random.c 52.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5
 *
6
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * Exported interfaces ---- output
 * ===============================
 *
48
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
49
 * and two for use from userspace.
L
Linus Torvalds 已提交
50
 *
51 52
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
53
 *
54
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63 64 65 66
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
67 68 69 70 71
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
72
 *	void get_random_bytes(void *buf, int nbytes);
73 74 75 76 77 78 79
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
80 81 82 83
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
138 139 140 141 142 143
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
144
 *	void add_device_randomness(const void *buf, unsigned int size);
145
 *	void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
146
 *                                unsigned int value);
147
 *	void add_interrupt_randomness(int irq);
148
 *	void add_disk_randomness(struct gendisk *disk);
149 150 151
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
152
 *
153 154 155 156 157 158 159 160
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
161 162 163
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
164 165 166
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
167 168 169 170 171 172
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
173 174 175 176 177
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
178 179 180 181 182 183 184 185
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
244 245
 *	mknod /dev/random c 1 8
 *	mknod /dev/urandom c 1 9
L
Linus Torvalds 已提交
246 247
 */

Y
Yangtao Li 已提交
248 249
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
263
#include <linux/mm.h>
264
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
265
#include <linux/spinlock.h>
266
#include <linux/kthread.h>
L
Linus Torvalds 已提交
267
#include <linux/percpu.h>
268
#include <linux/ptrace.h>
269
#include <linux/workqueue.h>
270
#include <linux/irq.h>
271
#include <linux/ratelimit.h>
272 273
#include <linux/syscalls.h>
#include <linux/completion.h>
274
#include <linux/uuid.h>
275
#include <crypto/chacha.h>
276
#include <crypto/blake2s.h>
277

L
Linus Torvalds 已提交
278
#include <asm/processor.h>
279
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
280
#include <asm/irq.h>
281
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
282 283
#include <asm/io.h>

284 285 286
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

287 288
/* #define ADD_INTERRUPT_BENCH */

289
enum {
290
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
291
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
L
Linus Torvalds 已提交
292 293 294 295 296
};

/*
 * Static global variables
 */
297
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
298
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
299

300 301 302
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

303
struct crng_state {
304 305 306
	u32 state[16];
	unsigned long init_time;
	spinlock_t lock;
307 308
};

309
static struct crng_state primary_crng = {
310
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
311 312 313 314
	.state[0] = CHACHA_CONSTANT_EXPA,
	.state[1] = CHACHA_CONSTANT_ND_3,
	.state[2] = CHACHA_CONSTANT_2_BY,
	.state[3] = CHACHA_CONSTANT_TE_K,
315 316 317 318 319 320 321 322 323 324 325
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
326
static bool crng_need_final_init = false;
T
Theodore Ts'o 已提交
327
#define crng_ready() (likely(crng_init > 1))
328
static int crng_init_cnt = 0;
329
static unsigned long crng_global_init_time = 0;
330
#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
331
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
332
static void _crng_backtrack_protect(struct crng_state *crng,
333
				    u8 tmp[CHACHA_BLOCK_SIZE], int used);
334
static void process_random_ready_list(void);
335
static void _get_random_bytes(void *buf, int nbytes);
336

337 338 339 340 341 342 343 344 345 346
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
347 348 349 350 351 352 353
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

354
static struct {
355
	struct blake2s_state hash;
356
	spinlock_t lock;
357
	int entropy_count;
358
} input_pool = {
359 360 361 362
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
363
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
364 365
};

366
static void extract_entropy(void *buf, size_t nbytes);
367

368
static void crng_reseed(struct crng_state *crng);
369

L
Linus Torvalds 已提交
370
/*
371
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
372
 * update the entropy estimate.  The caller should call
373
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
374
 */
375
static void _mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
376
{
377
	blake2s_update(&input_pool.hash, in, nbytes);
L
Linus Torvalds 已提交
378 379
}

380
static void __mix_pool_bytes(const void *in, int nbytes)
381
{
382 383
	trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
	_mix_pool_bytes(in, nbytes);
384 385
}

386
static void mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
387
{
388 389
	unsigned long flags;

390 391 392 393
	trace_mix_pool_bytes(nbytes, _RET_IP_);
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
394 395
}

396
struct fast_pool {
397 398 399 400
	u32 pool[4];
	unsigned long last;
	u16 reg_idx;
	u8 count;
401 402 403 404 405 406 407
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
408
static void fast_mix(struct fast_pool *f)
409
{
410 411
	u32 a = f->pool[0],	b = f->pool[1];
	u32 c = f->pool[2],	d = f->pool[3];
412 413

	a += b;			c += d;
G
George Spelvin 已提交
414
	b = rol32(b, 6);	d = rol32(d, 27);
415 416 417
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
418
	b = rol32(b, 16);	d = rol32(d, 14);
419 420 421
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
422
	b = rol32(b, 6);	d = rol32(d, 27);
423 424 425
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
426
	b = rol32(b, 16);	d = rol32(d, 14);
427 428 429 430
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
431
	f->count++;
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

450
static void credit_entropy_bits(int nbits)
L
Linus Torvalds 已提交
451
{
452
	int entropy_count, orig;
453

454
	if (nbits <= 0)
455 456
		return;

457 458
	nbits = min(nbits, POOL_BITS);

459 460 461 462
	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min(POOL_BITS, orig + nbits);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
L
Linus Torvalds 已提交
463

464
	trace_credit_entropy_bits(nbits, entropy_count, _RET_IP_);
465

466
	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
467
		crng_reseed(&primary_crng);
L
Linus Torvalds 已提交
468 469
}

470 471 472 473 474 475
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

476
#define CRNG_RESEED_INTERVAL (300 * HZ)
477 478 479

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

480 481 482 483 484 485 486 487
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;

488
static void invalidate_batched_entropy(void);
489
static void numa_crng_init(void);
490

491 492 493 494 495 496 497
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

498
static bool crng_init_try_arch(struct crng_state *crng)
499
{
500 501 502
	int i;
	bool arch_init = true;
	unsigned long rv;
503 504 505

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
506
		    !arch_get_random_long(&rv)) {
507
			rv = random_get_entropy();
508
			arch_init = false;
509
		}
510 511
		crng->state[i] ^= rv;
	}
512 513 514 515

	return arch_init;
}

516
static bool __init crng_init_try_arch_early(void)
517
{
518 519 520
	int i;
	bool arch_init = true;
	unsigned long rv;
521 522 523 524 525 526 527

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
528
		primary_crng.state[i] ^= rv;
529 530 531 532 533
	}

	return arch_init;
}

534
static void crng_initialize_secondary(struct crng_state *crng)
535
{
536
	chacha_init_consts(crng->state);
537
	_get_random_bytes(&crng->state[4], sizeof(u32) * 12);
538 539 540 541
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

542
static void __init crng_initialize_primary(void)
543
{
544
	extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
545
	if (crng_init_try_arch_early() && trust_cpu && crng_init < 2) {
546 547
		invalidate_batched_entropy();
		numa_crng_init();
548
		crng_init = 2;
549
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
550
	}
551
	primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
552 553
}

554
static void crng_finalize_init(void)
555 556 557 558 559 560 561 562 563 564 565
{
	if (!system_wq) {
		/* We can't call numa_crng_init until we have workqueues,
		 * so mark this for processing later. */
		crng_need_final_init = true;
		return;
	}

	invalidate_batched_entropy();
	numa_crng_init();
	crng_init = 2;
566
	crng_need_final_init = false;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	process_random_ready_list();
	wake_up_interruptible(&crng_init_wait);
	kill_fasync(&fasync, SIGIO, POLL_IN);
	pr_notice("crng init done\n");
	if (unseeded_warning.missed) {
		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
			  unseeded_warning.missed);
		unseeded_warning.missed = 0;
	}
	if (urandom_warning.missed) {
		pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
			  urandom_warning.missed);
		urandom_warning.missed = 0;
	}
}

583
static void do_numa_crng_init(struct work_struct *work)
584 585 586 587 588
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

589
	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
590 591 592 593
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
594
		crng_initialize_secondary(crng);
595 596
		pool[i] = crng;
	}
597 598
	/* pairs with READ_ONCE() in select_crng() */
	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
599 600 601 602 603
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
604 605 606 607 608

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
609 610
	if (IS_ENABLED(CONFIG_NUMA))
		schedule_work(&numa_crng_init_work);
611
}
612 613 614

static struct crng_state *select_crng(void)
{
615 616 617 618 619 620 621 622 623
	if (IS_ENABLED(CONFIG_NUMA)) {
		struct crng_state **pool;
		int nid = numa_node_id();

		/* pairs with cmpxchg_release() in do_numa_crng_init() */
		pool = READ_ONCE(crng_node_pool);
		if (pool && pool[nid])
			return pool[nid];
	}
624 625 626

	return &primary_crng;
}
627

628 629
/*
 * crng_fast_load() can be called by code in the interrupt service
630 631
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
632
 */
633
static size_t crng_fast_load(const u8 *cp, size_t len)
634 635
{
	unsigned long flags;
636
	u8 *p;
637
	size_t ret = 0;
638 639 640

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
641
	if (crng_init != 0) {
642 643 644
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
645
	p = (u8 *)&primary_crng.state[4];
646
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
647
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
648
		cp++; crng_init_cnt++; len--; ret++;
649 650
	}
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
651
		invalidate_batched_entropy();
652 653
		crng_init = 1;
	}
654 655 656
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	if (crng_init == 1)
		pr_notice("fast init done\n");
657
	return ret;
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
674
static int crng_slow_load(const u8 *cp, size_t len)
675
{
676 677 678 679 680 681
	unsigned long flags;
	static u8 lfsr = 1;
	u8 tmp;
	unsigned int i, max = CHACHA_KEY_SIZE;
	const u8 *src_buf = cp;
	u8 *dest_buf = (u8 *)&primary_crng.state[4];
682 683 684 685 686 687 688 689 690 691

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

692
	for (i = 0; i < max; i++) {
693 694 695 696
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
697 698
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
699 700 701 702 703 704
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

705
static void crng_reseed(struct crng_state *crng)
706
{
707
	unsigned long flags;
708
	int i;
709
	union {
710 711
		u8 block[CHACHA_BLOCK_SIZE];
		u32 key[8];
712 713
	} buf;

714
	if (crng == &primary_crng) {
715 716 717
		int entropy_count;
		do {
			entropy_count = READ_ONCE(input_pool.entropy_count);
718
			if (entropy_count < POOL_MIN_BITS)
719 720 721
				return;
		} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
		extract_entropy(buf.key, sizeof(buf.key));
722 723
		wake_up_interruptible(&random_write_wait);
		kill_fasync(&fasync, SIGIO, POLL_OUT);
724
	} else {
725
		_extract_crng(&primary_crng, buf.block);
726
		_crng_backtrack_protect(&primary_crng, buf.block,
727
					CHACHA_KEY_SIZE);
728
	}
729
	spin_lock_irqsave(&crng->lock, flags);
730 731
	for (i = 0; i < 8; i++)
		crng->state[i + 4] ^= buf.key[i];
732
	memzero_explicit(&buf, sizeof(buf));
733
	WRITE_ONCE(crng->init_time, jiffies);
734
	spin_unlock_irqrestore(&crng->lock, flags);
735 736
	if (crng == &primary_crng && crng_init < 2)
		crng_finalize_init();
737 738
}

739
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
740
{
741
	unsigned long flags, init_time;
742 743 744 745 746

	if (crng_ready()) {
		init_time = READ_ONCE(crng->init_time);
		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
747
			crng_reseed(crng);
748
	}
749 750 751 752 753 754 755
	spin_lock_irqsave(&crng->lock, flags);
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

756
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
757
{
758
	_extract_crng(select_crng(), out);
759 760
}

761 762 763 764 765
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
766
				    u8 tmp[CHACHA_BLOCK_SIZE], int used)
767
{
768 769 770
	unsigned long flags;
	u32 *s, *d;
	int i;
771

772
	used = round_up(used, sizeof(u32));
773
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
774 775 776 777
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
778
	s = (u32 *)&tmp[used];
779
	d = &crng->state[4];
780
	for (i = 0; i < 8; i++)
781 782 783 784
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

785
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
786
{
787
	_crng_backtrack_protect(select_crng(), tmp, used);
788 789
}

790 791
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
792
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
793
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
794 795 796 797 798 799 800 801 802 803 804 805 806
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
807
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
808 809 810 811 812 813 814 815 816
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
817
	crng_backtrack_protect(tmp, i);
818 819 820 821 822 823 824

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

L
Linus Torvalds 已提交
825 826 827 828 829 830 831 832 833
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
834
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
835 836
};

837 838
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

839
/*
840 841
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
842
 *
843 844 845
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
846 847 848
 */
void add_device_randomness(const void *buf, unsigned int size)
{
849
	unsigned long time = random_get_entropy() ^ jiffies;
850
	unsigned long flags;
851

852 853
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
854

855
	trace_add_device_randomness(size, _RET_IP_);
856
	spin_lock_irqsave(&input_pool.lock, flags);
857 858
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
859
	spin_unlock_irqrestore(&input_pool.lock, flags);
860 861 862
}
EXPORT_SYMBOL(add_device_randomness);

863
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
864

L
Linus Torvalds 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
	struct {
		long jiffies;
879 880
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
881 882 883 884
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
885
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
886
	sample.num = num;
887
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
888 889 890 891 892 893

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
894 895
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
896

897 898
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
899

900 901
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
902 903 904 905 906 907 908 909 910 911 912

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
913

914 915 916
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
917
	 * and limit entropy estimate to 12 bits.
918
	 */
919
	credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
920 921
}

922
void add_input_randomness(unsigned int type, unsigned int code,
923
			  unsigned int value)
L
Linus Torvalds 已提交
924 925 926 927 928 929 930 931 932 933
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
934
	trace_add_input_randomness(input_pool.entropy_count);
L
Linus Torvalds 已提交
935
}
936
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
937

938 939
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

940 941 942
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

943 944
#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
945 946 947

static void add_interrupt_bench(cycles_t start)
{
948
	long delta = random_get_entropy() - start;
949

950 951 952 953 954 955
	/* Use a weighted moving average */
	delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
	avg_cycles += delta;
	/* And average deviation */
	delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
	avg_deviation += delta;
956 957 958 959 960
}
#else
#define add_interrupt_bench(x)
#endif

961
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
962
{
963
	u32 *ptr = (u32 *)regs;
964
	unsigned int idx;
965 966 967

	if (regs == NULL)
		return 0;
968
	idx = READ_ONCE(f->reg_idx);
969
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
970 971 972
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
973
	return *ptr;
974 975
}

976
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
977
{
978 979 980 981 982 983
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
	unsigned long now = jiffies;
	cycles_t cycles = random_get_entropy();
	u32 c_high, j_high;
	u64 ip;
984

985 986
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
987 988
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
989 990
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
991
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
992
	fast_pool->pool[2] ^= ip;
993 994
	fast_pool->pool[3] ^=
		(sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
995

996 997
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
998

T
Theodore Ts'o 已提交
999
	if (unlikely(crng_init == 0)) {
1000
		if ((fast_pool->count >= 64) &&
1001
		    crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
1002 1003 1004 1005 1006 1007
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1008
	if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1009 1010
		return;

1011
	if (!spin_trylock(&input_pool.lock))
1012
		return;
1013

1014
	fast_pool->last = now;
1015 1016
	__mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
	spin_unlock(&input_pool.lock);
1017

1018
	fast_pool->count = 0;
1019

1020
	/* award one bit for the contents of the fast pool */
1021
	credit_entropy_bits(1);
L
Linus Torvalds 已提交
1022
}
1023
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1024

1025
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1031
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1032
	trace_add_disk_randomness(disk_devt(disk), input_pool.entropy_count);
L
Linus Torvalds 已提交
1033
}
1034
EXPORT_SYMBOL_GPL(add_disk_randomness);
1035
#endif
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

G
Greg Price 已提交
1043
/*
1044 1045
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
G
Greg Price 已提交
1046
 */
1047
static void extract_entropy(void *buf, size_t nbytes)
L
Linus Torvalds 已提交
1048
{
1049
	unsigned long flags;
1050 1051
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
1052
		unsigned long rdseed[32 / sizeof(long)];
1053 1054 1055 1056
		size_t counter;
	} block;
	size_t i;

1057
	trace_extract_entropy(nbytes, input_pool.entropy_count);
1058

1059 1060 1061 1062
	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
1063 1064
	}

1065
	spin_lock_irqsave(&input_pool.lock, flags);
1066

1067 1068
	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);
L
Linus Torvalds 已提交
1069

1070
	/* next_key = HASHPRF(seed, RDSEED || 0) */
1071 1072 1073
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
L
Linus Torvalds 已提交
1074

1075 1076
	spin_unlock_irqrestore(&input_pool.lock, flags);
	memzero_explicit(next_key, sizeof(next_key));
1077 1078

	while (nbytes) {
1079
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
1080
		/* output = HASHPRF(seed, RDSEED || ++counter) */
1081 1082
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
1083 1084 1085 1086
		nbytes -= i;
		buf += i;
	}

1087 1088
	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
1089 1090
}

1091
#define warn_unseeded_randomness(previous) \
1092
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
1093

1094
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
1095 1096 1097 1098 1099 1100 1101
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

1102
	if (print_once || crng_ready() ||
1103 1104 1105 1106 1107 1108
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1109
	if (__ratelimit(&unseeded_warning))
1110 1111
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
1112 1113
}

L
Linus Torvalds 已提交
1114 1115
/*
 * This function is the exported kernel interface.  It returns some
1116
 * number of good random numbers, suitable for key generation, seeding
1117 1118
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1119 1120 1121 1122
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1123
 */
1124
static void _get_random_bytes(void *buf, int nbytes)
1125
{
1126
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1127

1128
	trace_get_random_bytes(nbytes, _RET_IP_);
1129

1130
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1131
		extract_crng(buf);
1132 1133
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1134 1135 1136 1137 1138
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1139 1140
		crng_backtrack_protect(tmp, nbytes);
	} else
1141
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1142
	memzero_explicit(tmp, sizeof(tmp));
1143
}
1144 1145 1146 1147 1148 1149 1150 1151

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1152 1153
EXPORT_SYMBOL(get_random_bytes);

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1169
	credit_entropy_bits(1);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1192
			mod_timer(&stack.timer, jiffies + 1);
1193
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1194 1195 1196 1197 1198 1199
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1200
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1228 1229 1230
}
EXPORT_SYMBOL(wait_for_random_bytes);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1260
	if (crng_ready())
1261 1262 1263 1264 1265 1266 1267
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1268
	if (crng_ready())
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1313 1314
 *
 * Return number of bytes filled in.
1315
 */
1316
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1317
{
1318
	int left = nbytes;
1319
	u8 *p = buf;
1320

1321 1322
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1323
		unsigned long v;
1324
		int chunk = min_t(int, left, sizeof(unsigned long));
1325

1326 1327
		if (!arch_get_random_long(&v))
			break;
1328

L
Luck, Tony 已提交
1329
		memcpy(p, &v, chunk);
1330
		p += chunk;
1331
		left -= chunk;
1332 1333
	}

1334
	return nbytes - left;
L
Linus Torvalds 已提交
1335
}
1336 1337
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343 1344
/*
 * init_std_data - initialize pool with system data
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1345
static void __init init_std_data(void)
L
Linus Torvalds 已提交
1346
{
1347
	int i;
1348 1349
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1350

1351
	mix_pool_bytes(&now, sizeof(now));
1352
	for (i = BLAKE2S_BLOCK_SIZE; i > 0; i -= sizeof(rv)) {
1353 1354
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1355
			rv = random_get_entropy();
1356
		mix_pool_bytes(&rv, sizeof(rv));
1357
	}
1358
	mix_pool_bytes(utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1371
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1372
{
1373
	init_std_data();
1374
	if (crng_need_final_init)
1375
		crng_finalize_init();
1376
	crng_initialize_primary();
1377
	crng_global_init_time = jiffies;
1378 1379 1380 1381
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1382 1383 1384
	return 0;
}

1385
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1391
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1392 1393
	 * source.
	 */
1394
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1395 1396
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1397
		disk->random = state;
1398
	}
L
Linus Torvalds 已提交
1399
}
1400
#endif
L
Linus Torvalds 已提交
1401

1402 1403
static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
1404 1405 1406
{
	int ret;

1407
	nbytes = min_t(size_t, nbytes, INT_MAX >> 6);
1408
	ret = extract_crng_user(buf, nbytes);
1409
	trace_urandom_read(8 * nbytes, 0, input_pool.entropy_count);
1410 1411 1412
	return ret;
}

1413 1414
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
L
Linus Torvalds 已提交
1415
{
1416
	static int maxwarn = 10;
1417

1418
	if (!crng_ready() && maxwarn > 0) {
1419
		maxwarn--;
1420
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1421 1422
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1423
	}
1424 1425

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1426 1427
}

1428 1429
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1439
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1440
{
1441
	__poll_t mask;
L
Linus Torvalds 已提交
1442

1443
	poll_wait(file, &crng_init_wait, wait);
1444 1445
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1446
	if (crng_ready())
1447
		mask |= EPOLLIN | EPOLLRDNORM;
1448
	if (input_pool.entropy_count < POOL_MIN_BITS)
1449
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1450 1451 1452
	return mask;
}

1453
static int write_pool(const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1454 1455
{
	size_t bytes;
1456
	u32 t, buf[16];
L
Linus Torvalds 已提交
1457 1458
	const char __user *p = buffer;

1459
	while (count > 0) {
1460 1461
		int b, i = 0;

1462 1463 1464
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1465

1466
		for (b = bytes; b > 0; b -= sizeof(u32), i++) {
1467 1468 1469 1470 1471
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1472
		count -= bytes;
L
Linus Torvalds 已提交
1473 1474
		p += bytes;

1475
		mix_pool_bytes(buf, bytes);
1476
		cond_resched();
L
Linus Torvalds 已提交
1477
	}
1478 1479 1480 1481

	return 0;
}

1482 1483
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1484 1485 1486
{
	size_t ret;

1487
	ret = write_pool(buffer, count);
1488 1489 1490 1491
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1492 1493
}

M
Matt Mackall 已提交
1494
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1502
		/* inherently racy, no point locking */
1503
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1504 1505 1506 1507 1508 1509 1510
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1511 1512 1513 1514
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1524
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1525 1526
		if (retval < 0)
			return retval;
1527 1528
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1529 1530
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1531 1532 1533 1534
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1535 1536
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1537
		if (xchg(&input_pool.entropy_count, 0)) {
1538 1539 1540
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1541
		return 0;
1542 1543 1544 1545 1546
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1547
		crng_reseed(&primary_crng);
1548
		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1549
		return 0;
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554
	default:
		return -EINVAL;
	}
}

1555 1556 1557 1558 1559
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1560
const struct file_operations random_fops = {
1561
	.read = random_read,
L
Linus Torvalds 已提交
1562
	.write = random_write,
1563
	.poll = random_poll,
M
Matt Mackall 已提交
1564
	.unlocked_ioctl = random_ioctl,
1565
	.compat_ioctl = compat_ptr_ioctl,
1566
	.fasync = random_fasync,
1567
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1568 1569
};

1570
const struct file_operations urandom_fops = {
1571
	.read = urandom_read,
L
Linus Torvalds 已提交
1572
	.write = random_write,
M
Matt Mackall 已提交
1573
	.unlocked_ioctl = random_ioctl,
1574
	.compat_ioctl = compat_ptr_ioctl,
1575
	.fasync = random_fasync,
1576
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1577 1578
};

1579 1580
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
1581
{
1582 1583
	int ret;

1584
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1585 1586 1587 1588 1589 1590
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
1591
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1592 1593 1594 1595 1596
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

1597
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1598 1599
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1600 1601 1602
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
1603
	}
1604
	return urandom_read_nowarn(NULL, buf, count, NULL);
1605 1606
}

L
Linus Torvalds 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1617
static int random_min_urandom_seed = 60;
1618 1619
static int random_write_wakeup_bits = POOL_MIN_BITS;
static int sysctl_poolsize = POOL_BITS;
L
Linus Torvalds 已提交
1620 1621 1622
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1623
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1624 1625 1626
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1627 1628 1629
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1630
 */
1631 1632
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1633
{
1634
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1641 1642 1643 1644 1645 1646 1647 1648
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1649

J
Joe Perches 已提交
1650 1651
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1652 1653 1654
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1655
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1656 1657
}

1658
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1664
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1665 1666 1667
	},
	{
		.procname	= "entropy_avail",
1668
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1669 1670
		.maxlen		= sizeof(int),
		.mode		= 0444,
1671
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1672 1673 1674
	},
	{
		.procname	= "write_wakeup_threshold",
1675
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
1676 1677
		.maxlen		= sizeof(int),
		.mode		= 0644,
1678
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1679
	},
1680 1681 1682 1683 1684 1685 1686
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1692
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1698
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1699
	},
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
1716
	{ }
L
Linus Torvalds 已提交
1717
};
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1729
#endif	/* CONFIG_SYSCTL */
L
Linus Torvalds 已提交
1730

1731 1732
static atomic_t batch_generation = ATOMIC_INIT(0);

1733 1734
struct batched_entropy {
	union {
1735 1736
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
1737
	};
1738
	local_lock_t lock;
1739
	unsigned int position;
1740
	int generation;
1741
};
1742

L
Linus Torvalds 已提交
1743
/*
1744
 * Get a random word for internal kernel use only. The quality of the random
1745 1746
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
1747
 * that the randomness provided by this function is okay, the function
1748 1749
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
1750
 */
1751
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
1752
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock)
1753 1754
};

1755
u64 get_random_u64(void)
L
Linus Torvalds 已提交
1756
{
1757
	u64 ret;
1758
	unsigned long flags;
1759
	struct batched_entropy *batch;
1760
	static void *previous;
1761
	int next_gen;
1762

1763
	warn_unseeded_randomness(&previous);
1764

1765
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
1766
	batch = raw_cpu_ptr(&batched_entropy_u64);
1767 1768 1769 1770

	next_gen = atomic_read(&batch_generation);
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0 ||
	    next_gen != batch->generation) {
1771
		extract_crng((u8 *)batch->entropy_u64);
1772
		batch->position = 0;
1773
		batch->generation = next_gen;
1774
	}
1775

1776
	ret = batch->entropy_u64[batch->position++];
1777
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
1778
	return ret;
L
Linus Torvalds 已提交
1779
}
1780
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
1781

1782
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
1783
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock)
1784
};
1785

1786
u32 get_random_u32(void)
1787
{
1788
	u32 ret;
1789
	unsigned long flags;
1790
	struct batched_entropy *batch;
1791
	static void *previous;
1792
	int next_gen;
1793

1794
	warn_unseeded_randomness(&previous);
1795

1796
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
1797
	batch = raw_cpu_ptr(&batched_entropy_u32);
1798 1799 1800 1801

	next_gen = atomic_read(&batch_generation);
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0 ||
	    next_gen != batch->generation) {
1802
		extract_crng((u8 *)batch->entropy_u32);
1803
		batch->position = 0;
1804
		batch->generation = next_gen;
1805
	}
1806

1807
	ret = batch->entropy_u32[batch->position++];
1808
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
1809 1810
	return ret;
}
1811
EXPORT_SYMBOL(get_random_u32);
1812

1813 1814
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
1815 1816
 * bumping the generation counter.
 */
1817 1818
static void invalidate_batched_entropy(void)
{
1819
	atomic_inc(&batch_generation);
1820 1821
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
1836
unsigned long randomize_page(unsigned long start, unsigned long range)
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

1854 1855 1856 1857 1858 1859 1860
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
T
Theodore Ts'o 已提交
1861
	if (unlikely(crng_init == 0)) {
1862
		size_t ret = crng_fast_load(buffer, count);
1863
		mix_pool_bytes(buffer, ret);
1864 1865 1866 1867
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
1868
	}
1869

1870
	/* Throttle writing if we're above the trickle threshold.
1871 1872 1873
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
1874
	 */
1875
	wait_event_interruptible_timeout(random_write_wait,
1876
			!system_wq || kthread_should_stop() ||
1877
			input_pool.entropy_count < POOL_MIN_BITS,
1878
			CRNG_RESEED_INTERVAL);
1879 1880
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
1881 1882
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
1896
EXPORT_SYMBOL_GPL(add_bootloader_randomness);