random.c 47.3 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89 90
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98 99 100
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121 122 123 124
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161 162 163 164 165
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
166
 * into the given buffer or as a return value. This is equivalent to
167 168 169 170
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
171 172 173
 *
 *********************************************************************/

174 175 176 177
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
198

199
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
200
static void extract_entropy(void *buf, size_t len);
201

202 203
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
204
{
205
	unsigned long flags;
206 207
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
208

209
	extract_entropy(key, sizeof(key));
210

211 212 213 214 215 216 217 218 219 220 221 222 223
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
224
	if (!static_branch_likely(&crng_is_ready))
225
		crng_init = CRNG_READY;
226 227
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
228 229
}

230
/*
231 232 233 234 235
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
236 237 238 239 240 241 242
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
243 244 245 246
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
247
{
248
	u8 first_block[CHACHA_BLOCK_SIZE];
249

250 251 252 253 254 255 256 257
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
258
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
259
	memzero_explicit(first_block, sizeof(first_block));
260 261
}

262
/*
263 264 265 266
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
267 268 269 270 271 272 273 274 275 276 277
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
278
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
279 280
					 (unsigned int)uptime / 2 * HZ);
	}
281
	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
282 283
}

284
/*
285 286 287
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
288
 */
289 290
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
291
{
292
	unsigned long flags;
293
	struct crng *crng;
294

295 296 297 298 299
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
300
	 * ready, we do fast key erasure with the base_crng directly, extracting
301
	 * when crng_init is CRNG_EMPTY.
302
	 */
303
	if (!crng_ready()) {
304 305 306 307
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
308
		if (!ready) {
309
			if (crng_init == CRNG_EMPTY)
310
				extract_entropy(base_crng.key, sizeof(base_crng.key));
311 312
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
313
		}
314 315 316
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
317
	}
318 319

	/*
320 321
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
322
	 */
323
	if (unlikely(crng_has_old_seed()))
324
		crng_reseed();
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
352 353
}

354
static void _get_random_bytes(void *buf, size_t len)
355
{
356
	u32 chacha_state[CHACHA_STATE_WORDS];
357
	u8 tmp[CHACHA_BLOCK_SIZE];
358
	size_t first_block_len;
359

360
	if (!len)
361 362
		return;

363 364 365 366
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
367

368 369
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
370
			chacha20_block(chacha_state, tmp);
371
			memcpy(buf, tmp, len);
372 373 374 375 376 377 378
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
379
		len -= CHACHA_BLOCK_SIZE;
380 381 382 383 384 385 386 387 388
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
389 390 391
 * TCP sequence numbers, etc. In order to ensure that the randomness
 * by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
392
 */
393
void get_random_bytes(void *buf, size_t len)
394
{
395
	warn_unseeded_randomness();
396
	_get_random_bytes(buf, len);
397 398 399
}
EXPORT_SYMBOL(get_random_bytes);

400
static ssize_t get_random_bytes_user(struct iov_iter *iter)
401 402
{
	u32 chacha_state[CHACHA_STATE_WORDS];
403 404
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
405

406
	if (unlikely(!iov_iter_count(iter)))
407 408
		return 0;

409 410 411 412 413 414 415 416 417 418 419
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
420 421
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
422 423
		goto out_zero_chacha;
	}
424

425
	for (;;) {
426
		chacha20_block(chacha_state, block);
427 428 429
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

430 431 432
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
433
			break;
434

435
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
436
		if (ret % PAGE_SIZE == 0) {
437 438 439 440
			if (signal_pending(current))
				break;
			cond_resched();
		}
441
	}
442

443
	memzero_explicit(block, sizeof(block));
444 445
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
446
	return ret ? ret : -EFAULT;
447 448 449 450 451 452 453 454 455
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)
511

512 513 514 515 516
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
517
int __cold random_prepare_cpu(unsigned int cpu)
518 519 520 521 522 523 524 525 526 527 528 529 530
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

531 532 533 534 535 536 537

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
538
 *     static void mix_pool_bytes(const void *buf, size_t len)
539 540 541
 *
 * After which, if added entropy should be credited:
 *
542
 *     static void credit_init_bits(size_t bits)
543
 *
544
 * Finally, extract entropy via:
545
 *
546
 *     static void extract_entropy(void *buf, size_t len)
547 548 549
 *
 **********************************************************************/

550 551
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
552 553
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
554 555 556 557 558
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
559
	unsigned int init_bits;
560 561 562 563 564 565 566 567
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

568
static void _mix_pool_bytes(const void *buf, size_t len)
569
{
570
	blake2s_update(&input_pool.hash, buf, len);
571
}
572 573

/*
574 575 576
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
577
 */
578
static void mix_pool_bytes(const void *buf, size_t len)
579
{
580 581 582
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
583
	_mix_pool_bytes(buf, len);
584
	spin_unlock_irqrestore(&input_pool.lock, flags);
585 586
}

587 588 589 590
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
591
static void extract_entropy(void *buf, size_t len)
592 593
{
	unsigned long flags;
594 595 596 597 598 599 600 601 602 603 604 605
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
606 607

	spin_lock_irqsave(&input_pool.lock, flags);
608 609 610 611 612 613 614 615 616

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

617
	spin_unlock_irqrestore(&input_pool.lock, flags);
618 619
	memzero_explicit(next_key, sizeof(next_key));

620 621
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
622 623 624
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
625
		len -= i;
626 627 628 629 630 631 632
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

633 634 635
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
636
{
637
	static struct execute_work set_ready;
638
	unsigned int new, orig, add;
639 640
	unsigned long flags;

641
	if (!bits)
642 643
		return;

644
	add = min_t(size_t, bits, POOL_BITS);
645 646

	do {
647
		orig = READ_ONCE(input_pool.init_bits);
648 649
		new = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
650

651 652
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
653
		execute_in_process_context(crng_set_ready, &set_ready);
654 655 656
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
657
		if (urandom_warning.missed)
658 659 660
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
661
		spin_lock_irqsave(&base_crng.lock, flags);
662
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
663
		if (crng_init == CRNG_EMPTY) {
664
			extract_entropy(base_crng.key, sizeof(base_crng.key));
665
			crng_init = CRNG_EARLY;
666 667 668 669 670
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

671 672 673 674 675 676 677 678

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
679 680 681 682
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
683
 *	void add_interrupt_randomness(int irq);
684
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
685
 *	void add_disk_randomness(struct gendisk *disk);
686 687 688 689 690 691 692 693 694 695 696 697 698
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
699 700 701
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
702
 *
703 704 705 706
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
707 708 709 710 711
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
712 713 714 715 716 717 718 719 720 721 722 723 724
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
725 726
 **********************************************************************/

727
static bool used_arch_random;
728
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
729
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
730 731 732 733
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
734 735 736 737
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
738
early_param("random.trust_cpu", parse_trust_cpu);
739
early_param("random.trust_bootloader", parse_trust_bootloader);
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
760
		crng_reseed();
761 762 763 764 765 766 767
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

768
/*
769
 * The first collection of entropy occurs at system boot while interrupts
770 771 772 773 774
 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
 * utsname(), and the command line. Depending on the above configuration knob,
 * RDSEED may be considered sufficient for initialization. Note that much
 * earlier setup may already have pushed entropy into the input pool by the
 * time we get here.
775
 */
776
int __init random_init(const char *command_line)
777
{
778
	ktime_t now = ktime_get_real();
779
	unsigned int i, arch_bytes;
780
	unsigned long entropy;
781

782 783 784 785 786
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

787
	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
788 789 790 791 792
	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
		if (!arch_get_random_seed_long_early(&entropy) &&
		    !arch_get_random_long_early(&entropy)) {
			entropy = random_get_entropy();
			arch_bytes -= sizeof(entropy);
793
		}
794
		_mix_pool_bytes(&entropy, sizeof(entropy));
795
	}
796 797
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
798 799
	_mix_pool_bytes(command_line, strlen(command_line));
	add_latent_entropy();
800

801 802
	if (crng_ready())
		crng_reseed();
803
	else if (trust_cpu)
804
		_credit_init_bits(arch_bytes * 8);
805
	used_arch_random = arch_bytes * 8 >= POOL_READY_BITS;
806

807 808
	WARN_ON(register_pm_notifier(&pm_notifier));

809 810
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
811
	return 0;
812
}
813

814 815 816 817 818 819 820 821 822 823 824
/*
 * Returns whether arch randomness has been mixed into the initial
 * state of the RNG, regardless of whether or not that randomness
 * was credited. Knowing this is only good for a very limited set
 * of uses, such as early init printk pointer obfuscation.
 */
bool rng_has_arch_random(void)
{
	return used_arch_random;
}

825
/*
826 827
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
828
 *
829 830 831
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
832
 */
833
void add_device_randomness(const void *buf, size_t len)
834
{
835 836
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
837

838
	spin_lock_irqsave(&input_pool.lock, flags);
839
	_mix_pool_bytes(&entropy, sizeof(entropy));
840
	_mix_pool_bytes(buf, len);
841
	spin_unlock_irqrestore(&input_pool.lock, flags);
842 843 844
}
EXPORT_SYMBOL(add_device_randomness);

845 846 847 848 849
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
850
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
851
{
852
	mix_pool_bytes(buf, len);
853 854
	credit_init_bits(entropy);

855
	/*
856 857
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
858
	 */
859 860
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
861 862 863 864
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
865 866
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
867
 */
868
void __cold add_bootloader_randomness(const void *buf, size_t len)
869
{
870
	mix_pool_bytes(buf, len);
871
	if (trust_bootloader)
872
		credit_init_bits(len * 8);
873 874 875
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

876
#if IS_ENABLED(CONFIG_VMGENID)
877 878
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

879 880 881 882 883
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
884
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
885
{
886
	add_device_randomness(unique_vm_id, len);
887
	if (crng_ready()) {
888
		crng_reseed();
889 890
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
891
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
892
}
893
#if IS_MODULE(CONFIG_VMGENID)
894
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
895
#endif
896

897
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
898 899 900 901 902
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

903
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
904 905 906 907
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
908
#endif
909

910
struct fast_pool {
911
	struct work_struct mix;
912
	unsigned long pool[4];
913
	unsigned long last;
914
	unsigned int count;
915 916
};

917 918
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
919 920
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
921
#else
922 923
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
924 925 926
#endif
};

927
/*
928 929 930
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
931
 * four-word SipHash state, while v represents a two-word input.
932
 */
933
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
934
{
935
	s[3] ^= v1;
936
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
937 938
	s[0] ^= v1;
	s[3] ^= v2;
939
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
940
	s[0] ^= v2;
941 942
}

943 944 945 946 947
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
948
int __cold random_online_cpu(unsigned int cpu)
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

966 967 968
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
969
	/*
970 971 972 973 974
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
975
	 */
976
	unsigned long pool[2];
977
	unsigned int count;
978 979 980 981 982 983 984 985 986 987 988 989

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
990
	memcpy(pool, fast_pool->pool, sizeof(pool));
991
	count = fast_pool->count;
992
	fast_pool->count = 0;
993 994 995
	fast_pool->last = jiffies;
	local_irq_enable();

996
	mix_pool_bytes(pool, sizeof(pool));
997
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
998

999 1000 1001
	memzero_explicit(pool, sizeof(pool));
}

1002
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1003
{
1004
	enum { MIX_INFLIGHT = 1U << 31 };
1005
	unsigned long entropy = random_get_entropy();
1006 1007
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1008
	unsigned int new_count;
1009

1010 1011
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1012
	new_count = ++fast_pool->count;
1013

1014
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1015 1016
		return;

1017
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1018
		return;
1019

1020 1021
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1022
	fast_pool->count |= MIX_INFLIGHT;
1023
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1024
}
1025
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1026

1027 1028 1029 1030 1031 1032 1033 1034
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1035 1036 1037 1038
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1039 1040 1041 1042 1043
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1044
	unsigned int bits;
1045

1046 1047 1048 1049 1050
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1051
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1052 1053 1054 1055 1056 1057
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1099
	 */
1100 1101 1102
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1103
		_credit_init_bits(bits);
1104 1105
}

1106
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1131
void __cold rand_initialize_disk(struct gendisk *disk)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1147 1148 1149 1150 1151 1152
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1166
static void __cold entropy_timer(struct timer_list *timer)
1167
{
1168 1169 1170
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1171
		credit_init_bits(1);
1172 1173
		state->samples = 0;
	}
1174 1175 1176 1177 1178 1179
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1180
static void __cold try_to_generate_entropy(void)
1181
{
1182 1183 1184 1185
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1186

1187 1188 1189 1190 1191 1192 1193 1194
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1195 1196
		return;

1197
	stack.samples = 0;
1198
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1199
	while (!crng_ready() && !signal_pending(current)) {
1200
		if (!timer_pending(&stack.timer))
1201
			mod_timer(&stack.timer, jiffies + 1);
1202
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1203
		schedule();
1204
		stack.entropy = random_get_entropy();
1205 1206 1207 1208
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1209
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1220 1221 1222 1223 1224 1225 1226 1227
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1228 1229 1230 1231
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1232 1233
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1234 1235 1236 1237 1238 1239 1240
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1241
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1242
{
1243 1244 1245 1246
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1247 1248
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1249

1250 1251 1252 1253 1254 1255
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1256

1257
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1258 1259 1260 1261 1262 1263
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1264 1265 1266 1267 1268

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1269 1270
}

1271
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1272
{
1273
	poll_wait(file, &crng_init_wait, wait);
1274
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1275 1276
}

1277
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1278
{
1279
	u8 block[BLAKE2S_BLOCK_SIZE];
1280 1281
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1292 1293 1294 1295 1296 1297 1298

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1299
	}
1300

1301
	memzero_explicit(block, sizeof(block));
1302
	return ret ? ret : -EFAULT;
1303 1304
}

1305
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1306
{
1307
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1308 1309
}

1310
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1311 1312 1313
{
	static int maxwarn = 10;

1314 1315 1316 1317 1318 1319 1320
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1321 1322 1323 1324 1325
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1326 1327
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1328
		}
1329 1330
	}

1331
	return get_random_bytes_user(iter);
1332 1333
}

1334
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1335 1336 1337 1338 1339 1340
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1341
	return get_random_bytes_user(iter);
1342 1343
}

M
Matt Mackall 已提交
1344
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1345 1346
{
	int __user *p = (int __user *)arg;
1347
	int ent_count;
L
Linus Torvalds 已提交
1348 1349 1350

	switch (cmd) {
	case RNDGETENTCNT:
1351
		/* Inherently racy, no point locking. */
1352
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357 1358 1359
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1360 1361
		if (ent_count < 0)
			return -EINVAL;
1362
		credit_init_bits(ent_count);
1363
		return 0;
1364 1365 1366 1367 1368 1369
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1376 1377 1378 1379 1380
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1381
		ret = write_pool_user(&iter);
1382 1383 1384 1385
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1386
			return -EFAULT;
1387
		credit_init_bits(ent_count);
1388
		return 0;
1389
	}
L
Linus Torvalds 已提交
1390 1391
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1392
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1393 1394 1395
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1396 1397 1398
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1399
		if (!crng_ready())
1400
			return -ENODATA;
1401
		crng_reseed();
1402
		return 0;
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407
	default:
		return -EINVAL;
	}
}

1408 1409 1410 1411 1412
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1413
const struct file_operations random_fops = {
1414
	.read_iter = random_read_iter,
1415
	.write_iter = random_write_iter,
1416
	.poll = random_poll,
M
Matt Mackall 已提交
1417
	.unlocked_ioctl = random_ioctl,
1418
	.compat_ioctl = compat_ptr_ioctl,
1419
	.fasync = random_fasync,
1420
	.llseek = noop_llseek,
1421 1422
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1423 1424
};

1425
const struct file_operations urandom_fops = {
1426
	.read_iter = urandom_read_iter,
1427
	.write_iter = random_write_iter,
1428 1429 1430 1431
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1432 1433
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1434 1435
};

1436

L
Linus Torvalds 已提交
1437 1438
/********************************************************************
 *
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1457
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1458 1459 1460
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1461
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1462 1463
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1471
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1472
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1473
static int sysctl_poolsize = POOL_BITS;
1474
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1475 1476

/*
G
Greg Price 已提交
1477
 * This function is used to return both the bootid UUID, and random
1478
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1479 1480
 * then a new UUID is generated and returned to the user.
 */
1481
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1482
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1483
{
1484 1485 1486 1487 1488 1489 1490 1491 1492
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1498 1499 1500 1501 1502 1503 1504 1505
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1506

1507
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1508
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1509 1510
}

1511
/* The same as proc_dointvec, but writes don't change anything. */
1512
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1513 1514
			    size_t *lenp, loff_t *ppos)
{
1515
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1516 1517
}

1518
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1524
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1525 1526 1527
	},
	{
		.procname	= "entropy_avail",
1528
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1529 1530
		.maxlen		= sizeof(int),
		.mode		= 0444,
1531
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1532 1533 1534
	},
	{
		.procname	= "write_wakeup_threshold",
1535
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1536 1537
		.maxlen		= sizeof(int),
		.mode		= 0644,
1538
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1539
	},
1540 1541
	{
		.procname	= "urandom_min_reseed_secs",
1542
		.data		= &sysctl_random_min_urandom_seed,
1543 1544
		.maxlen		= sizeof(int),
		.mode		= 0644,
1545
		.proc_handler	= proc_do_rointvec,
1546
	},
L
Linus Torvalds 已提交
1547 1548 1549 1550
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1551
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1552 1553 1554 1555
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1556
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1557
	},
1558
	{ }
L
Linus Torvalds 已提交
1559
};
1560 1561

/*
1562 1563
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1564 1565 1566 1567 1568 1569 1570
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1571
#endif