus Torvalds 已提交
1627
};
1628 1629

/*
1630 1631
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1632 1633 1634 1635 1636 1637 1638
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1639
#endif