random.c 47.7 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89
static struct ratelimit_state urandom_warning =
90
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98 99 100
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121 122 123 124
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161 162 163 164 165
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
166
 * into the given buffer or as a return value. This is equivalent to
167 168 169 170
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
171 172 173
 *
 *********************************************************************/

174 175 176 177
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
198

199
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
200
static void extract_entropy(void *buf, size_t len);
201

202 203
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
204
{
205
	unsigned long flags;
206 207
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
208

209
	extract_entropy(key, sizeof(key));
210

211 212 213 214 215 216 217 218 219 220 221 222 223
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
224
	if (!static_branch_likely(&crng_is_ready))
225
		crng_init = CRNG_READY;
226 227
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
228 229
}

230
/*
231
 * This generates a ChaCha block using the provided key, and then
232
 * immediately overwrites that key with half the block. It returns
233 234 235
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
236 237 238 239 240 241 242
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
243 244 245 246
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
247
{
248
	u8 first_block[CHACHA_BLOCK_SIZE];
249

250 251 252 253 254 255 256 257
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
258
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
259
	memzero_explicit(first_block, sizeof(first_block));
260 261
}

262
/*
263 264
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
265
 * proportional to the uptime.
266
 */
267
static unsigned int crng_reseed_interval(void)
268 269 270 271 272 273 274 275
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
276 277
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
278
	}
279
	return CRNG_RESEED_INTERVAL;
280 281
}

282
/*
283 284 285
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
286
 */
287 288
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
289
{
290
	unsigned long flags;
291
	struct crng *crng;
292

293 294 295 296 297
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
298
	 * ready, we do fast key erasure with the base_crng directly, extracting
299
	 * when crng_init is CRNG_EMPTY.
300
	 */
301
	if (!crng_ready()) {
302 303 304 305
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
306
		if (!ready) {
307
			if (crng_init == CRNG_EMPTY)
308
				extract_entropy(base_crng.key, sizeof(base_crng.key));
309 310
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
311
		}
312 313 314
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
315
	}
316 317

	/*
318 319
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
320
	 */
321
	if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
322
		crng_reseed();
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
350 351
}

352
static void _get_random_bytes(void *buf, size_t len)
353
{
354
	u32 chacha_state[CHACHA_STATE_WORDS];
355
	u8 tmp[CHACHA_BLOCK_SIZE];
356
	size_t first_block_len;
357

358
	if (!len)
359 360
		return;

361 362 363 364
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
365

366 367
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
368
			chacha20_block(chacha_state, tmp);
369
			memcpy(buf, tmp, len);
370 371 372 373 374 375 376
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
377
		len -= CHACHA_BLOCK_SIZE;
378 379 380 381 382 383 384 385 386
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
387 388 389
 * TCP sequence numbers, etc. In order to ensure that the randomness
 * by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
390
 */
391
void get_random_bytes(void *buf, size_t len)
392
{
393
	warn_unseeded_randomness();
394
	_get_random_bytes(buf, len);
395 396 397
}
EXPORT_SYMBOL(get_random_bytes);

398
static ssize_t get_random_bytes_user(struct iov_iter *iter)
399 400
{
	u32 chacha_state[CHACHA_STATE_WORDS];
401 402
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
403

404
	if (unlikely(!iov_iter_count(iter)))
405 406
		return 0;

407 408
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
409
	 * bytes, in case userspace causes copy_to_iter() below to sleep
410 411 412 413 414 415 416 417
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
418 419
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
420 421
		goto out_zero_chacha;
	}
422

423
	for (;;) {
424
		chacha20_block(chacha_state, block);
425 426 427
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

428 429 430
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
431
			break;
432

433
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
434
		if (ret % PAGE_SIZE == 0) {
435 436 437 438
			if (signal_pending(current))
				break;
			cond_resched();
		}
439
	}
440

441
	memzero_explicit(block, sizeof(block));
442 443
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
444
	return ret ? ret : -EFAULT;
445 446 447 448 449 450 451 452 453
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)
509

510 511 512 513 514
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
515
int __cold random_prepare_cpu(unsigned int cpu)
516 517 518 519 520 521 522 523 524 525 526 527 528
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

529 530 531 532 533 534 535

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
536
 *     static void mix_pool_bytes(const void *buf, size_t len)
537 538 539
 *
 * After which, if added entropy should be credited:
 *
540
 *     static void credit_init_bits(size_t bits)
541
 *
542
 * Finally, extract entropy via:
543
 *
544
 *     static void extract_entropy(void *buf, size_t len)
545 546 547
 *
 **********************************************************************/

548 549
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
550 551
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
552 553 554 555 556
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
557
	unsigned int init_bits;
558 559 560 561 562 563 564 565
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

566
static void _mix_pool_bytes(const void *buf, size_t len)
567
{
568
	blake2s_update(&input_pool.hash, buf, len);
569
}
570 571

/*
572 573 574
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
575
 */
576
static void mix_pool_bytes(const void *buf, size_t len)
577
{
578 579 580
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
581
	_mix_pool_bytes(buf, len);
582
	spin_unlock_irqrestore(&input_pool.lock, flags);
583 584
}

585 586 587 588
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
589
static void extract_entropy(void *buf, size_t len)
590 591
{
	unsigned long flags;
592 593 594 595 596
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
597
	size_t i, longs;
598

599 600 601 602 603 604 605 606 607 608 609 610
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
611
	}
612 613

	spin_lock_irqsave(&input_pool.lock, flags);
614 615 616 617 618 619 620 621 622

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

623
	spin_unlock_irqrestore(&input_pool.lock, flags);
624 625
	memzero_explicit(next_key, sizeof(next_key));

626 627
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
628 629 630
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
631
		len -= i;
632 633 634 635 636 637 638
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

639 640 641
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
642
{
643
	static struct execute_work set_ready;
644
	unsigned int new, orig, add;
645 646
	unsigned long flags;

647
	if (!bits)
648 649
		return;

650
	add = min_t(size_t, bits, POOL_BITS);
651

652
	orig = READ_ONCE(input_pool.init_bits);
653
	do {
654
		new = min_t(unsigned int, POOL_BITS, orig + add);
655
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
656

657 658
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
659 660
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
661 662 663
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
664
		if (urandom_warning.missed)
665 666 667
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
668
		spin_lock_irqsave(&base_crng.lock, flags);
669
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
670
		if (crng_init == CRNG_EMPTY) {
671
			extract_entropy(base_crng.key, sizeof(base_crng.key));
672
			crng_init = CRNG_EARLY;
673 674 675 676 677
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

678 679 680 681 682 683 684 685

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
686 687 688 689
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
690
 *	void add_interrupt_randomness(int irq);
691
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
692
 *	void add_disk_randomness(struct gendisk *disk);
693 694 695 696 697 698 699 700 701 702 703 704 705
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
706 707 708
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
709
 *
710 711 712 713
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
714 715 716 717 718
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
719 720 721 722 723 724 725 726 727 728 729 730 731
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
732 733
 **********************************************************************/

734 735
static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
736 737 738 739
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
740 741 742 743
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
744
early_param("random.trust_cpu", parse_trust_cpu);
745
early_param("random.trust_bootloader", parse_trust_bootloader);
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
764 765
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
766
		crng_reseed();
767 768 769 770 771 772 773
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

774
/*
775
 * The first collection of entropy occurs at system boot while interrupts
776 777 778 779 780
 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
 * utsname(), and the command line. Depending on the above configuration knob,
 * RDSEED may be considered sufficient for initialization. Note that much
 * earlier setup may already have pushed entropy into the input pool by the
 * time we get here.
781
 */
782
int __init random_init(const char *command_line)
783
{
784
	ktime_t now = ktime_get_real();
785 786
	size_t i, longs, arch_bits;
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
787

788 789 790 791 792
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

793 794 795 796 797 798 799 800 801 802 803 804
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
805
		}
806 807 808 809
		entropy[0] = random_get_entropy();
		_mix_pool_bytes(entropy, sizeof(*entropy));
		arch_bits -= sizeof(*entropy) * 8;
		++i;
810
	}
811 812
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
813 814
	_mix_pool_bytes(command_line, strlen(command_line));
	add_latent_entropy();
815

816 817 818 819 820 821 822 823
	/*
	 * If we were initialized by the bootloader before jump labels are
	 * initialized, then we should enable the static branch here, where
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

824 825
	if (crng_ready())
		crng_reseed();
826
	else if (trust_cpu)
827
		_credit_init_bits(arch_bits);
828

829 830
	WARN_ON(register_pm_notifier(&pm_notifier));

831 832
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
833
	return 0;
834
}
835

836
/*
837 838
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
839
 *
840 841 842
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
843
 */
844
void add_device_randomness(const void *buf, size_t len)
845
{
846 847
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
848

849
	spin_lock_irqsave(&input_pool.lock, flags);
850
	_mix_pool_bytes(&entropy, sizeof(entropy));
851
	_mix_pool_bytes(buf, len);
852
	spin_unlock_irqrestore(&input_pool.lock, flags);
853 854 855
}
EXPORT_SYMBOL(add_device_randomness);

856 857 858 859 860
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
861
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
862
{
863
	mix_pool_bytes(buf, len);
864 865
	credit_init_bits(entropy);

866
	/*
867 868
	 * Throttle writing to once every reseed interval, unless we're not yet
	 * initialized.
869
	 */
870
	if (!kthread_should_stop() && crng_ready())
871
		schedule_timeout_interruptible(crng_reseed_interval());
872 873 874 875
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
876 877
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
878
 */
879
void __init add_bootloader_randomness(const void *buf, size_t len)
880
{
881
	mix_pool_bytes(buf, len);
882
	if (trust_bootloader)
883
		credit_init_bits(len * 8);
884 885
}

886
#if IS_ENABLED(CONFIG_VMGENID)
887 888
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

889 890 891 892 893
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
894
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
895
{
896
	add_device_randomness(unique_vm_id, len);
897
	if (crng_ready()) {
898
		crng_reseed();
899 900
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
901
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
902
}
903
#if IS_MODULE(CONFIG_VMGENID)
904
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
905
#endif
906

907
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
908 909 910 911 912
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

913
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
914 915 916 917
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
918
#endif
919

920
struct fast_pool {
921
	struct work_struct mix;
922
	unsigned long pool[4];
923
	unsigned long last;
924
	unsigned int count;
925 926
};

927 928
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
929 930
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
931
#else
932 933
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
934 935 936
#endif
};

937
/*
938 939 940
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
941
 * four-word SipHash state, while v represents a two-word input.
942
 */
943
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
944
{
945
	s[3] ^= v1;
946
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
947 948
	s[0] ^= v1;
	s[3] ^= v2;
949
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
950
	s[0] ^= v2;
951 952
}

953 954 955 956 957
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
958
int __cold random_online_cpu(unsigned int cpu)
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

976 977 978
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
979
	/*
980 981 982 983 984
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
985
	 */
986
	unsigned long pool[2];
987
	unsigned int count;
988 989 990 991 992 993 994 995 996 997 998 999

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1000
	memcpy(pool, fast_pool->pool, sizeof(pool));
1001
	count = fast_pool->count;
1002
	fast_pool->count = 0;
1003 1004 1005
	fast_pool->last = jiffies;
	local_irq_enable();

1006
	mix_pool_bytes(pool, sizeof(pool));
1007
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1008

1009 1010 1011
	memzero_explicit(pool, sizeof(pool));
}

1012
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1013
{
1014
	enum { MIX_INFLIGHT = 1U << 31 };
1015
	unsigned long entropy = random_get_entropy();
1016 1017
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1018
	unsigned int new_count;
1019

1020 1021
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1022
	new_count = ++fast_pool->count;
1023

1024
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1025 1026
		return;

1027
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1028
		return;
1029

1030 1031
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1032
	fast_pool->count |= MIX_INFLIGHT;
1033
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1034
}
1035
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1036

1037 1038 1039 1040 1041 1042 1043 1044
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1045 1046 1047 1048
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1049 1050 1051 1052 1053
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1054
	unsigned int bits;
1055

1056 1057 1058 1059 1060
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1061
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1062 1063 1064 1065 1066 1067
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1109
	 */
1110 1111 1112
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1113
		_credit_init_bits(bits);
1114 1115
}

1116
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1141
void __cold rand_initialize_disk(struct gendisk *disk)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1157 1158 1159 1160 1161 1162
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1176
static void __cold entropy_timer(struct timer_list *timer)
1177
{
1178 1179 1180
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1181
		credit_init_bits(1);
1182 1183
		state->samples = 0;
	}
1184 1185 1186 1187 1188 1189
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1190
static void __cold try_to_generate_entropy(void)
1191
{
1192
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 30 };
1193 1194 1195
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1196

1197 1198 1199 1200 1201 1202 1203 1204
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1205 1206
		return;

1207
	stack.samples = 0;
1208
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1209
	while (!crng_ready() && !signal_pending(current)) {
1210
		if (!timer_pending(&stack.timer))
1211
			mod_timer(&stack.timer, jiffies + 1);
1212
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1213
		schedule();
1214
		stack.entropy = random_get_entropy();
1215 1216 1217 1218
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1219
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1230 1231 1232 1233 1234 1235 1236 1237
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1238 1239 1240 1241
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1242 1243
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1244 1245 1246 1247 1248 1249 1250
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1251
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1252
{
1253 1254 1255 1256
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1257 1258
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1259

1260 1261 1262 1263 1264 1265
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1266

1267
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1268 1269 1270 1271 1272 1273
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1274 1275 1276 1277 1278

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1279 1280
}

1281
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1282
{
1283
	poll_wait(file, &crng_init_wait, wait);
1284
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1285 1286
}

1287
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1288
{
1289
	u8 block[BLAKE2S_BLOCK_SIZE];
1290 1291
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1302 1303 1304 1305 1306 1307 1308

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1309
	}
1310

1311
	memzero_explicit(block, sizeof(block));
1312
	return ret ? ret : -EFAULT;
1313 1314
}

1315
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1316
{
1317
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1318 1319
}

1320
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1321 1322 1323
{
	static int maxwarn = 10;

1324 1325 1326 1327 1328 1329 1330
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1331 1332 1333 1334 1335
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1336 1337
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1338
		}
1339 1340
	}

1341
	return get_random_bytes_user(iter);
1342 1343
}

1344
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1345 1346 1347
{
	int ret;

1348 1349 1350 1351 1352
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1353 1354 1355
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1356
	return get_random_bytes_user(iter);
1357 1358
}

M
Matt Mackall 已提交
1359
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1360 1361
{
	int __user *p = (int __user *)arg;
1362
	int ent_count;
L
Linus Torvalds 已提交
1363 1364 1365

	switch (cmd) {
	case RNDGETENTCNT:
1366
		/* Inherently racy, no point locking. */
1367
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373 1374
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1375 1376
		if (ent_count < 0)
			return -EINVAL;
1377
		credit_init_bits(ent_count);
1378
		return 0;
1379 1380 1381 1382 1383 1384
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1385 1386 1387 1388 1389 1390
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1391 1392 1393 1394 1395
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1396
		ret = write_pool_user(&iter);
1397 1398 1399 1400
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1401
			return -EFAULT;
1402
		credit_init_bits(ent_count);
1403
		return 0;
1404
	}
L
Linus Torvalds 已提交
1405 1406
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1407
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1408 1409 1410
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1411 1412 1413
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1414
		if (!crng_ready())
1415
			return -ENODATA;
1416
		crng_reseed();
1417
		return 0;
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422
	default:
		return -EINVAL;
	}
}

1423 1424 1425 1426 1427
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1428
const struct file_operations random_fops = {
1429
	.read_iter = random_read_iter,
1430
	.write_iter = random_write_iter,
1431
	.poll = random_poll,
M
Matt Mackall 已提交
1432
	.unlocked_ioctl = random_ioctl,
1433
	.compat_ioctl = compat_ptr_ioctl,
1434
	.fasync = random_fasync,
1435
	.llseek = noop_llseek,
1436 1437
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1438 1439
};

1440
const struct file_operations urandom_fops = {
1441
	.read_iter = urandom_read_iter,
1442
	.write_iter = random_write_iter,
1443 1444 1445 1446
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1447 1448
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1449 1450
};

1451

L
Linus Torvalds 已提交
1452 1453
/********************************************************************
 *
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1472
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1473 1474 1475
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1476
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1477 1478
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1486
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1487
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1488
static int sysctl_poolsize = POOL_BITS;
1489
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1490 1491

/*
G
Greg Price 已提交
1492
 * This function is used to return both the bootid UUID, and random
1493
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1494 1495
 * then a new UUID is generated and returned to the user.
 */
1496
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1497
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1498
{
1499 1500 1501 1502 1503 1504 1505 1506 1507
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1513 1514 1515 1516 1517 1518 1519 1520
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1521

1522
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1523
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1524 1525
}

1526
/* The same as proc_dointvec, but writes don't change anything. */
1527
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1528 1529
			    size_t *lenp, loff_t *ppos)
{
1530
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1531 1532
}

1533
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1539
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1540 1541 1542
	},
	{
		.procname	= "entropy_avail",
1543
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1544 1545
		.maxlen		= sizeof(int),
		.mode		= 0444,
1546
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1547 1548 1549
	},
	{
		.procname	= "write_wakeup_threshold",
1550
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1551 1552
		.maxlen		= sizeof(int),
		.mode		= 0644,
1553
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1554
	},
1555 1556
	{
		.procname	= "urandom_min_reseed_secs",
1557
		.data		= &sysctl_random_min_urandom_seed,
1558 1559
		.maxlen		= sizeof(int),
		.mode		= 0644,
1560
		.proc_handler	= proc_do_rointvec,
1561
	},
L
Linus Torvalds 已提交
1562 1563 1564 1565
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1566
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1567 1568 1569 1570
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1571
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1572
	},
1573
	{ }
L
Linus Torvalds 已提交
1574
};
1575 1576

/*
1577 1578
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1579 1580 1581 1582 1583 1584 1585
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1586
#endif