random.c 47.3 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73 74 75 76 77
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
78
 * crng_init is protected by base_crng->lock, and only increases
79 80 81
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
82
#define crng_ready() (likely(crng_init > 1))
83 84 85 86 87
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);
88

89
/* Control how we warn userspace. */
90 91 92 93 94 95
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98 99
 * to supply cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}().
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
115 116 117 118
 * cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}(). Using any
 * of these functions without first calling this function means that
 * the returned numbers might not be cryptographically secure.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

	if (crng_ready())
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (crng_ready())
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


239
/*********************************************************************
L
Linus Torvalds 已提交
240
 *
241
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
242
 *
243 244 245
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
246
 *
247 248 249 250 251 252 253 254 255
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
256 257 258 259
 * into the given buffer or as a return value. The returned numbers are
 * the same as those of getrandom(0). The integer family of functions may
 * be higher performance for one-off random integers, because they do a
 * bit of buffering and do not invoke reseeding.
260 261 262
 *
 *********************************************************************/

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
287

288 289
/* Used by crng_reseed() to extract a new seed from the input pool. */
static bool drain_entropy(void *buf, size_t nbytes);
290

291
/*
292 293 294
 * This extracts a new crng key from the input pool, but only if there is a
 * sufficient amount of entropy available, in order to mitigate bruteforcing
 * of newly added bits.
295
 */
296
static void crng_reseed(void)
297
{
298
	unsigned long flags;
299 300
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
301
	bool finalize_init = false;
302

303 304 305
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
	if (!drain_entropy(key, sizeof(key)))
		return;
306

307 308 309 310 311 312 313 314 315 316 317 318 319
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
320 321
	if (crng_init < 2) {
		crng_init = 2;
322 323 324 325 326
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
327 328 329 330 331 332 333 334 335 336
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
	}
337 338
}

339
/*
340 341 342 343 344
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
345 346 347 348
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
349
{
350
	u8 first_block[CHACHA_BLOCK_SIZE];
351

352 353 354 355 356 357 358 359 360 361
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
362 363
}

364
/*
365 366 367
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
368
 */
369 370
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
371
{
372
	unsigned long flags;
373
	struct crng *crng;
374

375 376 377 378 379 380
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
381
	 * this is what crng_pre_init_inject() mutates during early init.
382 383 384 385 386 387 388 389 390 391 392 393
	 */
	if (unlikely(!crng_ready())) {
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
394
	}
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	/*
	 * If the base_crng is more than 5 minutes old, we reseed, which
	 * in turn bumps the generation counter that we check below.
	 */
	if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
		crng_reseed();

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
429 430
}

431
/*
432 433 434 435 436
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
437
 *
438 439 440 441 442 443 444
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
 *
 * Returns the number of bytes processed from input, which is bounded
 * by CRNG_INIT_CNT_THRESH if account is true.
445
 */
446
static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
447 448
{
	static int crng_init_cnt = 0;
449
	struct blake2s_state hash;
450 451
	unsigned long flags;

452
	blake2s_init(&hash, sizeof(base_crng.key));
453

454
	spin_lock_irqsave(&base_crng.lock, flags);
455 456 457 458 459
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}

460 461
	if (account)
		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
462

463 464 465
	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, input, len);
	blake2s_final(&hash, base_crng.key);
466

467 468 469 470 471 472 473
	if (account) {
		crng_init_cnt += len;
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
			++base_crng.generation;
			crng_init = 1;
		}
	}
474 475

	spin_unlock_irqrestore(&base_crng.lock, flags);
476 477 478 479 480

	if (crng_init == 1)
		pr_notice("fast init done\n");

	return len;
481 482 483
}

static void _get_random_bytes(void *buf, size_t nbytes)
484
{
485
	u32 chacha_state[CHACHA_STATE_WORDS];
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
 * is POOL_MIN_BITS entropy credited prior:
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *     static bool drain_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

773 774 775 776 777
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

778
/* For notifying userspace should write into /dev/random. */
779 780 781 782 783 784 785 786 787 788 789 790 791 792
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

793 794 795 796
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
797 798 799 800 801 802

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
803
static void mix_pool_bytes(const void *in, size_t nbytes)
804
{
805 806 807 808 809
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
		crng_reseed();
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
835 836
{
	unsigned long flags;
837 838 839 840 841 842 843 844 845 846 847 848
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
849 850

	spin_lock_irqsave(&input_pool.lock, flags);
851 852 853 854 855 856 857 858 859

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

860
	spin_unlock_irqrestore(&input_pool.lock, flags);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
 * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
 * set the entropy count to zero (but don't actually touch any data). Only then
 * can we extract a new key with extract_entropy().
 */
static bool drain_entropy(void *buf, size_t nbytes)
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
		if (entropy_count < POOL_MIN_BITS)
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
893 894
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
954 955

/*
956 957 958 959 960
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
961
 */
962
int __init rand_initialize(void)
963
{
964 965 966 967
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
968

969 970 971 972 973 974
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
975
		_mix_pool_bytes(&rv, sizeof(rv));
976
	}
977 978
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
979

980 981
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
982

983 984 985 986
	if (arch_init && trust_cpu && crng_init < 2) {
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
987

988
	if (ratelimit_disable)
989 990
		unseeded_warning.interval = 0;
	return 0;
991
}
992

993
/*
994 995
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
996
 *
997 998 999
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1000
 */
1001
void add_device_randomness(const void *buf, size_t size)
1002
{
1003 1004
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
1005

1006
	if (crng_init == 0 && size)
1007
		crng_pre_init_inject(buf, size, false);
1008

1009
	spin_lock_irqsave(&input_pool.lock, flags);
1010 1011
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
1012
	_mix_pool_bytes(buf, size);
1013
	spin_unlock_irqrestore(&input_pool.lock, flags);
1014 1015 1016
}
EXPORT_SYMBOL(add_device_randomness);

1017 1018 1019 1020 1021 1022
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 */
1032
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1033
{
1034 1035
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
L
Linus Torvalds 已提交
1036 1037
	long delta, delta2, delta3;

1038 1039 1040 1041 1042
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&num, sizeof(num));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1049 1050
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);
1051

1052 1053
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1054

1055 1056
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1068

1069 1070 1071
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1072
	 * and limit entropy estimate to 12 bits.
1073
	 */
1074
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1075 1076
}

1077
void add_input_randomness(unsigned int type, unsigned int code,
1078
			  unsigned int value)
L
Linus Torvalds 已提交
1079 1080
{
	static unsigned char last_value;
1081
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1082

1083
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089 1090
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1091
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
	if (unlikely(crng_init == 0)) {
1128
		size_t ret = crng_pre_init_inject(buffer, count, true);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

struct fast_pool {
	union {
		u32 pool32[4];
		u64 pool64[2];
	};
1171
	struct work_struct mix;
1172
	unsigned long last;
1173
	unsigned int count;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	u16 reg_idx;
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector. It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
static void fast_mix(u32 pool[4])
{
	u32 a = pool[0],	b = pool[1];
	u32 c = pool[2],	d = pool[3];

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	pool[0] = a;  pool[1] = b;
	pool[2] = c;  pool[3] = d;
}

1207 1208
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1232
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1233
{
1234
	unsigned long *ptr = (unsigned long *)regs;
1235
	unsigned int idx;
1236 1237 1238

	if (regs == NULL)
		return 0;
1239
	idx = READ_ONCE(f->reg_idx);
1240
	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1241 1242 1243
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1244
	return *ptr;
1245 1246
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
	u32 pool[4];

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
	memcpy(pool, fast_pool->pool32, sizeof(pool));
1264
	fast_pool->count = 0;
1265 1266 1267
	fast_pool->last = jiffies;
	local_irq_enable();

1268 1269 1270 1271 1272 1273 1274 1275
	if (unlikely(crng_init == 0)) {
		crng_pre_init_inject(pool, sizeof(pool), true);
		mix_pool_bytes(pool, sizeof(pool));
	} else {
		mix_pool_bytes(pool, sizeof(pool));
		credit_entropy_bits(1);
	}

1276 1277 1278
	memzero_explicit(pool, sizeof(pool));
}

1279
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1280
{
1281
	enum { MIX_INFLIGHT = 1U << 31 };
1282 1283
	cycles_t cycles = random_get_entropy();
	unsigned long now = jiffies;
1284 1285
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1286
	unsigned int new_count;
1287

1288 1289
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (sizeof(cycles) == 8)
		fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
	else {
		fast_pool->pool32[0] ^= cycles ^ irq;
		fast_pool->pool32[1] ^= now;
	}

	if (sizeof(unsigned long) == 8)
		fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
	else {
		fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
		fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
	}

	fast_mix(fast_pool->pool32);
1306
	new_count = ++fast_pool->count;
1307

1308
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1309 1310
		return;

1311 1312
	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
			       unlikely(crng_init == 0)))
1313
		return;
1314

1315 1316
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1317
	fast_pool->count |= MIX_INFLIGHT;
1318
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1319
}
1320
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1337
	credit_entropy_bits(1);
1338 1339 1340 1341 1342 1343 1344 1345 1346
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
1347
		cycles_t cycles;
1348 1349 1350
		struct timer_list timer;
	} stack;

1351
	stack.cycles = random_get_entropy();
1352 1353

	/* Slow counter - or none. Don't even bother */
1354
	if (stack.cycles == random_get_entropy())
1355 1356 1357 1358 1359
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1360
			mod_timer(&stack.timer, jiffies + 1);
1361
		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1362
		schedule();
1363
		stack.cycles = random_get_entropy();
1364 1365 1366 1367
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1368
	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1379 1380 1381
 * Reading from /dev/random and /dev/urandom both have the same effect
 * as calling getrandom(2) with flags=0. (In earlier versions, however,
 * they each had different semantics.)
1382 1383 1384 1385
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1386 1387 1388
 * Polling on /dev/random or /dev/urandom indicates when the RNG
 * is initialized, on the read side, and when it wants new entropy,
 * on the write side.
1389 1390 1391 1392 1393 1394 1395 1396 1397
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1398
{
1399 1400
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1401

1402 1403 1404 1405 1406 1407
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1408

1409 1410
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1411

1412 1413
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1414

1415 1416 1417 1418 1419 1420 1421
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1422 1423
}

1424
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1425
{
1426
	__poll_t mask;
L
Linus Torvalds 已提交
1427

1428
	poll_wait(file, &crng_init_wait, wait);
1429 1430
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1431
	if (crng_ready())
1432
		mask |= EPOLLIN | EPOLLRDNORM;
1433
	if (input_pool.entropy_count < POOL_MIN_BITS)
1434
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1435 1436 1437
	return mask;
}

1438
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1439
{
1440
	size_t len;
1441
	int ret = 0;
1442
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1443

1444 1445
	while (count) {
		len = min(count, sizeof(block));
1446 1447 1448 1449
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1450 1451 1452
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1453
		cond_resched();
L
Linus Torvalds 已提交
1454
	}
1455

1456 1457 1458
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1459 1460
}

1461 1462
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1463
{
1464
	int ret;
1465

1466
	ret = write_pool(buffer, count);
1467 1468 1469 1470
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1484
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489 1490 1491
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1492
		/* Inherently racy, no point locking. */
1493
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1501 1502 1503 1504
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1514
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1515 1516
		if (retval < 0)
			return retval;
1517 1518
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1519 1520
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1521 1522 1523 1524
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1525 1526
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1527
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1528 1529 1530
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1531
		return 0;
1532 1533 1534 1535 1536
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1537
		crng_reseed();
1538
		return 0;
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543
	default:
		return -EINVAL;
	}
}

1544 1545 1546 1547 1548
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1549
const struct file_operations random_fops = {
1550
	.read = random_read,
L
Linus Torvalds 已提交
1551
	.write = random_write,
1552
	.poll = random_poll,
M
Matt Mackall 已提交
1553
	.unlocked_ioctl = random_ioctl,
1554
	.compat_ioctl = compat_ptr_ioctl,
1555
	.fasync = random_fasync,
1556
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1557 1558
};

1559

L
Linus Torvalds 已提交
1560 1561
/********************************************************************
 *
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1584
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1585 1586
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1594
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1595
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1596
static int sysctl_poolsize = POOL_BITS;
1597
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1598 1599

/*
G
Greg Price 已提交
1600
 * This function is used to return both the bootid UUID, and random
1601
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1602 1603
 * then a new UUID is generated and returned to the user.
 */
1604 1605
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1606
{
1607 1608 1609 1610 1611 1612 1613 1614 1615
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1621 1622 1623 1624 1625 1626 1627 1628
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1629

1630 1631
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1632 1633
}

1634 1635 1636 1637 1638 1639 1640
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1641
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1647
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1648 1649 1650
	},
	{
		.procname	= "entropy_avail",
1651
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1652 1653
		.maxlen		= sizeof(int),
		.mode		= 0444,
1654
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1655 1656 1657
	},
	{
		.procname	= "write_wakeup_threshold",
1658
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1659 1660
		.maxlen		= sizeof(int),
		.mode		= 0644,
1661
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1662
	},
1663 1664
	{
		.procname	= "urandom_min_reseed_secs",
1665
		.data		= &sysctl_random_min_urandom_seed,
1666 1667
		.maxlen		= sizeof(int),
		.mode		= 0644,
1668
		.proc_handler	= proc_do_rointvec,
1669
	},
L
Linus Torvalds 已提交
1670 1671 1672 1673
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1674
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1675 1676 1677 1678
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1679
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1680
	},
1681
	{ }
L
Linus Torvalds 已提交
1682
};
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1694
#endif